

Using Data Mining for Facilitating User Contributions in the Social Semantic Web

Zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für

Wirtschaftswissenschaften

Karlsruher Institute für Technologie

genehmigte

DISSERTATION

von

Maryam Ramezani

Tag der mündlichen Prüfung: 25 Feb 2011

Referent: Prof. Dr. Rudi Studer

Korreferent: Prof. Dr. Alexander Maedche

2011 Karlsruhe

Abstract

Social Web applications have emerged as powerful applications for Internet users al-
lowing them to freely contribute to the Web content, organize and share information, and
utilize the collective knowledge of others for discovering new topics, resources and new
friends. While social Web applications such as social tagging systems have many benefits,
they also present several challenges due to their open and adaptive nature. The amount of
user generated data can be extremely large and since there is not any controlled vocabulary
or hierarchy, it can be very difficult for users to find the information that is of their interest.
In addition, attackers may attempt to distort the system’s adaptive behavior by inserting erro-
neous or misleading annotations, thus altering the way in which information is presented to
legitimate users. This thesis utilizes data mining and machine learning techniques to address
these problems. In particular, we design and develop recommender systems to aid the user
in contributing to the Social Semantic Web. In addition, we study intelligent techniques to
combat attacks against social tagging systems. In our work, we first propose a framework
that maps domain properties to recommendation technologies. This framework provides a
systematic approach to find the appropriate recommendation technology for addressing a
given problem in a specific domain. Second, we improve existing graph-based approaches
for personalized tag recommendation in folksonomies. Third, we develop machine learning
algorithms for recommendation of semantic relations to support continuous ontology devel-
opment in a social semantic Web environment. Finally, we introduce a framework to analyze
different types of potential attacks against social tagging systems and evaluate their impact
on those systems.

Zusammenfassung

Social-Web-Applikationen haben sich als leistungsstarke Anwendungen erwiesen, die es
Internet-Nutzern ermöglichen, flexibel neue Web-Inhalte bereitzustellen, Informationen zu
organisieren und auszutauschen, und das kollektive Wissen anderer für die Entdeckung neuer
Themen und Ressourcen und das Finden neuer Freunde zu nutzen. Während Social-Web-
Anwendungen, wie zum Beispiel Social-Tagging-Systeme, viele Vorteile haben, beinhalten
sie auch einige Herausforderungen aufgrund ihrer offenen und anpassungsfähigen Natur.
Die Menge an nutzergenerierten Daten kann extrem groß sein und da es kein kontrolliertes
Vokabular oder Hierarchien gibt, kann es für die Nutzer sehr schwierig sein, die Informa-
tionen zu finden, die von Interesse sind. Darüber hinaus können Angreifer versuchen das
adaptive Verhalten des Systems zu verzerren, indem Sie falsche oder irreführende Annota-
tionen verwenden, um damit die Art und Weise zu modifizieren, wie die Informationen für
den rechtmäßigen Benutzer präsentiert werden. Diese Arbeit nutzt Data Mining und Tech-
niken des maschinellen Lernens, um diese Probleme anzugehen. Insbesondere entwerfen
und entwickeln wir Recommender-Systeme, um Nutzern eine Hilfe zu geben ihren Beitrag
zum Social Web leisten zu können. Zusätzlich untersuchen wir intelligente Techniken,
um Angriffe gegen Social-Tagging-Systeme zu bekämpfen. In unserer Arbeit schlagen wir
zuerst ein Framework vor, welches Problemstellungstypen auf Typen von Recommendation-
Technologien abbildet. Dieses Framework bietet einen systematischen Ansatz, um die
adäquate Recommendation-Technologie für die Bewältigung eines bestimmten Problems in
einer spezifischen Domäne zu finden. Zweitens verbessern wir bestehende graph-basierte
Ansätze für personalisierte Tag-Empfehlungen in Folksonomies. Drittens entwickeln wir
Machine-Learning-Algorithmen für die Empfehlung von semantischen Relationen, die der
kontinuierlichen Entwicklung von Ontologien in einer Social-Semantic-Web-Umgebung di-
enen. Schließlich führen wir ein Framework ein, um verschiedenen Arten von möglichen
Angriffen auf Social-Tagging-Systemen zu analysieren und bewerten ihre Auswirkungen
auf diese Systeme.

Acknowledgments

First, I would like to thank my advisor Prof. Dr. Rudi Studer for his advise and support to
improve my work. Being a member of prof.Studer’s group, I had the opportunity to work
with an amazing supportive team. Among all, I would like to give my deepest appreciation
to Dr. Valentin Zacharias who supervised my work, helped me to improve it and guided me
in all the steps of my PhD at Karlsruhe Institute of Technology. This thesis would not have
been possible without him and his support.

This thesis is a combination of my research efforts at different research institutes that
I have visited. I had the chance to work with many wonderful professors and researchers.
I learned a lot from Prof. Bamshad Mobasher and Professor Robin Burke while I was at
center for Web intelligence at DePaul University, Chicago, IL. They both supported me to
have an excellent research opportunity while teaching there. Working with them was a great
experience that taught me scientific thinking and the steps to do valuable research. I worked
together with an amazing, creative team including Jonathan Gemmell, Thomas Schimoler,
J.J. Sandvig, and Runa Bhaumik. I learned a lot from all of them and had a great time in our
meetings and scientific discussions. Thanks to all of them for this great experience.

I spent a great summer at IBM Watson Research Center, Hawthorne, NY working on
recommender systems and I would like to thank Lawrence Bergman and Rich Thomp-
son for their mentorship and support during my time there. I spent some months at FZI
(Forschungszentrum Informatik), Karlsruhe where I contributed to Soboleo social book-
marking system. Thanks to Simone Braun for supporting me at those times. Last but not
the least, I spent more than a year at SAP research while working on my thesis and I would
like to thank my mentors and managers who supported me there. Many thanks to Dr. Hans
Friedrich Witschel, Dr. Harald Vogt, and Dr. Zoltan Nochta for their support during my PhD
time at SAP research. Special thanks go to Dr. Hans Friedrich Witschel for his willingness
to go through my thesis carefully and for giving me valuable feedback.

I would like to thank the members of my committee for taking the time out of their busy
schedules to review my work and attending my defense: Prof. Dr. Alexander Maedche, Prof.
Dr. Hartmut Schmeck, and Prof. Dr. Andreas Geyer-Schulz.

Finally, I would like to passionately thank the most important people of my life: my great
family who has been the greatest support in all steps of my life. Thanks to my wonderful
husband who was my biggest emotional support at each and every second of my PhD work.
Thanks to my wonderful parents who taught and encouraged me to be an explorer, to have
courage to learn new things and to be confident of myself that I can do it.

i

Contents

1 Introduction 1
1.1 Motivations and Research Questions . 2
1.2 Thesis overview and contributions . 4

1.2.1 Matching Recommendation Technology and Domains 4
1.2.2 Improving Link Analysis for Tag Recommendation in Social Tag-

ging Systems . 5
1.2.3 Using Recommender Systems for Continuous Ontology development 5
1.2.4 Combating Attacks Against Social Tagging Environments 6

2 Background 9
2.1 Recommender Systems . 9
2.2 Recommendation Algorithms . 10

2.2.1 Collaborative Filtering . 10
2.2.2 Content-based Recommendation 15
2.2.3 Knowledge-based Recommendation 16
2.2.4 Other Types of Recommendation 18

2.3 Social Tagging Systems . 18
2.3.1 Challenges in Social Tagging Systems 20
2.3.2 Formalization of Folksonomy . 23

2.4 Related Work in Social Tagging Research 26
2.4.1 Characterize Social Tagging Systems and User Motivations 26
2.4.2 Resource Recommendation and Personalized Search 27
2.4.3 Tag Recommendation . 29
2.4.4 User Recommendation . 30
2.4.5 Emergent Ontologies from Folksonomies 31

2.5 Chapter Summary . 33

ii

3 Matching Recommendation Technologies and Domains 34
3.1 Introduction . 34
3.2 Related Work . 35
3.3 Knowledge Sources . 37

3.3.1 Individual Knowledge . 37
3.3.2 Social Knowledge . 38
3.3.3 Content . 40

3.4 Recommendation types . 41
3.5 Domain Properties . 42

3.5.1 Heterogeneity . 43
3.5.2 Risk . 43
3.5.3 Churn . 43
3.5.4 Interaction Style . 44
3.5.5 Preference stability . 44
3.5.6 Inscrutability . 45

3.6 Mapping Knowledge Sources to Domain Properties 45
3.6.1 Individual . 45
3.6.2 Social Knowledge . 46
3.6.3 Content and Domain Knowledge 46

3.7 Mapping Domains to Technologies . 48
3.7.1 Algorithms . 50

3.8 Sample Recommendation Domains . 51
3.9 Domain of This Thesis: Social Web . 51
3.10 Conclusion . 54
3.11 Acknowledgements . 55

4 Improving Link Analysis for Tag Recommendation in Folksonomies 56
4.1 Introduction . 56
4.2 Related Work . 57
4.3 Background on PageRank Algorithm . 58

4.3.1 Folksonomy-Adapted PageRank 59
4.3.2 FolkRank . 60
4.3.3 Graph-Based Tag Recommendation in Folksonomies 61

4.4 A weighted Directed Graph Model for Folksonomies 62
4.5 Experimental Evaluation . 64

4.5.1 Datasets . 64
4.5.2 Experimental Results . 66
4.5.3 Discussion . 69

iii

4.6 Conclusion and Future Work . 70
4.7 Acknowledgment . 71

5 Using Recommender Systems to Support Continuous Ontology Development 72
5.1 Introduction . 72
5.2 Related Work . 73
5.3 Application Scenarios . 76

5.3.1 Floyd . 77
5.3.2 SOBOLEO . 77
5.3.3 Wikipedia . 78

5.4 Algorithms . 79
5.4.1 Algorithm 1: Recommendation of Super-Concepts Without An Ex-

isting Seed Hierarchy . 79
5.4.2 Algorithm 2: Recommendation of Super-Concepts by Learning From

an Existing Concept Hierarchy . 81
5.4.3 Algorithm 3: Hybrid Recommendation 85

5.5 Evaluation . 86
5.5.1 Data Sets . 86
5.5.2 Evaluation Methodology . 87
5.5.3 Experimental Metrics . 87

5.6 Experimental Results . 88
5.6.1 Experimental Results from Algorithm 1 89
5.6.2 Experimental Results from Algorithm 2 89
5.6.3 Experimental Results from Algorithm 3 92
5.6.4 Expert Evaluation . 94
5.6.5 Discussion . 96

5.7 Conclusion and Future Work . 97
5.8 Acknowledgment . 98

6 Combating Attacks Against Social Tagging Environments 99
6.1 Introduction . 99
6.2 Related Work . 102
6.3 Navigation Channels in Social Tagging Systems 104
6.4 Attack Dimensions . 105

6.4.1 Attack Types . 108
6.5 Retrieval Algorithms . 111
6.6 Evaluating Impact of Attacks . 112

6.6.1 Measuring the Local Impact of Attack 112

iv

6.6.2 Measuring the Global Impact of Attack 113
6.7 Experimental Results . 115

6.7.1 Experimental Setup . 115
6.7.2 Overload Attack . 117
6.7.3 Piggyback Attack . 122
6.7.4 Co-occurrence Attack (Tag Push) 124
6.7.5 Comparison Of Attack Impact On Different Data Sets 127
6.7.6 Comparison of Different Attack Types 128
6.7.7 Comparison of Local Impact . 129

6.8 Discussion . 131
6.9 Conclusion and Future Work . 132
6.10 Acknowledgment . 133

7 Conclusion 135
7.1 Answer to Research Questions . 136

7.1.1 Objective 1: Matching Recommendation Technology and Domains 136
7.1.2 Objective 2: Improving Link Analysis for Tag Recommendation in

Social Tagging Systems . 137
7.1.3 Objective 3: Using Recommender Systems for Continuous Ontology

Development . 138
7.1.4 Objective 4: Combating Attacks Against Social Tagging Systems . 139

7.2 Summary of Contributions . 140
7.2.1 Conceptual Contributions . 140
7.2.2 Algorithm Development . 141
7.2.3 Empirical Contributions . 141

7.3 Future Directions . 142
7.3.1 Explore Other Recommendation Tasks 143
7.3.2 Network Evolution and Attacks 144
7.3.3 Scalability And Real-time Analysis 144

v

Chapter 1

Introduction

Social Web applications have emerged as powerful applications for Internet users allowing
them to freely contribute to the Web content, to organize and to share information, and to
utilize the collective knowledge of others for discovering new topics, resources and new
friends.

In social Web applications, information access functions such as search, navigation, and
resource sharing are usually supported by annotations, labels that users apply to resources.
These labels can be numerical ratings such as those used in many standard recommender
systems; simple meta-data in the form of short tags such as those supported by Delicious1,
Flickr2, and many other social tagging systems; or they might be more structred in the form
of categories in Wikipedia3. Many of these applications support their users by providing
recommendations.

Recommender systems reduce the burden of navigating large information spaces and
aid users in discovering new items of their interest. However, single-function recommender
systems, which connect users with relevant resources are being progressively replaced by
more complex and dynamic applications in which social Web and social networking play an
increasingly important role.

This thesis aims to use machine learning and data mining algorithms, particularly, recom-
mender systems to assist users of social Web applications to bring meaningful contributions
to the system with minimum effort. In addition, we want to understand the conditions un-
der which information access in social Web applications can be expected to produce useful
results, and in particular, how these functions can be insulated from adversaries, even in
systems that are open to the public.

In this chapter, we first present our motivations and research questions in section 1.1.

1www.delicious.com
2www.flickr.com

3www.wikipedia.org/

1

Next, we present our contributions and the thesis overview in section 1.2.

1.1 Motivations and Research Questions
In this thesis, we investigate how machine learning and data mining algorithms can be ap-
plied to social Web applications in order to improve their usability. For this purpose, we
specifically investigate the role of recommender systems in social Web applications, partic-
ularly in social tagging systems. In this section, we outline the objectives and the research
questions that this thesis aims to address.
Objective 1: In the first step of this thesis, we study the problem of matching recommender
systems technologies to different domains. With the rapid development of recommender
system technologies in the recent years, it has become difficult for developers to determine
which technology is suitable to a particular context. To alleviate this difficulty, we propose
a framework that organizes the space of recommendation problems and provides a system-
atic approach to finding the appropriate recommendation technology for addressing a given
problem in a specific domain. The research questions we try to answer in this part of the
thesis are the following.

• What are the main characteristics of a domain that influence the choice of selecting the
appropriate recommendation technology?

• What are the main knowledge sources in recommendation systems and how do they
relate to the recommendation technology?

• How can we map the domain characteristics to recommendation technologies?

Objective 2: Once we have a good understanding of recommender system technologies and
their applications, we focus our attention on building recommenders in the social tagging
domain. Social tagging applications allow users to annotate online resources, resulting in a
complex three dimensional network of interrelated users, resources and tags often called a
Folksonomy. In order to develop a recommender application for such a system, the first step
is to create a model of the folksonomy that takes into account the information flow between
users, resources and tags. We suggest a directed graph to model the folksonomy and apply
an adaptation of PageRank algorithm on the graph for tag recommendation. Our goal in this
part of the thesis is to improve the link analysis in folksonomies for tag recommendation and
the research question we try to address are the following.

• How can we model the folksonomy as a graph so that we can capture the flow of
information?

2

• How can we use the model for tag recommendation?

• Does the proposed model produce better recommendation than the previous approaches?

Objective 3: Bridging the gap between folksonomies and ontologies as a research problem
has recently received attention by many researchers in the semantic community. Applying
semantic Web technologies to the data of the social Web can help users in search and navi-
gation. On the other hand, the collaborative environment of social tagging systems can also
provide a suitable platform for developing ontologies. In this thesis, we investigate how
recommender systems can help users to collaboratively develop an ontology. We propose
a machine learning algorithm that utilizes a seed concept hierarchy to automatically learn
from the existing relations among concepts. The algorithm recommends semantic relations
between a new concept (entered by users) and the existing concepts in the hierarchy. The
research questions we try to answer are the following.

• How can we aggregate user activities in a social tagging environment to infer semantic
similarity?

• How can we use machine learning to learn from the existing semantic relations in a
concept hierarchy to predict semantic relations between a new concept and existing
concepts?

• How can the algorithm support collaborative ontology development?

Objective 4: Although flexibility and openness of social tagging systems has attracted mil-
lions of users, these properties also introduce challenges to the system. One of the major
challenges that has received little attention from research community is the security of such
systems. Attackers may attempt to distort the systems adaptive behavior by inserting erro-
neous or misleading annotations, thus altering the way in which information is presented
to legitimate users. In this thesis, we systematically study this issue. We are interested to
answer the following questions.

• How can we systematically study the problem of attacks against social tagging sys-
tems?

• How can we evaluate the impact of attacks in social tagging systems?

• What model of attacks are more successful?

• How many malicious users can a tagging system tolerate before results significantly
degrade?

• How much effort and knowledge is needed by an attacker to attack the system?

3

1.2 Thesis overview and contributions
In this section, we present an overview of the thesis and outline our contributions. The
following subsections provide a brief description of each of the main chapters of the thesis.

1.2.1 Matching Recommendation Technology and Domains
The goal of this chapter is to assist researchers and developers to identify the recommen-
dation technology that is applicable to different domains of recommendation. This chapter
is a conceptual contribution to the field of recommender systems and it provides a compre-
hensive understanding of how recommender systems can be applied in different domains. In
this chapter, we adopt a taxonomy of knowledge sources in recommendation from existing
literature and match those knowledge sources to recommendation technologies. We identify
the domain characteristics that influence on selection of recommendation technologies and
map those characteristics to recommendation technologies based on the knowledge sources
they require.

Contributions

• Extensive survey on the recommendation literature

• Identification of domain characteristics that influence on selecting and applying rec-
ommendation technology

• Mapping the domain characteristic to recommendation technologies

Impact

• This work has provided the basic fundamentals for development of recommender sys-
tems in IBM T.J Watson Research Center.

• Preliminary results of the work have been published as a paper in the workshop on
recommendation and collaboration at the Intelligent User Interfaces Conference 2008
[167].

• An extended version of the work has been published in the Recommender Systems
Handbook providing a guide for research scientists and practitioners in the recom-
mender system area [39].

4

1.2.2 Improving Link Analysis for Tag Recommendation in Social Tag-
ging Systems

Tag recommendation is one of the techniques that can help reduce noise, redundancy, and
ambiguity in social tagging systems. Many researchers have developed different techniques
for tag recommendation. Our goal in this chapter is to improve existing tag recommendation
techniques by introducing a new model of the folksonomy graph.

Contributions

• Developed an approach to model a folksonomy as a weighted directed graph.

• Used the proposed directed graph and an adaptation of PageRank for tag recommen-
dation.

• Evaluated the proposed algorithm with data set from popular tagging applications such
as Bibsonomy, Citeulike and Delicious and showed improvement over popular existing
graph-based algorithms.

Impact

• Improvement on existing tag recommendation algorithms

• The results of this work is published in the workshop on recommender systems and the
social Web [169] and as a rising scholar paper in the Journal of Emerging Technologies
in Web Intelligence [166].

1.2.3 Using Recommender Systems for Continuous Ontology develop-
ment

In this chapter we develop a recommender system to support continuous ontology develop-
ment. Our goal is to develop a recommendation algorithm in a Web 2.0 platform that supports
end users in the collaborative development of an ontology. The developed algorithm uses an
existing seed hierarchy, the concepts already present and the sub/super concept relations be-
tween them to place a given new concept in the hierarchy. Thus, the output of the algorithm
consists of potential super-concepts for a new concept.

5

Contributions

• Developed a machine learning algorithm that can learn from the existing relations of a
concept hierarchy and suggest the potential super concepts for a new concept.

• Experimental results from the proposed algorithm with data sets from Wikipedia show
excellent results which confirm that the algorithm can be directly used in Wikis to
support users for creating sub-super category relations.

• Results from expert evaluations show that the algorithm can suggest accurate high
quality semantic relations.

Impact

• The developed algorithm has been implemented in the social semantic bookmarking
system SOBOLEO [229] and is being used by users.

• The algorithm has been partly implemented into SAP Floyd system. Floyd is a case
management system used by market researchers. Users receive recommendations on
the potential semantic relations for a new term.

• The algorithm can be directly used in Wikis to support users for creating sub-super
category relations.

• The results of this work has been published in the proceedings of 5th IEEE Interna-
tional Conference on Intelligent Systems [173] and 17th International Conference on
Knowledge Engineering and Knowledge Management, EKAW 2010 [168].

1.2.4 Combating Attacks Against Social Tagging Environments
In this chapter we discuss the problem of security and robustness in social tagging systems.
We introduce a framework to model the navigation channels in social tagging systems and
we identify different types of potential attacks against the system through different naviga-
tion channels. We propose approaches to evaluate the impact of attacks. We model different
attack types and experiment their impact using dataset from popular social tagging systems.
This chapter provides a strong conceptual understanding of the possible attacks against so-
cial tagging systems and the experimental section of the chapter helps identify the types of
attacks that are more successful in changing the system behavior. Gaining a fundamental
understanding of the nature and impact of such attacks can lead to more secure and robust
social Web applications.

6

Figure 1.1: Structure of the thesis

Contributions

• Outlined a framework to model the attacks based on various navigation channels and
target elements.

• Introduced evaluation metrics to measure the local and global impact of attacks.

• Implemented and evaluated different type of attacks on data sets from real popular
folksonomies such as Delicious and Bibsonomy.

Impact

• This work creates the awareness of the security and manipulation problem in open
adaptive systems specifically social tagging systems.

• The results of this work can help social tagging Websites discover the vulnerabilities
of their system, inform them about the parts of the system that need more monitoring,
guide researchers and developers to develop more robust systems, and provide them
with clues for attack detection.

7

• The results of this work have been published in several workshops including [170, 186]
as well as IEEE International Conference on Social Computing 2009 [171].

We start this thesis with a background chapter. We present basic concepts and prelim-
inaries, introduce the notation and briefly survey the related work. Next, in chapter 3 we
investigate the problem of matching recommendation technologies and domains. In chapter
4, we present our algorithm to improve graph-based tag recommendation. Chapter 5 presents
our approach to assist users for continuous ontology development. Chapter 6 is dedicated to
our studies on the problem of attacks against social tagging systems. Finally, chapter 7 con-
cludes the thesis with a summary and an outlook to future possibilities to extend this work.
Figure 1.1 shows the structure of the thesis.

8

Chapter 2

Background

In this chapter we review the basic concepts and terminology used in this thesis. This chapter
serves as an introduction into general related work covering the subareas of our work.

We start this chapter in section 2.1 by introducing recommender systems: first, a brief
history of the field will be given, followed by description of popular recommendation al-
gorithms. Next, in section 2.3 we introduce social tagging systems and our terminology
to model such systems. We survey the current areas of research in social tagging systems
including different recommendation approaches. Finally, we discuss several challenges in
social tagging systems: ambiguity and redundancy, and attacks against social tagging sys-
tems. These challenges are the motivation of our work in the next chapters of this thesis.

2.1 Recommender Systems
The growth of the World Wide Web in the 1990s resulted in an explosive growth of the
amount of information available online, outgrowing the ability of individual users to process
all this information. This was a motivation for the increase of interest in research fields such
as information retrieval (IR) and information filtering (IF).

Information Retrieval originated as a research field in the 1950s focusing on automati-
cally matching user’s need (specially in form of a query) against a set of documents. Web
search engines are the most visible IR applications today.

Information filtering systems emerged in the 1990s to help users with the information
overload problem. These systems generally use long term user profiles to filter out irrelevant
or redundant data items and just present the part of information that the user is interested in.
Typically, such systems construct a model of users’ interests and match that against a stream
of information objects. While IR and IF are considered separate research fields, they share
many characteristics, such as a focus on analyzing textual content [22].

9

Recommender systems can be considered as active information filtering systems that
attempt to present the user with information items he or she is interested in. Thus, they
actively add personalized information items to the information flowing towards the users.
Recommender systems were originally defined in [176] as “systems in which people provide
recommendations as inputs, which the system then aggregates and directs to appropriate
recipients”. However, this definition only captures “collaborative filtering” which is a spe-
cific algorithm for recommending. The term “recommender systems” evolved to replace
and broaden the use of the term collaborative filtering and is defined by Schafer et.al. [190]
as systems that specifically recommend lists of products and help users evaluate products.
In this definition recommenders are systems that are used in E-commerce sites to suggest
products to their customers and to provide consumers with information to help them decide
which products to purchase. Schafer et.al. [190] present recommender systems as a way to
achieve mass customization in e-commerce. From this perspective, recommender systems
can be regarded as specialized data mining systems that have been optimized for interaction
with consumers rather than marketers.

As the above definitions suggest, recommender systems are generally applied to e-
commerce domains such as movies, music, books, news, images, and web pages. In this
thesis, specifically in chapter 3, our perspective on recommender systems is broader than
only used in e-commerce applications. We view recommenders as systems that produce
individualized recommendations as output or have the effect of guiding the user in a person-
alized way to interesting or useful objects in a large space of possible options [32]. In the
following section, we present the common recommendation algorithms.

2.2 Recommendation Algorithms
Over the past two decades many different recommendation algorithms have been proposed.
Generally, in recommendation literature, all different approaches can be categorized to three
main approaches: Collaborative Filtering (CF), Content-based (CB) and knowledge-based
(KB) algorithms. In this section, we describe the basics of each recommendation technique
and discuss the advantages and disadvantages of each approach.

2.2.1 Collaborative Filtering
Collaborative Filtering (CF) is the most popular and, to date, the most successful recom-
mendation technique in e-commerce applications. CF algorithms usually employ statistical
techniques to find like-minded people, known as neighbors, that have a history of agreeing
with the target user. Once a neighborhood of users is formed, different algorithms are used to

10

combine the preferences of neighbors to produce a prediction of ratings for not-rated items
or a list of top n items as recommendation for the target user. The underlying assumption of
the CF approach is that those who agreed in the past tend to agree again in the future.

The term “collaborative filtering” was first introduced by Goldberg et al. [73], to describe
their Tapestry filtering system in which people collaborate to help each other perform filter-
ing by recording their reactions to documents they read. The reactions, called annotations,
can be accessed by other people’s filters. Users had to identify the people who have similar
taste to them by themselves. Subsequent CF approaches automated this process of locating
the nearest neighbors of the active user. CF algorithm as it is known today, which tries to
predict ratings for not rated items based on ratings of nearest neighbors, was presented by
Resnick et al. [175] for recommending Usenet articles, and by Shardanand and Maes [192]
in their Ringo music recommender system. These were the first to find the distance between
users by correlating their rating history in order to (1) determine the most similar neighbors
and (2) use those similarities to predict interest in new items.

Since then, many researchers have worked on expanding and improving collaborative
filtering systems. Breese et al. [27] introduced the notion of memory-based and model-
based algorithms to improve the efficiency of CF techniques. Herlocker et al. [88] per-
formed a large-scale evaluation of collaborative filtering algorithms using different weight-
ing schemes. In the following subsections we explain the basics of collaborative filtering
algorithm and describe the differences between user-based, item-based, memory-based and
model-based algorithms.

Overview of the Collaborative Filtering Process

The task of collaborative filtering algorithms is to predict how well a user will like an item
that he has not rated given his historical preferences together with the historical preferences
of a community of users. User preferences can be explicit statements provided intentionally
by the user such as ratings or implicitly inferred from user behavior such as browsing the
web pages. The problem space can be formulated as a n×m matrix, R, for n users versus
m items where cell Ri j of the matrix represents the rating of user i on item j. Under this
formulation, the problem is to predict values for empty cells. In general, this matrix is very
sparse since each user usually has rated a small percentage of total number of items. Figure
2.1 shows a simplified example of user-item matrix for movie ratings. In this example, the
recommender systems attempts to provide a prediction for Indep.Day for user 5.

The user-based collaborative filtering, tries to predict the rating of an item by looking at
the “nearest neighbors” of the target user. In this example, based on the comparison of rating
history of user 5 with other users, user 2 has the most similar rating history to user 5. They
have closely agreed on all the movies that they have both seen. As a result, user 2’s opinion

11

Figure 2.1: A simplified example of user-item matrix for movie ratings

about Indep. Day will influence the prediction for user 5. For simplification, in this example,
if the system decides only based on one nearest neighbor, then the prediction for user 5 will
be equal to 6 for Indep.Day.

Herlocker et al. [88] separates the user-based method into three steps: (1) Weight all
users with respect to similarity with the active user. The most common technique to find
similarity among users is Pearson correlation. (2) Select a subset of users to use as the
nearest neighbors for prediction. (3) Normalize ratings and compute a prediction using a
weighted combination of selected nearest neighbors.

Although user-based collaborative filtering has been very successful, it has some poten-
tial challenges including sparsity and scalability. In practice, in many commercial systems,
even active users may have purchased or rated under 1% of the items. Thus, a user-based
recommender system can hardly find nearest neighbors for a particular user and thus it will
be unable to make any item recommendations. To solve this problem, Sarwar etal. [188]
proposed the item-based collaborative filtering.

Item-based collaborative filtering looks at the set of items the target user has rated and
computes how similar they are to the target item i and then selects k most similar items.
Once the most similar items are found, the prediction is then computed by taking a weighted
average of the target user’s ratings on these similar items. Figure 2.2 shows the same user-
item matrix as in the previous example. Based on user-ratings the Indep.Day is most similar
to Star Wars. Thus, the system predicts that user 5 will have a similar opinion about these
movies and predicts 7 for Indep.Day (if we consider only one similar item). In practice,
the prediction is based on weighted average of the k most similar items. The recommender
system used in Amazon.com (people who bought this, also bought this) works on the same
principle.

Memory-based vs. model-based collaborative filtering

CF algorithms are commonly divided into two types, memory-based and model-based al-
gorithms. Memory-based algorithms are similar to lazy machine learning algorithms that

12

Figure 2.2: Item-based collaborative filtering finds similar items based on users rating history

postpone the task of building a model to the time of recommendation generation. At gener-
ation time, they scan the entire database to produce a prediction. Generally, user-based CF
is considered as memory-based since all the computations are done real time at the time of
user interaction.

Model-based CF algorithms learn an aggregated model of user behavior in advance and
use this model to generate recommendations. The model building process can be performed
by different machine learning algorithms including Bayesian learning, clustering, association
rule mining, and factor models.

Bayesian networks create a model based on a training set with a decision tree where
a node corresponds to each item. The states of each node correspond to the possible vote
values for each item. The model can be built off-line. The resulting model is small, fast,
and essentially as accurate as nearest neighbor methods [27]. Bayesian networks may prove
practical for environments in which knowledge of user preferences changes slowly with
respect to the time needed to build the model but are not suitable for environments in which
consumer preference models must be updated rapidly or frequently [190] since a new model
has to be built every time the preferences change.

Clustering techniques work by identifying groups of users who have similar prefer-
ences. Once the clusters are created, predictions for an individual can be made by averaging
the opinions of the other users in that cluster. Clustering techniques usually produce less-
personal recommendations than other methods, and in some cases, the clusters have worse
accuracy than nearest neighbor algorithms [27]. Once the clustering is complete, however,
performance can be very good, since the size of the group that must be analyzed is much
smaller. Clustering techniques can also be applied as a first step for creating a smaller set of
candidates for a nearest neighbor algorithm or for distributing nearest-neighbor computation
across several recommender engines [190].

Association rules have been used for many years in marketing, to analyze patterns of
preference across products, and to recommend products to consumers based on other prod-
ucts they have selected [190]. Association rules are used to discover regularities between

13

products in large scale transaction data. An association rule expresses the relationship that
one product is often purchased along with other products. To select interesting rules from
the set of all possible rules, constraints on various measures of significance and interest can
be used. The well-known constraints are minimum thresholds on support and confidence

Association rules are more commonly used for larger populations rather than for indi-
vidual consumers. For example, they can be used as the basis for decisions about marketing
activities such as promotional pricing or product placements in supermarkets. Like other
learning methods that first build and then apply models, association rules are less suitable
for applications where knowledge of preferences changes rapidly. By contrast, recommender
systems based on nearest neighbor techniques are easier to implement for personal recom-
mendation in a domain where user opinions are frequently added, such as e-commerce ap-
plications [190].

Latent factor models try to reduce the dimensionality of the space of user-item ratings
by mapping users and items to the same latent factor space [109]. The users and items are
then related to each other through these latent factors. Examples of latent factor techniques
applied to recommendation include Singular Value Decomposition (SVD) [189, 163], factor
analysis [42], Probabilistic Latent Semantic Analysis (PLSA) [97]. Factor models have been
the most successful recommendation algorithms to date. The successful algorithms in the
Netflix competition all used some kind of matrix factorization models [203]. The Netflix
prize1, a research competition with one million dollar prize, was awarded to the research
group that could improve the Netflix2 existing recommendation algorithm for predicting
movie ratings by 10%.

Graph-based techniques create a graph from the user-item matrix and use different
graph-based appraoches to make a prediction. Horting is a graph-based technique in which
nodes are users, and edges between nodes indicate degree of similarity between two users [7].
Predictions are produced by walking the graph to nearby nodes and combining the opinions
of neighbors. Horting differs from nearest neighbor as the graph may be walked through
other users who have not rated the product in question, thus exploring transitive relationships
that nearest neighbor algorithms do not consider [190]. Graph-based techniques have gained
more popularity in recommendation in the social Web domain. In chapter 4 we present more
details of those approaches.

K-nearest neighbor algorithm is generally considered as one the lazy algorithms in ma-
chine learning. However, if all of the user similarities (for user-based CF) or item similarities
(for item-based CF) are computed in advance, and not real-time, then we can consider these
algorithms as model-based as well. In this case, the model is basically the similarity matrix.

1http://www.netflixprize.com/
2www.netflix.com

14

Advantages and Disadvantages of Collaborative Filtering

The greatest strength of collaborative techniques is that they do not require any information
about the product that they are recommending. Thus, they are completely independent of
any machine-readable representation of the objects being recommended, and work well for
complex objects such as music and movies where variations in taste are responsible for
much of the variation in preferences [32]. This feature makes collaborative filtering as the
most widely implemented and most popular recommendation technology specifically for e-
commerce domains where new products come and go on regular bases.

Another advantage of CF algorithm is that CF algorithms are able to take the quality
of an item into account when recommending items, especially in the case of explicit user
ratings [22]. For instance, two movies might have the same genre, but might have very
different quality. By taking actual user preferences into account, CF algorithms can prevent
poor recommendations that are merely based on product features.

Collaborative filtering systems are the only kind of recommender systems that can pro-
vide serendipitous recommendation. A serendipitous recommendation is something new,
non-obvious and appreciated that the user would likely not have discovered on his/her own.
For example, an unfamiliar song from an unfamiliar musician, or a unfamiliar movie from
an unfamiliar director.

On the other hand, CF algorithms suffer from several problems. First, collaborative fil-
tering systems are not able to provide explanation for recommendations. Current CF systems
are black boxes, providing no transparency or reasoning behind a recommendation. Many
users want to know why they get a certain recommendation specifically if there is a high risk
involved.

Second problem of CF algorithms is the “cold-start” problem. This problem appears in
startup phase of the recommender system, or when a new user or a new item is added to the
system. In these cases, the system cannot generate any recommendations. Solutions to this
problem include using other data sets to seed the system, using different recommendation
algorithms or simply recommending most popular items when the cold start problem exists.
Even after acquiring more ratings from the users, sparsity of the user-item matrix can still be
a problem for CF.

Another problem mentioned in literature is that collaborative recommenders work best
for a user who fits into a niche with many neighbors of similar taste. It does not work well
for so-called “gray sheep” [50], who fall on a border between existing cliques of users [32].

2.2.2 Content-based Recommendation
Content-based recommendation algorithms, also known as content-based filtering, can be
considered as an outgrowth and extension of the information filtering research. Content-

15

based systems work by creating some kind of representation of the items based on their
content features. For example, information retrieval systems like the newsgroup system
NewsWeeder [118] use terms in a document as features. A content-based recommender
learns a profile of the user’s interests based on the features present in objects the user has
rated. The type of user profile derived by a content-based recommender depends on the
learning method employed. The user profiles might be long-term models that are updated as
more evidence about user preferences is observed or might be ephemeral profiles (usually in
form of user query).

Typically, content-based filtering is approached as either an IR problem or a machine
learning problem [22]. In the IR approach textual similarity (e.g t f .id f) is used to match
items representations (e.g. documents) against user representations (e.g. query). Examples
of this approach include many news recommender applications such as [81]. In the ma-
chine learning approach the features of items are used to train a prediction or classification
algorithm. Examples of this approach include neural networks used in Re:Agent [23] for
email filtering, decision trees and Bayesian networks used in InfoFinder [160] for document
recommendation.

Advantages and Disadvantages of Content-based Recommendation

One of the advantages of CB algorithms is that, in contrast to collaborative approaches, they
have no cold start problem for new items since the features of the new item can be extracted
when the item is added. Second advantage of CB algorithms is that similar to CF algorithms,
they do not need deep domain knowledge and it is sufficient to store the item features in a
database and collect implicit feedback from the users about their item preferences. However,
they are still more explainable than CF algorithms since they match the features that the user
is interested in with item features.

The main disadvantage of CB algorithms is that in domains with complex objects such
as music and movies where there are large numbers of features, it is difficult to do a perfect
content analysis and discover the main real features that make the product attractive to a user.
In addition, content-based filtering algorithms can only recommend items from a narrow
topic range; they are unable to provide serendipitous recommendations.

2.2.3 Knowledge-based Recommendation
All recommendation algorithms attempt to help a user to find interesting items of their taste.
Collaborative filtering algorithms do this based on the behavior of the user and other like-
minded users, whereas content-based filtering approaches do this based on the features of the
items of users interests and the features of available items. A third class of recommendation

16

algorithms is formed by knowledge-based algorithms. They use domain knowledge, and
recommend items based on functional knowledge of how a specific item meets a particular
user need [32].

Domain knowledge can take many forms, but without loss of generality we can describe
it as an ontology in which there are relations among attributes, objects, and concepts, espe-
cially related to item features. It may also contain means-ends knowledge about how items
may meet potential user goals. The presence of domain knowledge may permit items to be
described with structured representations as opposed to simple vectors of features. A rec-
ommender system may also rely on knowledge that is external to the question of product
suitability or “best match”. The owners of a system may prefer certain recommendations for
business reasons. For example, a video rental service may prefer to recommend items from
its less-popular back catalog over in-demand new releases. Such knowledge we refer to as
business rules knowledge.

Burke [32] identifies three types of knowledge required in a knowledge-based system:
catalog knowledge, functional knowledge, and user knowledge. Catalog knowledge is knowl-
edge about the objects being recommended and their features. This type of knowledge is sim-
ilar to the one used in content-based systems, however, it has more deep knowledge about the
relationships between the features. For example, the Entree recommender [40] should know
that “Thai” cuisine is a kind of “Asian” cuisine. Functional knowledge is the knowledge that
enables the system to map between the users needs and the object that might satisfy those
needs. For example, Entree knows that a need for a romantic dinner spot could be met by a
restaurant that is “quiet with an ocean view”. User knowledge is the knowledge the system
gets about the user. This might take the form of general demographic information or specific
information about the need for which a recommendation is sought.

Advantages and Disadvantages of Knowledge-based Recommendation

Knowledge-based recommenders are the most reliable approach (if the domain knowledge
is comprehensive and up to date) because the background knowledge is free of noise. KB
systems, specifically the conversational ones, allow the user to provide a rich specification of
their need, which in turn results in more satisfying recommendations. Other advantages of
knowledge-based recommendation include no cold start problem, and its ability for intuitive
explanations of why a certain item was recommended.

The disadvantage of KB is the high cost and effort for setup and maintenance. It is usually
too much of effort for domain experts to capture all the objects, attributes and relations in a
domain. As a result, knowledge-based recommendation is not as popular as the other two
classes of algorithms.

17

2.2.4 Other Types of Recommendation
Although in most recommendation literature, the three types of CF, CB, and KB has been
identified as main types of recommedation techniques, some researchers have other catego-
rizations. Several researchers such as Adomavicius et al. argue that CB and KB are basically
similar since they use item features. Thus, they consider only two main categories of col-
laborative and content-based techniques [5]. While other researchers such as Burke have
considered other categories such as demographic and utility-based as additional recommen-
dation techniques [32]. Burke defines utility-based as systems that make suggestions based
on a computation of the utility of each object for the user and demographic recommenders as
the ones which categorize the user based on personal attributes and make recommendations
based on demographic classes.

Hybrid recommender systems combine two or more recommendation techniques to gain
better performance with fewer drawbacks as compared to individual techniques. A survey on
existing recommender systems and possible directions in hybrid systems is presented in [32].

2.3 Social Tagging Systems
In the past decade there has been a considerable increase of social websites focusing on facil-
itating information sharing, interoperability, user-centered design, and collaboration. These
websites named as “Web 2.0” allow users to interact with each other and contribute to web-
sites’ content, in contrast to websites that users are limited to the passive viewing of infor-
mation. Examples of Web 2.0 applications include social-networking sites, wikis, blogs, and
websites that support content sharing.

An important component of many of these websites is social tagging; allowing users to
associate tags to items (also called resources) and share them with others. These items can
vary from bookmarks3, to photos4, videos5, books6, scientific articles7, movies8, music9,
slides10, news articles11, activities12, and etc. Tags are freely chosen keywords associated
to an item reflecting what the user thinks is the appropriate term to describe that item. De-
pending on the system’s specifications a tag can be made up of one or more words. Some
systems like Delicious for example, consider two words separated with space as two distinct
tags. In such systems users have to escape the one-word-only limitation by concatenating
words. For example, in Delicious “web-design” is one tag but “web design” is considered as

3http://www.delicious.com
4http://www.flickr.com
5http://www.youtube.com
6http://www.librarything.com
7http://www.citeulike.org

8http://www.movielens.org
9http://www.last.fm/

10http://www.slideshare.net/
11http://slashdot.org/
12http://www.43things.com)

18

two distinct tags “web” and “design”. There is typically no limit to the number of tags that
may be assigned to a resource and there is no strict hierarchy of tags.

Social tagging systems are gaining more popularity because they offer users several ben-
efits. First, they allow users to organize their own data with a level of freedom not possible in
traditional taxonomic filing systems. Second, social tagging systems provide users with the
means to openly share this information among friends and colleagues. Third, they also allow
anyone to utilize the collective knowledge of others for discovering new topics, resources or
perhaps even new friends. Fourth, the reuse of tags creates a dynamic user driven approach
to formalize semantic relationships.

Social tagging systems facilitate the retrieval and discovery of resources by providing
different possibilities to navigate through the system. Figure 2.3 shows a screenshot of De-
licious website showing the popular bookmarks for the tag “ontology”. There are many
different options for users to navigate through the search results. On the top, there is an
option for recent or popular bookmarks allowing users to look at the most recent or the most
popular bookmarks. In front of each link, there is a number showing the total number of
people who have saved a specific resource; by clicking on the number, the user can navigate
into other users’ profiles and browse through their other tags and resources. The user can
also see other tags that have been commonly associated to each resource. On the right side
of the screen, “related tags” are presented which are calculated by the system based on the
aggregation of user profiles and the number of times two tags have co-occurred together.

Social tagging systems have also been called “collaborative tagging” and “Folksonomy”.
Even though some researchers have differentiated between these names, they have been com-
monly used in the literature as other names for social tagging systems. Bogers [22] differ-
entiates between social tagging and collaborative tagging by considering the two types of
tagging systems: broad and narrow systems. In a broad tagging system such as social book-
marking websites, all users can tag the resources while in narrow systems such as photo or
video sharing websites only the creator of a resource can tag the item. Bogers considers only
the broad tagging systems as collaborative tagging since a tag can be applied multiple times
to the same resource in such systems. The word “Folksonomy” is a portmanteau of “Folk”
and “Taxonomy” and was first introduced by Vander Wal [215], who defined a folksonomy
as the result of “personal free tagging of information and objects for one’s own retrieval”.
Different variations on this definition have been proposed in the past. In this thesis, we use
the terms social tagging and collaborative tagging interchangeably whereas folksonomy is
the outcome of social tagging; a complex network of interrelated users, resources and tags.

19

Figure 2.3: Screenshot of Delicious website showing the popular bookmarks for ontology.
There are different navigation possibilities through the system.

2.3.1 Challenges in Social Tagging Systems
Despite the many benefits offered by folksonomies, they also present unique challenges. In
this section, we briefly discuss some of the major challenges including ambiguity, redun-
dancy, and attacks against social tagging systems.

Ambiguity and Redundancy

Most collaborative tagging applications allow the user to describe a resource with any tag
they choose. As a result they contain numerous ambiguous and redundant tags.

Ambiguous tags have multiple meanings. A tag may have different word senses; “apple”
can refer to the company or to the fruit. Names may also result in ambiguity; “paris” might
mean the city or the celebrity. Subjective tags such as “cool” can result in ambiguity since
different users have contradictory notions of what constitutes cool. Finally, overly vague
tags such as “tool” can mean gardening implements or software packages. Ambiguous tags
can impede users as they navigate the system or burden the user with unwanted recommen-
dations.

20

Redundant tags share a common meaning: “America” and “USA” confer the same idea.
Because users may annotate resources with any tag they choose, folksonomies are full of
redundant tags that share a common meaning. Syntactic variance such as “blogs” or “blog-
ging” can cause redundancy. Case (“java” or “Java”), spelling (“gray” or “grey”), and mul-
tilinguism (“Photo” or “Foto”) may also result in redundancy. The use of non-alphanumeric
characters, abbreviations, and acronyms are other sources of redundancy.

We studied the impact of ambiguity and redundancy on tag recommendation in [69]. In
this work, we studied how ambiguity and redundancy can cause misleading evaluation of the
effectiveness of tag recommenders. While recommenders are often judged by their ability
to predict items occurring in a tests set, the quality of a tag recommender may be underesti-
mated by traditional metrics if it routinely passes up ambiguous tags in order to recommend
tags with greater information value. Moreover, evaluation metrics may overvalue a recom-
mender that proposes ambiguous tags despite their lack of specificity. Similarly, redundancy
can hamper the effort to judge recommendations as well, but from the opposite perspective.
A recommended tag may be counted as a miss even though it is synonymous to a tag in the
holdout set. An example may be when the holdout set for a test user contains the tag “java”
while the recommendation set contains “Java.” Therefore, redundancy may mask the true
effectiveness of the recommendation algorithm: while from the user’s perspective “Java” is
a good recommendation, in the evaluation process it would appear as incorrect.

We employed a cluster-based approach to define and measure ambiguity and redundancy.
We clustered both resources and tags into highly cohesive partitions based on co-occurrence.
A tag is considered ambiguous if several resources from different clusters have been anno-
tated with it. Tags from the same tag cluster are considered redundant. We chose the cluster-
based approach over a variety of semantic and linguistic approaches because it provides a
more general and language independent method for defining ambiguity and redundancy. We
defined metrics, based on the resulting clusters, for measuring the degree of ambiguity for
a tag, and the level of redundancy for pairs of tags. We provided extensive evaluation on
three real world folksonomies to determine the impact of ambiguity and redundancy across
several common tag recommendation algorithms as well as across data sets.

Other researchers have also looked at ambiguity and redundancy problems. Ambiguity
is a well known problem in information retrieval and has been identified as a problem in
folksonomies as early as 2004 in [134]. Flickr uses the co-occurrence of tags to cluster
tags and shows related tags grouped into clusters. Sigurbjörnsson and Zwol [194] use a
probabilistic approach to model tag co-occurrences and measure ambiguity to facilitate the
tag recommendation for photographs. WordNet has been used to identify ambiguous tags
and disambiguate them by using synonyms [119]. Folksonomy search is expanded with
ontologies in [106] to solve the ambiguity in tagging systems. In [152] the user profile is used
to resolve ambiguity, by considering other tags the user has applied. Clustering was used to

21

measure ambiguity by Yeung et al. [226]. They focus on the network analysis techniques
to discover clusters of nodes in networks. The ambiguous tags appear in several clusters
and the top ten tags from each cluster are used to find the right context for disambiguation.
The work is continued in [227] where a method for exploring the semantics of a tag is
described. In [108] multi-dimensional scaling is used for co-word clustering to visualize the
relationships between tags.

Entropy as a measure of tag ambiguity has been proposed in [232, 222]. They used a
probabilistic generative model for data co-occurrence to determine ambiguous tags. The
tagging space is assumed to cover different categories and the tag membership of each cat-
egory is estimated via the EM algorithm. Our measure of ambiguity in [69] uses a similar
approach. We cluster resources and use the distribution of tags across the clusters to measure
their ambiguity.

Redundancy in a folksonomy is largely due to the ability of users to tag resources ir-
respective of a strict taxonomy. In [75] two types of redundancy are identified: structural
and synonymic. Structural redundancy refers to terms that are essentially different forms of
the same word. Synonymy refers to different tags that share identical or roughly-equivalent
meanings. In [214] structural redundancy is explained by stemming to remove suffixes,
removing stop words, comparing tags for differences of only one character or identifying
compound tags. Synonymic redundancy is evaluated in [9] by using WordNet to determine
synonyms. In [67, 68] agglomerative clustering is used to identify similar tags. Clusters of
tags are used as intermediaries between users and resources in order to reduce the noise gen-
erated by redundant tags. Tag recommendation is one of the techniques to avoid ambiguity
and redundancy in social tagging systems. We introduce a graph-based tag recommendation
in chapter 4 and we will experimentally show that our algorithm outperforms one of the most
successful graph-based tag recommenders, FolkRank.

Attacks Against Social tagging Systems

Like other publicly accessible adaptive systems such as collaborative recommender systems,
tagging systems present a security problem. Attackers, who cannot be readily distinguished
from ordinary users, may inject biased profiles in an attempt to force a system to adapt in
a manner advantageous to them. This problem, even though serious, has not been taken
so much of attention in the research community. We discuss the problem in more depth in
chapter 6. We will present the dimensions that characterize an attack and outline a framework
to identify different types of potential attack strategies against a social tagging system.

In the following sections, we first present our terminology to formally describe a folk-
sonomy and next we review some related work in this area.

22

2.3.2 Formalization of Folksonomy
In this section, we present our formalization of folksonomies. We use the same formalization
in the next chapters. First, we review some basic concepts and definitions in graph theory
used in the formalization.

Basic concepts and definitions

We consider the folksonomy as a network and model it with a graph. A graph G = (V,E) is
defined with a vertex set V , where N = |V | denotes the number of nodes, and an edge set E.
An edge is a two-element subset of V. We interchangeably use terms vertex or node to refer
to elements of the vertex set V , and similarly edge or link to refer to elements of the edge set
E. We present the definitions of several basic graph-theoretic concepts:
Bipartite graph: Graph G is bipartite if its vertex set can be partitioned into two disjoint
sets V 1,V 2, so that there are only edges connecting nodes across the sets V 1 and V 2. Or
equivalently, there exist no edges between the nodes of the same partition.
Tripartite: Graph G is tripartite if its vertex set can be partitioned into three disjoint sets
V 1,V 2,V 3, so that there are only edges connecting nodes across the sets V 1,V 2 and V 3. Or
equivalently, there exist no edges between the nodes of the same partition.
Directed and undirected graph: A graph is undirected if (i, j) ∈ E ⇔ (j, i) ∈ E, i.e., edges
are unordered pairs of nodes. If pairs of nodes are ordered, i.e., edges have direction, then
the graph is directed.
Hypergraph and Hyperedge: Hypergraph is a generalization of a graph, where an edge can
connect any number of vertices. Formally, a hypergraph H is a pair H = (V,E) where V is a
set of vertices, and E is a set of non-empty subsets of V called hyperedges.

Folksonomy Graph

In order to model networks of folksonomies at an abstract level, we use the formalization
introduced by Mika [138], representing the system as a tripartite graph with hyperedges.
The set of vertices is partitioned into the three disjoint sets U = u1,u2, ...,uk, corresponding
to the set of users, T = {t1, t2, ..., tm} the set of tags, R = r1,r2, ...rl the set of resources or
objected annotated. In a social tagging system, users associate objects with tags, creating
ternary associations between the user, the tag and the resource. Thus we can define A, a set
of annotations, represented as user-tag-resource triples.

A⊆ {〈u,r, t〉 : u ∈U,r ∈ R, t ∈ T} (2.1)

Thus, the folksonomy can be described as a four-tuple D:

23

D = 〈U,R,T,A〉 , (2.2)

To simplify analysis, we can reduce the hypergraph into three bipartite graphs with reg-
ular edges. The graphs model aggregate associations between users and resources (UR),
users and tags (UT), and tags and resources (T R) [138, 102]. Aggregate projections of the
data can reduce the dimensionality by sacrificing information [191]. The relation between
resources and tags can be formulated as a two-dimensional projection, RT , such that each
entry, RT (r, t), is the weight associated with the resource, r, and the tag, t. This weight may
be binary, merely showing that one or more users have applied that tag to the resource, or it
may be finer grained using the number of users that have applied that tag to the resource:

RT (r, t) = |{a = 〈u,r, t〉 ∈ A : u ∈U}| (2.3)

Such a measure is equivalent to term frequency or tf common in Information Retrieval.
Similar two-dimensional projections can be constructed for UT in which the weights cor-
respond to users and tags, and UR in which the weights correspond to users and resource
where

UT (u, t) = |{a = 〈u,r, t〉 ∈ A : r ∈ R}| (2.4)

UR(u,r) = |{a = 〈u,r, t〉 ∈ A : t ∈ T}| (2.5)

In words, the bipartite graph UT links the users to the tags that they have associated at
least to one resource. Each link is weighted by the number of times the person has used that
tag. UR links the users to the resources that they have tagged . Each link is weighted by the
number of tags the person has used for that resource. We can further break each bipartite
graph into two simple graphs. For example, the UT graph can be folded into two graphs: a
social network of users based on overlapping sets of tags; and a network of tags based on
overlapping sets of users. Such a network of tags is referred to lightweight ontology of tags
by [138]. Figure 2.4 shows the steps of the described process.

The other two bipartite graphs that we derive from the original tripartite model can also
be folded into one-mode networks in a similar fashion. In particular, the T R graph leads
to another semantic network, where the links between tags are weighted by the number of
resources that are tagged with both terms. This type of network mimics the basic method
applied in text mining, where terms are commonly associated by their co-occurrence in doc-
uments. The UR graph results in another social network of users, where the weight between
two users is given by the number of resources they have both tagged. We also get a network
of resources, with associations showing the number of people who have tagged a given pair
of resources.

24

Figure 2.4: We can reduce the hypergraph into three bipartite graphs with regular edges.
The graphs model aggregates associations between users and resources (UR), users and tags
(UT), and tags and resources (T R)

25

2.4 Related Work in Social Tagging Research
As social tagging applications have gained in popularity, researchers have started to explore
and characterize the tagging phenomenon. In this section we provide an overview of the
state of the art in the research area of social tagging systems. First, we review general related
work in this area including approaches to characterize different social tagging systems and
user motivations. Next, we review different data mining approaches for improving search
and navigation in social tagging systems including different dimensions of recommendation.
Finally, we present some current research efforts on bridging the gap between ontologies and
folksonomies.

2.4.1 Characterize Social Tagging Systems and User Motivations
Many researchers have started to characterize social tagging systems and explore the reasons
for emergence and popularity of tagging phenomenon [124, 76]. One of the significant for-
mal studies of tagging systems appeared in the work of Golder and Heberman [76]. The
authors studied the information dynamics in collaborative tagging systems, specifically, the
delicious system. The authors discussed how tags have been used by individual users over
time and how tags for an individual resource stabilizes over time. They also discussed two
semantic difficulties: polysemy (when a single word has multiple related meanings) and syn-
onymy (when different words have the same meaning). Macgregor and McCulloh provide
an overview of the phenomenon and explore reasons why both social tagging and ontologies
will have a place in the future of information access [124]. Ames and Naaman investigate the
incentives and motivations for tagging in photo sharing systems such as Flickr. They present
a taxonomy of motivations which combines sociality and functional motivations [10].

Chi and Mytkoswicz [47] have analyzed Delicious and found that the efficiency of social
tagging decreases as the communities grow; that is, tags are becoming less and less descrip-
tive and consequently it becomes harder to find a particular item. Simultaneously, it becomes
harder to find tags that efficiently mark an item for future retrieval.

Adam Mathes [134] describes tags as user-created meta-data, where users of the docu-
ments and media create meta-data for their own individual use that is also shared throughout
a community. Mathes points to several limitations and strengths of tagging systems. The
major limitations include ambiguity, synonymy, and multiple words. The multiple words
problem happens because most tagging systems are designed primarily to deal with a single
word as a tag. So multiple word tags are subsequently parsed as separate tags (”Bill” and
”Clinton”); or users escape the one-word-only limitation by concatenating words, for exam-
ple “Bill-Clinton” or “BillClinton”. All these different variations can make the search and
filtering of the system inefficient. We will discuss the ambiguity and redundancy problems in

26

more detail in section 2.3.1. The strength of tagging systems that Mathes points in [134] are
serendipity while navigating through the system and the freedom of users to use their indi-
vidual vocabulary. In a similar study, Wu et al. discuss the benefits and challenges of social
tagging systems [221]. They propose folksonomies as potential technological infrastruc-
ture to support knowledge management activities in an organization or a society. However,
they also point to the problem of lack of a document hierarchy in the knowledge taxonomy
emerged by employee-generated folksonomy which prevents it from being widely adopted
by enterprises. The authors suggest harvesting social knowledge by identifying communities
of common interest, and identifying information leaders or domain experts, and generating
ontologies.

Marlow et al. [133] analyze and compare the design and features of existing social tag-
ging systems and develop two organizational taxonomies for social tagging systems . The
first taxonomy describes system design and attributes and the second taxonomy describes
user incentives. The first taxonomy is presented in seven dimensions including tagging rights
(self-tagging, permission-based, free-for all), tagging support (blind, suggested, viewable),
aggregation model (bag, set), resource type (textual, non-textual), source of material (user-
contributed, system, global), resource connectivity (links, groups, none), and social connec-
tivity (links, groups, none). The second taxonomy describes motivations of tagging and is
categorized into two high-level categories of organizational and social.

2.4.2 Resource Recommendation and Personalized Search
Many researchers have explored different data mining techniques to facilitate user naviga-
tion, and to improve search and personalization in social tagging systems.

Recommender systems have been widely applied in folksonomies to overcome informa-
tion overload and to help users to find high-quality sources, whether resources (e.g docu-
ments) or people. Unlike traditional recommender systems which have a two-dimensional
relation between users and items, tagging systems have a three dimensional relation between
users, tags and resources. Recommender systems can be used to recommend each of the
dimensions based on one or two of the other dimensions.

Resources in social tagging systems can vary from bookmarks to video, music, photos
and etc. Social tagging systems are potentially a suitable place for people interested in a
specific domain to find new resources of their interest. However, to deal with the amount
of information, users need to get supported by the system. Helping users to find interesting
resources can be considered as “search”, when a user explicitly types a query, or “recommen-
dation”, when the system suggests a resource to a user based on their profile and activities
without the user explicitly asking for it. The search results might be personalized, in which
the user profile such as user tags and resources are taken into account. In a personalized

27

search, each user might get a different output for the same query. In this subsection, we
review the state of the art in both areas of personalized search and recommendation of re-
sources in folksonomies.

Traditional item recommendation algorithms can be used to recommend resources to
users. However, tags can enrich user profiles with additional valuable information for rec-
ommendation. For instance, authors in [206] apply user-based and item-based collaborative
filtering to recommend resources. The authors incorporat tags into standard CF algorithms
by reducing the three-dimensional correlations to three two dimensional correlations and
then applying a fusion method to re-associate these correlations. Similarly, [151] and [150]
use tags as context information to recommend resources. Similar approaches for search per-
sonalization using user tags are presented in [223, 209]

Using tag clustering for resource recommendation is presented in [153]. In this work,
first an affinity level between a user and a set of tag clusters is calculated. A collection of re-
sources are then identified for each cluster based on tag usage. Resources are recommended
to the user based on the user’s affinity to the clusters and the associated resources. Similarly,
the role of tag clustering in personalized search and navigation is presented in [72, 71, 193].
The authors show that clustering provides a means to overcome redundancy and ambiguity
thereby facilitating recommendation. Similar clustering algorithm for search personaliza-
tion in suggested in [18]. In this work, the latent semantic associations between tags is
captured using a third-order tensor technique. Then, hierarchical agglomerative clustering
was employed to discover relevant resources and rank the search results. Pan et al. [156]
suggest expanding folksonomy search with ontologies to address the problem of ambiguity
in tagging systems. Probabilistic models have been utilized in [162] and [217] for resource
recommendation.

In [100], a novel algorithm, FolkRank, for search and ranking in folksonomies is pro-
posed that considers the interrelations among tags, resources and users. The authors extend
the commonly known PageRank algorithm to folksonomies under the assumption that users,
resources and tags are important if they are connected to other important tags, resources
and users. They use a weight passing scheme to derive the importance of an object in folk-
sonomies.

In addition to personalized search within the folksonomies, researchers have proposed
to use social bookmarking websites such as Delicious for improving search results in search
engines. In [14], ranking of web search is optimized using social annotations by taking into
account the similarity of the query to the Webpages in Delicious. Morrison [149] compared
the search performance of social bookmarking Websites against search engines and subject
directories and found out that folksonomy search results overlap with those from the other
systems, and documents found by both search engines and folksonomies are significantly
more likely to be judged relevant than those returned by any single IR system type.

28

2.4.3 Tag Recommendation
Tag recommendation, the suggestion of tags during the annotation process reduces the user
effort. Tag recommenders assist the tagging process by suggesting users a set of tags that
they are likely to use for a resource. Personalized tag recommenders take the users’ tagging
behavior in the past into account when they recommend tags. Researchers have applied
different data mining and machine learning techniques to the tag recommendation problem.

A comparison of user-based collaborative filtering and a graph-based recommender based
on the PageRank algorithm to recommend personalized tags is offered in [105]. Association
rules are explored in [94] to recommend tags and introduce an entropy-based metric to find
how predictable a tag is. The title of a resource and the user vocabulary is used in [122] to
generate recommendations. The results show that tags retrieved from the user’s vocabulary
outperform recommendations driven by resource information. The authors in [224] present
general criteria for a good tagging system including high coverage of multiple facets, high
popularity and least-effort. They categorize tags into different categories of content-based,
context-based, attribute, subjective, and organizational tags and use a probabilistic method
to recommend tags. Basile et al propose a classification algorithm for tag recommendation
in [15] and Adrian et al. suggest a semantic tag recommendation system in the context of a
semantic desktop in [6].

User-defined tags and co-occurrence are employed by [194] to recommend tags to users
on Flickr. The assumption is that the user has already assigned a set of tags to a photo and the
recommender uses those tags to recommend more tags. A similar study is conducted in [66]
and a classification algorithm for tag recommendation is introduced. We adapted K-Nearest
Neighbor for tag recommendation in [70] and showed incorporating user tagging habits into
recommendation can improve recommendation.

Increasing interest in improving the effectiveness of tag recommendation attracted many
researchers from all over the world to the ECML/PKDD Discovery Challenge 2009 [60]
which was mainly focused on tag recommendation. Different data mining approaches in-
cluding content-based techniques, probabilistic models, and factor models have been applied
for tag recommendation. The comparison of different approaches [174] shows that graph-
based and factorization models have the best performance in tag recommendation.

Most of the mentioned approaches for tag recommendation are appropriate for dense
parts of the data where there is enough information available about the user or the resource.
Thus, these approaches have problem in cold start situation when a new user or new resource
is introduced into the system, or if the resource has not been associated to certain number
of tags by certain number of users in the past. In these cases, content-based approaches are
more applicable. Song et al. utilized machine learning algorithms including gaussian process
classification, SVM model, vector space model and poisson mixture model to predict tags

29

based on the content [197, 198]. One part of the ECML/PKDD 2009 Discovery Challenge
was dedicated to the sparse part of the data to challenge content-based algorithms for tag
recommendation. The succefull approaches relied on a combination of good preprocessing,
some external knowledge sources and a good heuristic to choose the right set of tags [123].
An extensive comparison of different content-based algorithms for tag recommendation is
presented in [104].

2.4.4 User Recommendation
Identifying communities of common interest, and information leaders or domain experts are
the major potentinal benefits of social tagging systems from a knowledge management point
of view [221]. User recommendation is common in social networking systems in which
there is explicit connections among users. For example, facebook recommends new friends
based on the number of friends in common. However, the more interesting application is to
help users to find domain experts or like-minded people based on their profiles. Some social
tagging systems such as Last.fm show users their neighbors, the people that have similar
listening tastes. In such scenarios, users can find new friends or groups with similar taste
who they did not know before; this recommendation can be more useful since it is more
serendipitous and provides users with a valuable information that they could not easily find
out by themselves.

ExpertRank is introduced by [107] to quantify users’ expertise in the context of a tag in
an enterprise tagging system. Two models are proposed to calculate ExpertRank. The first
model simply assumes an unstructured tag space where tags have no dependencies and ex-
pertise gained in a tag context is independent of expertise gained in another tag context. The
second and more realistic model assumes clustered tag space where each cluster contains
set of tags related to each other. The relationships between the tags in a cluster are repre-
sented by links between tags and indicate overlapping expertise areas. The model enables a
mechanism similar to the personalized version of the PageRank algorithm [29] to propagate
expertise through the linked structure of the tags.

Another approach to expert finding is introduced in [64]. In this work, user-provided
content and taxonomy classifications are used to describe topics of expertise. The approach
is implemented for the DBLP13-Expert Finder, a system for expert finding and exploratory
search across researchers and topics in the field of computer science. Similar approach to
expert finding is presented in [41]. The paper describes an approach that finds experts, ex-
pertise and collaboration networks in the context of the peer-review process. A taxonomy
of computer science topics and an ontology of publications is used to create relationships
from papers to one or more topics based on paper abstracts and keywords. Next, an expertise

13BDLP:http://dblp.uni-trier.de/

30

profile for a researcher is built based on the aggregation of the topics of his/her publications.
Tag-based profiles are used in [58] to find persons with similar interests. Similar to previous
ones, this work also uses DBLP collection as data set and the paper keywords as tags. Al-
though a scientific database such as DBLP has some similarities to a narrow social tagging
system, it has different properties. Such data is free of noise and has key features such as the
abstract or citations that can help identify the properties of resources precisely.

The literature focusing on the problem of user recommendations in folksonomies is still
sparse. One of the bottlenecks might be the difficulty of evaluating such recommendation in
comparsion to tag or resource recommendation.

2.4.5 Emergent Ontologies from Folksonomies
Peter Mika [138, 139] is one of the first researchers who proposed social tagging systems
as a semantic social network which could lead to ontology emergence. The idea roots in
the emergent semantics proposed by [2] and the vision is a community of self-organizing,
autonomous, agents co-operating in dynamic, open environments, each organizing knowl-
edge (e.g. document instances) and establishing connections according to a self-established
ontology. Mika suggests an Actor-Concept-Instance model of ontologies using the semantic-
social networks in the form of a tripartite graph of person, concept and instance associations,
and extends the traditional concept of ontologies (concepts and instances) with the social
dimension. He suggests reducing the hypergraph into three bipartite graphs with regular
edges. These three graphs model the associations between actors and concepts, concepts
and instances, and actors and instances which are the same as UT, TR, and UR explained
in section 2.3.2. Similarly, [210] proposes deriving ontologies from folksonomies by inte-
grating multiple resources and techniques. These resources are: (1) the statistical analysis of
folksonomies (2) online lexical resources like dictionaries, Wordnet, Google and Wikipedia
(3) ontologies and Semantic Web resources (4) ontology mapping and matching approaches,
and (5) involving the community.

The idea of ontology of Folksomony is also proposed by [78] and [59]. Thomas Gruber
in [78] discusses the differences of ontology and folksonomy and points out some design
considerations for constructing ontologies from tags. The authors in [59] provide more de-
tails on the ontology model and an algorithm to create such an ontology from a folksonomy.
Their model consists of an ontology designed in OWL that defines the following classes:
Source, Resource, Tag, User, Annotation, AnnotationTag and Polarity. For the class Tag,
two subclasses are also defined: “TagPersonal” and “TagCommon” which are used to clas-
sify the existing tags according to their type, separating the ones of personal type, like those
related to the planning of personal tasks or self-reference tags such as“to-read” from the rest
of tags (TagCommon). The tag class has the properties of “hasAltLabel” and “hasHidden-

31

Label” which are meant to represent the different variations of a tag, including singular and
plurals, verbal tenses, synonyms, misspellings, incorrect syntactic forms, etc., from the tags
preferred representation. For example, the tag with preferred value “New York”, could have
associated to hasAltLabel the strings “new-york”, “york”, and to hasHiddenLabel the strings
“neyork”, “nyc”, etc. The authors suggest an algorithm for creating the ontology from the
folksonomy which basically covers the associations between user, resources and tags but
does not include how to find the tag types or properties. Although the idea of separating the
tag types and the tag properties seem interesting, no well-defined algorithm is presented for
finding such relations. In a similar work, [234] suggests mapping tags to an ontology and
presents the process of mapping in a simple example. However, this work also postpones the
automatic creation of an ontology and mapping tags to the related class of the ontology for
future research.

Other researchers have started solving the details of the problem using information re-
trieval and machine learning techniques. Heymann and Molinay [93] suggest creating a
hierarchical taxonomy of tags. Their algorithm calculates the similarity between tags using
the cosine similarity between tag vectors and each new tag added to the system will be cate-
gorized as the child of the most similar tag. If the similarity value is less than a pre-defined
threshold then the new tag will be added as a new category, which is a new child for the root.
The problem with this algorithm is that there is no heuristic to find the parent-child relation.
Any new similar tag will be considered as a child of the most similar tag previously added
to the system although it might be more general than the other tag.

Markines et al. [132] present different aggregation methods in folksonomies and present
different similarity measure for evaluating tag-tag and resource-resource similarity. Authors
evaluate their approach by comparing the results with WordNet for tag similarity and ODP14

for resource similarity. Although this work presents a strong grounding for finding related
or similar tags in folksonomies, it does not provide approaches for finding the kind of rela-
tionship between tags such as super or sub-concept relations.

Marinho et al. [13] use frequent itemset mining for learning ontologies from Folk-
sonomies. In this work, a folksonomy is enriched with a domain expert ontology and the
output is a taxonomy which is used for resource recommendation. Authors use two major
heuristic to create the taxonomy. First, more popular tags are considered more general and
second, a tag x is a super-concept of a tag y if there are frequent itemsets containing both
tags such that support(x)> support(y) .

Hotho et al. suggest using association rules for discovering semantic relations beteen
tags [99]. Wu et al. use probabilistic EM algorithms to estimate the probability of co-
occurrences of folksonomy elements to obtain the emergent semantics contained in the data
[232, 222]. The discovered semantic relations are then applied for semantic search and re-

14Open Directory Project

32

source discovery. Similarly, Zhou et al. [235] propose a probabilistic clusetring approach
named Deterministic Annealing (DA) for extracting hierarchical semantics from social an-
notations.

An ontology learning approach that captures the hierarchical semantic structure of folk-
sonomies is proposed in [204]. The proposed approach consists of three stages. In the first
stage, generative probabilistic models are used to model correspondences between tags and
documents. The basic idea is that assuming each tag has multiple submeanings, a tag having
similar high distributions on multiple topics indicates a high likelihood of being a general
tag; while a tag having a high distribution on only one specific topic indicates that the tag
possibly has a specific meaning. In the second stage, the possible relations between tags are
estimated. Four divergence measures between tags are defined based on the modeling results
from the previous stage in order to quantitatively characterize the possible relations between
tags. In the third stage, the relation between tags are determined and a hierarchical structure
is constructed.

Although many tools have been developed in recent years to support automatic ontol-
ogy creation, the resulting ontologies are still not meant to be used directly by the end on-
tology users and the construction of ontologies continues to be a manual, labor-intensive
exercise carried out by specialists in the domain [216, 126]. In chapter 5, we propose a semi-
automatic approach to support users to collaboratively develop an ontology in a social Web
environment.

2.5 Chapter Summary
In this chapter, we gave an overview of the state of the art of recommender systems and
social tagging systems. We presented different recommendation technologies along with
their advantages and disadvantages. Next, we presented social tagging systems and our
terminology to model a folksonomy which will be used throughout this thesis. Next, we
focused on the related work in the social tagging area. We introduced different possible
recommendation tasks in social tagging systems and briefly reviewed current state of the art.
We also presented the current research efforts on creating ontologies from folksonomies.

In this chapter we discussed some major challenges that social tagging systems suffer
from including ambiguity, redundancy, and attacks against social tagging systems. Our next
chapters present our efforts on addressing these challenges.

33

Chapter 3

Matching Recommendation Technologies
and Domains

3.1 Introduction
This chapter presents a comprehensive taxonomy of recommender systems with guidelines
on how to select and apply these systems in different domains. In this chapter we look
at recommender system from a broad perspective. Unlike the common traditional view on
recommender systems as being used only in e-commerce applications [190], we consider
a broad definition of recommendation systems that captures several domains. We consider
recommender systems as ones that enable a particular kind of interaction with the user: “any
system that produces individualized recommendations as output or has the effect of guiding
the user in a personalized way to interesting or useful objects in a large space of possible
options” [36]. This expansive definition makes the scope of recommender systems research
quite broad, but it fails to give much guidance on what criteria to consider for implementing
such systems.

With the rapid development of recommender system technologies in the recent years, it
has become difficult for developers to determine which technology is suitable to a particular
context. To alleviate this difficulty, we propose a framework that organizes the space of
recommendation problems and provides a systematic approach to finding the appropriate
recommendation technology for addressing a given problem in a specific domain. A crucial
question this chapter tries to address is how recommendation techniques can be matched to
recommendation domains.

In this chapter, we first distinguish among different recommendation algorithms based
on the source of knowledge they use. Based on existing literature, we classify the source of
knowledge in recommender systems to three different kinds: individual knowledge which

34

basically comes from user input in different forms, social knowledge which is the aggrega-
tion of masses of individual knowledge, and content knowledge which can be in form of item
features or can get a more complex form of domain knowledge.

Next, we extract the domain characteristics that can help an implementer to select the
suitable recommendation technology. These characteristics include heterogeneity, risk, churn,
interaction style, preference stability, and inscrutability. We describe each characteristic and
explain how they can effect the knowledge sources. Finally, we map the domain properties
to recommendation technologies and provide examples from the real world application and
recommender system literature.

The research approach for this study consists of a meta-analysis of the research litera-
ture and real-world applications. More than 70 articles and application examples of recom-
mender systems from the 12-year period 1997-2008 were gathered for analysis. This time
frame covers the development of recommender system research from its early stages to the
present time and is extensive enough to identify the different domains that recommender
systems have been applied to. The articles then were categorized based on their domain
of recommendations. Main application domains include e-commerce, movie, music, news,
Web page, real financial service recommendation, etc. Next, we tried to identify the main
characteristic of each domain that influence on the selection of the appropriate recommenda-
tion technology. We investigated the impact of each characteristic on the knowledge sources
of recommendation and mapped those characteristics to the recommendation technologies
based on the knowledge sources they use.

This work can be useful for researchers studying recommender systems and implementers
considering applying them. The taxonomy provides a useful initial framework within which
researchers can place their work. For implementers, the chapter provides a means of making
choices among the available technologies. Implementers can use our framework to choose
the suitable recommendation algorithm for their specific problem based on the domain char-
acteristics.

3.2 Related Work
As recommender system as a research field has been receiving more attention from academia
and industry in recent years, researchers have developed several taxonomies for recom-
mender systems to analyze and classify these systems.

Burke [36] distinguishes between five different recommendation techniques: collabo-
rative, content-based, utility-based, demographic, and knowledge-based. He discusses the
advantages and disadvantages of each technique and proposes hybrid recommender systems
to gain better performance with fewer of the drawbacks of any technique in isolation. An

35

early work in recommender systems [176], which focuses on collaborative recommenders,
introduces a taxonomy of recommender systems based on 5 dimensions. The dimensions
characterize properties of the users’ interactions with the recommender and the aggregation
methods of users’ evaluations (ratings). These dimensions include (1) Contents (output) of
the recommendation which can be anything from a single bit (recommended or not), nu-
meric rating, a document or URL, etc. (2) Type of user input (implicit or explicit) (3) degree
of privacy of the recommender system (4) Aggregation technique (different variations on
weighting the ratings) (5) Kind of presentation of the recommendations (sorted according to
numeric evaluations, negative recommendations filtered out, etc).

Konstan and Schafer [190] present a taxonomy of collaborative e-commerce recom-
mender applications that separates their attributes into three categories: the functional in-
put/output (targeted customer input, community input, recommendation output), the rec-
ommendation method (raw retrieval, manually selected, statistical summarization, attribute-
based, item-item correlation, user-user correlation), and other design issues such as degree
of personalization and delivery methods. Delivery methods include “push” (email, sending
promotional offers), “pull” which allows the customer to control when recommendations are
displayed, and “passive” delivery which presents the recommendation in the natural context
of the rest of the E-commerce application. Examples of passive recommendation include
displaying recommendations for products related to the current product in Amazon.

An eight-dimensional taxonomy of recommender systems is presented in [146]. The di-
mensions group in two blocks: dimensions regarding profile generation and maintenance and
dimensions related to profile exploitation. The authors then carry out a cross-dimensional
analysis among various recommender systems in several domains and detect common pat-
terns in the recommenders of the same domain.

A more recent survey on recommender systems [5] classifies recommendation methods
(omitting knowledge-based) into three main categories: content-based, collaborative, and hy-
brid recommendation approaches and classifies recommenders in each category into either
heuristic-based or model-based. This study also describes limitations of current recommen-
dation methods and discusses possible extensions to existing systems including improvement
of understanding of users and items, incorporation of the contextual information into the rec-
ommendation process, support for multi-criteria ratings, and a provision of more flexible and
less intrusive types of recommendations.

The work in this chapter is distinguished from previous categorizations in that it is not
aimed at classifying existing recommender systems along particular dimensions of interest
as in the surveys above. Instead, we look at the recommendation problem from a differ-
ent angle considering the domain properties. We focus on the problem characteristics and
we aim at giving a guideline for selecting among technologies based on these characteris-
tics. We outline the knowledge sources required for recommendation and the constraints

36

related to them and discuss how domain characteristic would influence knowledge sources
and the technologies. The chapter discusses the applicability of different recommendation
techniques to different types of problems and aims to guide decision making in choosing
among these techniques. As such, it might be considered to serve as a sort of recommender
for recommender system implementers.

3.3 Knowledge Sources
A recommender system, similar to any other system, has a set of input and output. The input
come from user interactions with the system and the output is the recommendation that can
be in different forms (e.g. list of top n recommendations or predicted rating for items). For
the purpose of this chapter, a recommender system consists of two main parts: a knowledge
source and an algorithm to generate recommendations using those sources. The choice of
algorithm in many cases would depend of the kind of knowledge sources available in the
system.

For an individual instance of recommendation, we are presented with a particular target
user and our goal is to make recommendations to him or her. In order to have personalized
recommendations, a recommender must have knowledge of its target user, called “individual
knowledge” in this chapter. In addition to knowledge about the target user, a recommender
system needs sources of knowledge to generate recommendations. Therefore, in addition to
the individual knowledge, we consider two types of knowledge sources that may come into
play in recommendation.

• Social: Knowledge about the larger community of users other than the target user.

• Content: Knowledge about the items being recommended and/or the domain of rec-
ommendation, including how recommended items are used and what needs they sat-
isfy.

Our taxonomy of knowledge sources is adapted from the taxonomy presented by Felfernig
and Burke in [61]. In the following subsections, we briefly describe the types of knowledge
source, expanding each category into subtypes of knowledge, all of which have been used in
some existing recommender systems.

3.3.1 Individual Knowledge
Individual knowledge comes from the input of the target user into the system and it constructs
the user profile. User profile might be ephemeral or persistent. Persistent user profiles accu-

37

mulate user inputs from multiple interactions over time while ephemeral user profiles only
gather input from the current user interaction.

User input may be relatively implicit, in the sense that the user does not intentionally
provide input for receiving recommendation but interacts with the system as part of some
other application, or it may be explicit in that the user explicitly specifies his or her interest
before or during the recommendation process.

Figure 3.1 shows the taxonomy of knowledge sources including different kinds of indi-
vidual knowledge. [61] identifies three main categories of individual knowledge including
opinions, demographics, and requirements. We add the user behavior as another category.
User behavior is commonly considered as implicit input and it includes Web navigation,
items added to shopping cart, user transactions, request for information, etc. User opinions
is usually explicit and it includes ratings, reviews, and tags. Demographic information might
be explicitly entered by the user or be implicitly inferred by the system and it includes region,
age, sex, etc.

User requirements include queries, constraints, preferences, and context. A query is a
request from the user and may be formulated as a natural language request, spoken dialog,
key words, parameters chosen from a menu, or an example of a similar item. Constraints
are user restrictions and limitations that the recommender system must take into account.
There is no acceptable solution that violates user constraints. For example, a person may be
looking for only German language movies. A preference is a softer constraint, something
that the user would prefer in a solution but a solution that violates it might be acceptable.
For example, a person may have a preference for a three bedroom apartment, but might be
satisfied with a two bedroom if it is a particularly good deal. The users context consists of
the external circumstances associated with the recommendation or the users situation. For
example, the users location might be an important contextual factor in a restaurant recom-
mendation, with closer establishments being preferred. The use of context in different types
of recommender algorithms including collaborative recommendation is an area of active re-
search [4, 165, 112, 17, 212, 228]. However, there is no consensus on how best to benefit
from it or even how to define the term.

3.3.2 Social Knowledge
Social knowledge is the total sum of all of the user profiles stored in a system. Since the so-
cial knowledge is the aggregation of all individual knowledge in the system, the relationship
between individual and social knowledge can be reciprocal. In the sense that the target user
opinion is considered as individual when the system is giving him a recommendation, but
social when another user relies on them.

Collaborative recommendation is intensive in its application of social knowledge, usually

38

Figure 3.1: Taxonomy of knowledge sources in recommendation

with profiles of the simplest type: user opinions such as the liked-disliked scales used in
MovieLens and other well-known collaborative recommenders, or interaction histories as
seen in collaborative Web personalization [54].

Ratings are the most straightforward type of user input used to model social knowledge.
Rating knowledge is often conceptualized as a m×n matrix where m is number of users and n
is the number of items and each entry corresponds to a user’s rating of an item. Model-based
techniques use this matrix to create a model in advance, whereas memory-based techniques
use it at the time of recommendation generation to produce the prediction.

The use of other types of user opinion is an area of active research. User tags are a
promising source of opinion knowledge for recommendation [153, 85, 131]. In this case the
data will be a tripartite graph of user, item and tag. More detail is provided in section 3.9.
Textual data in the form of reviews have also been used as social knowledge for recommender
systems, for example in [3].

In addition to user opinions, aggregation of other types of user input such as behavior,
demographic, and requirements can form social knowledge. In the I-SPY collaborative Web
search application, user’s queries (requirements) are recorded as well as their preferences
(link selections) relative to those queries [196]. Demographic information is also employed
by some recommender systems. Krulwich [115] uses demographic groups from marketing
research to suggest a range of products and services. Similarly, [161] uses machine learning
to train a classifier based on demographic data.

39

3.3.3 Content
Content knowledge has a variety of forms. In its simplest incarnation, the system might only
have knowledge about the features of items that it is recommending, enabling it to learn what
features a user seems to prefer. The item features may be a simple set of attribute value pairs,
such as might be found associated with a product in a database, or the item description may
itself be structured as in the case of complex products such as a computer [61].

If items are represented by unstructured documents such as news stories, the implementer
will need to draw from information extraction (IE) techniques to extract and select features
for use in recommendation. Standard techniques include eliminating stop words and stem-
ming to simplify the feature space. Features can be reduced further by applying more so-
phisticated feature selection techniques such as information gain, mutual information, cross
entropy or odds ratio [141]. Applications of IE techniques to extract content knowledge from
semi-structured and structured documents are discussed in [110].

Domain Knowledge

Domain knowledge typically has richer knowledge about the items and the domain than just
the features of the items. One common form of domain knowledge that a recommender can
employ is a domain ontology over the item features. Such an ontology allows the system
to reason about the relationship between features at a level deeper than just raw equality
or difference. For example, the restaurant recommender Entree [37] has an ontology of
different types of cuisine and can determine that a Thai restaurant would be more similar to
a Vietnamese restaurant than a German one would be.

Domain constraints may be necessary to prevent a system from recommending an item
that is inconsistent with what the domain permits. For example, a particular insurance policy
may only be available to non-smokers. The recommendation problem can be in some cases
formulated entirely as constraint satisfaction with constraints being contributed both by the
user and by the system.

A final category of domain knowledge is means-ends knowledge, which is the knowledge
that enables a system to map between the user’s goals (ends) and the products that might
satisfy them (means) [61]. For example, a camera buyer might not know much about digital
cameras, but he might know that he wants to take photos of his daughter’s basketball games.
Part of the reason that users benefit from recommender systems is that they can make good
choices without necessarily being conversant with all of the complexities of the product
space.

40

Figure 3.2: Knowledge sources and recommendation types

3.4 Recommendation types
Recommendation types are explained in detail in chapter 2. However, in conjunction with
a discussion of knowledge sources, it is worth considering how different recommendation
types operate.

• Collaborative recommendation matches an individual knowledge source with a social
knowledge source of the same type and extrapolates the target user’s preferences from
his or her peers.

• Content-based recommendation on the other hand is individually-focused, using item
features and user input to learn a classifier that can predict user preferences on new
items.

• Knowledge-based recommendation is more of a catch-all category in which the rec-
ommender applies any kind of domain knowledge more substantive than item features.

Figure 3.2 shows the connection between knowledge sources and the recommendation
types. In this figure, we have included the three main categories of recommendation in the

41

literature. Hybrid recommendation is a matter of combining knowledge sources that have not
traditionally been put together in the three types discussed above. Often, a hybrid is created
by adapting an algorithm for one recommendation type to accept a knowledge source more
typically associated with another type.

As we mentioned before, a knowledge source does not make a recommender system.
The system also needs algorithms. It is difficult to generalize since new recommenda-
tion algorithms are put forward with great regularity, but in general, collaborative systems
use multi-class classification algorithms for extremely sparse and high-dimensional spaces;
content-based systems use binary learning algorithms for lower-dimensional spaces; and
knowledge-based recommenders use inference schemes of various types. For more details
on recommendation algorithms, please refer to 2.2.

An algorithm can only function with the right knowledge sources, and it is on this topic
that this chapter will concentrate. Considerations about the domain of application and the
style of interaction with the user lead us to conclusions about the availability and charac-
teristics of different knowledge sources. These considerations in turn can be used to guide
the selection of feasible recommendation algorithms. We turn next to the characteristics of
domains.

3.5 Domain Properties
A domain of recommendation is the set of items that the recommender will operate over, and
may also include the set of aims or purposes that the recommender is intended to support.
A specialized recommender, for example, a news recommender that identifies stories for the
attention of government intelligence analysts, may have different implementation considera-
tions than a generalized news recommender such as Google News. In turn the characteristics
of the domain affect the availability and utility of different knowledge sources. In the online
news case, there are a huge number of news sources and articles such that no user will ever
have time to experience or rate more than a small fraction of them. In addition, the news it-
self is undergoing constant change. So, we can characterize the “social opinions” knowledge
source as one of great sparsity and great dynamism.

Another aspect of the domain has to do with the larger application in which the recom-
mender is embedded. If the recommender is a part of a larger system like an e-commerce
site, it may be necessary for the recommender to impose as little as possible on the normal
user interaction with the application, which means the system has to use implicit user inputs.
On the other hand, if the recommender is the primary application that users are accessing, it
can gather explicit data from users.

The properties of the domain affect the choice of knowledge source and recommenda-

42

tion algorithm. Our goal is to identify the most important characteristics of the domain that
impact on the selection of proper recommendation technology. We have identified six im-
portant characteristics of the domain: heterogeneity, risk, churn, interaction style, preference
stability, and scrutability.

3.5.1 Heterogeneity
A heterogeneous item space encompasses many items with different characteristics and dif-
ferent goals they can satisfy. For example, an e-commerce recommender system as found at
Amazon.com has a large number of heterogeneous items that can be recommended. Even
within a single category like books, such disparate categories as home repair, romance nov-
els, cooking, and children’s fantasy all coexist in the database.

On the other hand, a homogeneous recommendation domain has items of the similar type.
It is easier to acquire and maintain content knowledge in a homogeneous recommendation
space. Consider a site that only recommends digital cameras versus one that has all kinds
of electronics. The camera-only site would be able to invest in content knowledge specific
to photography, whereas the general site would have a much more challenging task trying
to do knowledge engineering for all of consumer electronics. Even a simple catalog of item
features becomes difficult to design effectively if the items differ wildly from each other.

3.5.2 Risk
Recommendation domains can be distinguished by the degree of risk that a user incurs in
accepting a recommendation. A 10 $ music track is low risk; a $1.5 million condominium
or a medical diagnosis could be very high risk. Risk determines the user’s tolerance for
false positives among the recommendations. In some domains, false negatives may also be
important – if there is a cost or risk associated with not considering some options.

Another way to think of a high-risk domain is that there are likely to be some important
constraints on a valid solution that the recommender system must obey. For example, a
condominium buyer is likely to have some very strong constraints about location, price and
amenities. As mentioned above, the tolerance for false positives is going to be low for high-
risk items.

3.5.3 Churn
Recommender systems are used in domains with long-lived items like books, but they are
also used in domains where the value or relevance of an item has a very short time span, such
as news stories. A high churn domain is one in which items come and go rapidly.

43

In a high churn domain, a recommender system faces a continual stream of new items
to be integrated into its knowledge sources. This greatly increases the sparsity of any kind
of opinion data, as new items will necessarily have been seen by very few users. Items that
have been around for some time may accumulate ratings, but by the time they do, they may
no longer be relevant.

3.5.4 Interaction Style
In systems in which the user makes no special effort to interact with the recommender sys-
tem, the system extracts the implicit expressed preferences from user behavior. For example,
when visiting a Web site, a user leaves behind behavioral traces in Web server logs that can
be used to make recommendations. Implicit inputs may include the specific items that the
user is currently viewing, user transaction history, elapsed time, and shopping cart / purchas-
ing behavior. Explicit inputs require that the user make the effort to formulate an opinion
or a query or to add personal data to the system. There must be some perceived benefit for
doing so that justifies the effort.

Implicit inputs are naturally noisy because they are inferred from user behavior. This
type of interaction may be best suited for gathering simple rating knowledge, although some
researchers have explored the extraction of preferences and even domain knowledge from
implicit data [181, 230]. Explicit inputs may be more sparse if the burden of generating
them causes users to do so relatively rarely.

3.5.5 Preference stability
User preferences can also have varying degrees of duration. For example, a person buying
a digital camera would typically switch preferences after purchase, since they would be no
longer interested once the purchase was complete. On the other hand, a person interested in
comedy movies may wish to continue getting comedy recommendations for a long period
of time. Also, preferences for some items may increase and wane naturally, for example,
when one’s favorite basketball team is in a big tournament, stories about it become highly
preferred, but if they are knocked out or when the tournament is over, the user’s preferences
will change.

Stable preferences mean that opinion data collected in the past is still likely to be valid
today. This makes it easier to maintain high-quality social knowledge sources. Unstable
preferences mean that any data collected in the past may have to be discounted or discarded.
The problem of preference instability can be ameliorated by collecting more data. If a user
generates enough opinion data during a single session to adequately represent his or her cur-
rent preferences, then there is no need to extrapolate from historical data and the issue of

44

preference stability does not arise. This situation is found in Web personalization applica-
tions. Users generate a large number of clicks while browsing a Web site, enough implicit
data to allow for recommendation using only the data from a single session.

3.5.6 Inscrutability
Certain applications (for example, high-risk ones) may require that the system is able to
explain its recommendations, to answer questions like “why was this item recommended?”
Such explanations enhance user confidence that a recommendation is appropriate [136] and
increase the likelihood of recommendations being accepted.

Explaining recommendations is most straightforward when content knowledge sources
are employed [135, 180]. Explaining a recommendation based on social knowledge has
proved more challenging. Refer to Herlocker et al. [90] for an evaluation of some alterna-
tives.

3.6 Mapping Knowledge Sources to Domain Properties
The characteristics of the domain of recommendation has a direct effect on the knowledge
sources that the system can deploy. In this section, we look once more at the knowledge
sources and discuss how the domain characteristics impact them. Table 3.1 summarizes the
domain considerations and their impact on knowledge sources.

3.6.1 Individual
Individual knowledge is an essential requirement for a recommender system to produce per-
sonalized recommendations.

In collaborative recommendation, individual knowledge regarding the target user is
matched against social knowledge drawn from the user population at large. The most straight-
forward version of the process is that these sources are of the same type, and all that is needed
is a similarity metric by which individuals can be compared. In heterogenous domains, it
might be difficult to transfer user’s input on certain items for recommending other items. For
example, it is not certain that two users who have similar taste about movies, would also like
similar music. A solution to this problem can be taking into account the user context and
only consider part of user profile that is related to the specific context of the recommendation.
We proposed using semantic cues for contextual recommendation using such an approach in
[172].

In domains with unstable preferences, user requirements are more likely to be needed
since the historical data is unreliable. The query is the most fundamental form of input for

45

requirements: the users state, in whatever form the system accepts, what it is they are looking
for. Constraints and preferences allow the user to limit and to rank options. For example, a
dog owner might have a strict constraint that any apartment he rents accept his pet. A parent
with young children might have a preference to be close to parks and playgrounds. In high
risk domains and domains which need explanation, it is usually necessary to have explicit
requirements and constraints from the user. On the other hand, in domains with implicit
interaction style or high churn user behavior and context can be considered as individual
knowledge.

In many recommender systems more than one type of user input is used. For example,
[137] uses users’ priorities and constraints in a case based reasoning recommender.

3.6.2 Social Knowledge
Social knowledge enables the use of collaborative algorithms in which predictions about
individuals are extrapolated from their peers opinions.

In heterogenous domains, social knowledge should be considered as a knowledge source
since it is gathered by user’s input and does not need extensive knowledge engineering.
However, social knowledge is not sufficiently accurate and reliable for high risk domains or
for domains which need explanation.

Social knowledge will tend to be sparse for high churn domains. When items come and
go quickly, the odds are reduced that any given user will have a chance to rate any given
item. As with other sparsity effects, the problem of churn can be ameliorated by having a
large user population. Google News, for example, can take advantage of the site’s large and
active user base to implement collaborative recommendation even for the high-churn news
domain [56].

Using social knowledge is appropriate for domains with implicit type of interaction since
it is possible to mine users’ behavior using machine learning and statistical techniques. In
domains with unstable user preference, social knowledge can be misleading since the histor-
ical data is unreliable.

In the absence of social knowledge, individual knowledge especially in the form of rat-
ings can also be combined with content knowledge in the form of item features to build a
classic content-based recommender that uses supervised classification learning [147, 159].

3.6.3 Content and Domain Knowledge
As described before, the most basic kind of content knowledge is item features, the kind
of data that would typically be available in a product database, such as numeric values like
price or string values like destination airport. These features can typically be used as is in

46

a recommender system, although implementers will often want to restrict the feature space.
For example, the entire cast and crew list for a movie may be available as feature data but
will contain many sparse features of little utility. Trimming this list to just the top billed
actors, director, and screenwriter would probably be sufficient.

The quality of recommendations produced by a content-based or knowledge-based rec-
ommender will be entirely dependent on the quality of the content data on which its decisions
are based. Indeed, the lack of reliable item features is often cited as a motivating factor for
avoiding content-based recommendation. The cost involved in creating and maintaining a
database of useful item features should not be underestimated, particularly for heterogeneous
domains. In a domain like electronics products, for example, new technical innovations ar-
rive regularly, requiring that the schema and the individual entries for each item be updated.
In domains with high churn automatic approaches for feature extraction should be consid-
ered. If there are a large number of not-entirely-independent features extracted in a variety of
ways, the system may be tolerant of noisy feature data. On the other hand, applications with
high risk will need to pay special attention to having clean item features. Typically, manual
review of feature data or manual labeling will be required. Using content knowledge makes
the recommendations more explainable than the social knowledge. However, domains that
need clear explanation for recommendation, should use domain knowledge as a reliable and
explainable knowledge source.

Domain knowledge refers to more complex notions of content knowledge such as a fea-
ture ontology, domain constraints, or means-ends knowledge. A feature ontology relates fea-
tures to each other so that similarity and difference between items can be more adequately
assessed. Means-ends knowledge can help to determine what means/features are appropriate
for which goals/ends that the user might have in mind. Knowledge-based recommenders
usually need to get explicit user requirements in form of queries or constraints. Implicit
interactions are hard to be matched against domain knowledge.

High risk domains should consider constraints of the domain. For example, a recom-
mender for financial products [63] may know that certain investment instruments are only
suitable for customers with certain characteristics – for example, a particular life insurance
policy might not be available to persons over the age of 55.

Since domain knowledge usually needs to be developed by domain experts, it is costly
and time consuming in heterogeneous domains to create and maintain domain knowledge.
Moreover, it is not feasible to constantly update such knowledge in high churn domains.

47

Characteristic Individual Social Content
Heterogeneous May transfer

poorly to unseen
items

Appropriate Difficult to engi-
neer / maintain

High risk Requirements and
constraints usually
needed

Not sufficiently ac-
curate or reliable

Domain constraints
needed

High churn User behavior and
context can be con-
sidered

Sparse data Automatic feature
extraction needed

Interaction style-
Implicit

Detailed require-
ments not available

Appropriate Difficult to match
with domain
knowledge

Unstable preferences Historical data un-
reliable Historical
data unreliable

/ user requirements
needed

Appropriate

Inscrutability-
Explanations needed

Requirements can
be mapped to items

Explanations weak Domain knowledge
can be used

Table 3.1: Impact of recommendation domain on knowledge sources

3.7 Mapping Domains to Technologies
As we have shown above, the choice of domain and the characteristics of the application
place certain constraints on the kinds of knowledge sources that a recommender system may
deploy. In turn, the availability and quality of knowledge sources influences what recom-
mendation technologies can be used.

Some basic considerations come to the fore in considering the recommendation domain.
First, there are some domain types for which social knowledge seems not very useful, in
particular, high risk domains and ones with high churn that do not have enough user inputs.
In high churn domains, there may not be enough time for an item to build up a reputation
among a large number of peer users before it is replaced with other items.

When there is large risk associated with a domain, most users are going to need a more
convincing explanation of the appropriateness of a recommendation beyond simply that oth-
ers liked it.

Similarly, if we look at the interaction, we can see that it is not always possible to gather
every kind of knowledge type from every type of interaction. In systems with implicit inputs,

48

Factor Collaborative Content-Based Knowledge-Based

Heterogeneous
Low � � �
High + – –

Risk
Low � � �
High – – +

Churn
Low � � �
High – + –

Interaction style
Implicit + + –
Explicit � � +

Preferences
Stable � � �
Unstable – � +

Scrutability
Required – � +
Not Required � � �

Table 3.2: Domain factors and recommendation techniques. �: possible, +: recommended,
–:not recommended

we do not gather any kind of direct requirements from the user (although it is sometimes
possible to extract an implicit query from the user’s activity with other applications, as done
in the Watson system [30].)

Preference instability favors knowledge-based techniques since the historical data is un-
reliable. Learning over a user’s prior interactions may turn out to be a hinderance rather than
a help. However, in certain cases, such as Web personalization, users may provide enough
input in a single session to form a useful profile that can be compared to others.

Table 3.2 shows the influence of the different domain factors on the choice of recommen-
dation approach. In cases where the criteria do not help to reach a definitive conclusion, it
is worth noting that the different technologies do have different implementation and main-
tenance costs. Collaborative recommendation is likely to be the least expensive to imple-
ment. It requires a database of user ratings, but it does not require clean, well-engineered
item features, which is the minimum requirement for the other recommendation technolo-
gies. Knowledge-based technologies are going to be the most expensive approach requiring
knowledge engineering and continuing maintenance. So, a developer might wish to start by
implementing the least expensive solution compatible with the domain.

Another factor to consider is that with hybrid recommendation it is possible to combine
techniques. For example, to deal with a heterogeneous environment with unstable prefer-
ences, a hybrid between content-based and collaborative recommendation may be desirable.

49

3.7.1 Algorithms
If a domain can be clearly characterized as appropriate for one recommendation technol-
ogy or another, a natural next question is which algorithms are appropriate? A thorough
treatment of this question is beyond the scope of this chapter. In the case of collaborative
recommendation, however, it is possible to put forward some considerations.

In user-based collaborative recommendation, a subset of appropriate users are chosen
based on their similarity to the active user , and a weighted aggregate of their ratings is used
to generate predictions for the active user at run-time. Different implementations of collabo-
rative filtering apply variations of the neighborhood-based prediction algorithms. Herlocker
et al. [89] presents an empirical analysis of design choices in such algorithms and analyzes
the variations of similarity metrics, weighting approaches, combination measures, and rating
normalization.

Item-based collaborative filtering explores the relationship between items as a function
of how users have rated them. The item-based version of KNN algorithm has been shown
to scale better and produce more accurate recommendation than user-based for large item
collections [188].

Memory-based nearest-neighbor algorithms have two important computational limits:
scale and sparsity. The need to compare each user against every other (n2 comparisons)
makes these techniques impractical for large collections. Also, the need to directly compare
item ratings means that in very sparse collections, users may have very few neighbors.

In some databases, overall sparsity may hide the fact that there are dense sub-regions
of the item space. Exponential popularity curves may make it possible to employ memory-
based techniques because it is possible to find agreement among people or items in the dense
sub-region and use that agreement to recommend in the sparse space [91]. (Jester [74] does
this directly by creating a highly dense region of jokes rated by all users).

Dimensionality reduction (by way of singular value decomposition, latent semantic anal-
ysis, or other techniques) is by now a standard approach for coping with sparsity in ratings
databases [187, 233]. Various forms of compression and/or dimensionality reduction usu-
ally require extensive off-line computation, but as a result scale much better. The movie
rating data released for Netflix prize which was also used for KDD cup competition in 2007
is an example of large, sparse data which motivated many research groups to develop new
model-based algorithms [179, 116].

Other model-based collaborative algorithms include different machine learning tech-
niques such as Bayesian networks [28] , and clustering [28, 207]. Bayesian networks are
more practical for domains with high user preferences stability so that the user preference
changes slowly with respect to the time needed to build the model.

50

3.8 Sample Recommendation Domains
Table 3.3 illustrates the application of these criteria in 10 different domains where recom-
mendation applications exist. CF, CB, and KB stand for collaborative filtering, content-
based, and Knowledge-based respectively. Not all combinations of the six criteria are rep-
resented, but we can see that the considerations given above are predictive. The last column
of the table shows the algorithm suggested by our framework and the column before shows
examples of existing real world systems or in literature.

In a nutshell, we can observe that high-risk domains generally lead to knowledge-based
recommendation; scrutability is also a good predictor of this. Heterogeneous domains with
implicit input are handled largely with collaborative recommendation.

3.9 Domain of This Thesis: Social Web
Social Web applications help users to socialize or interact with each other throughout the
World Wide Web. These applications provide a social platform for users for different pur-
poses. In some applications such as Facebook 1 and Myspace2 the focus is on people. Such
sites promote the person as focus of social interaction. In other applications, socializing
is typified by a sort of “hobby focus”. For example, Websites such as Flickr3 and Kodak
Gallery4 provide a social platform for sharing photography and Last.Fm5 for sharing music
with like-minded people or friends. Other social applications might focus on more serious or
professional proposes. For example, LinkedIn6 focuses on professional networking, Citeu-
like7 and Bibsonomy8 provide a social platform for scientific community to share resources
and find new articles of their interest. Wikipedia provides a collaborative multi-language
open encyclopedia that allows users to share their knowledge in a very broad range of topics.
Social bookmarking applications such as Delicious9 allow users to store, access and share
their bookmarks.

The important characteristic of social Web applications is the amount of user generated
data. While in traditional recommenders systems, users associate ratings to existing prod-
ucts (items), in social Web, users have more possibilities to interact with the system. First,
they can introduce new items (such as new bookmarks, or new photos) to the system which
increases the heterogeneity and churn of the domain. Second, users can associate more in-
formation to the items than just ratings. This information, called “annotation” in this chapter,

1www.facebook.com
2http://www.myspace.com/
3http://www.flickr.com/
4www.kodakgallery.com/
5http://www.last.fm/

6http://www.linkedin.com/
7http://www.citeulike.org/
8www.bibsonomy.org/
9http://delicious.com/

51

Domain Risk Churn Heterog-
eneous

Preference Interaction
Style

Scrutabi-
lity

Examples Our
Sug-
gestion

News Low High Low Stable Implicit Not re-
quired

Google News
[56]: CF ,
YahooNews[21]
and [145, 128]:
CB

CB

E-
commerce

Low High High Stable/
Unstable

Implicit Not re-
quired

Amazon, eBay:
CF

CF

Web Page
Recom-
mender

Low High High Stable/
Unstable

Implicit Not re-
quired

[31, 121, 11]:
CF, Hybrid

CF

Movie Low Low Low Stable Implicit Not re-
quired

Netflix [157,
202],
Movielens[77]:
CF

CF

Music Low Low Low Stable Implicit Not re-
quired

Pandora and
[84, 95, 45]:
CB, Hybrid

CB, CF

Financial-
services,
Life-
insurance

High Low Low Stable Explicit Required Koba4MS[62]
FSAdvisor[63]
[205]: KB

KB

Software
Engineer-
ing

Low Low Low Stable Explicit
/Implicit

Required [44] and [98]:
Hybrid, CB

CB,
KB

Tourism High Low Low Stable/
Unstable

Explicit Required Travel Recom-
mender [177]
[127]: CB,KB

KB

Job search
Recruit-
ing

High Low Low Stable Explicit Required CASPER[119]
and
[130]:CB,KB

KB

Real
Estate

High Low Low Stable Explicit Required RentMe [35]
FlatFinder[213]
and [231]:KB

KB

Social
Web

Low High High Stable Implicit Not re-
quired

Facebook, Deli-
cious, Last.fm:
CF, Hybrid

CF, CB

Table 3.3: Sample domains for recommendation
52

Figure 3.3: Possible relations in the graph of a social Web application

can have different forms such as tags, categories, reviews, and etc. Third, as the name sug-
gests, the important feature of these kind of applications is their “social” characteristic. Users
interact with social Web applications to be part of a community, to share information with
others and to benefit from the collective knowledge of others for discovering new resources
and new friends.

These properties of the social Web domain introduces new opportunities as well as new
challenges to recommender systems. Users are presented not only with huge item space to
select from but also annotations and other users. They also have the opportunity to contribute
to the system; for example by assigning tags to resources. A recommender in social Web
domain has to consider all different possible relations among users, items, and annotations
in the social network.

It is useful to think of a social Web application as a graph with three types of nodes
(users(U), annotations(A), and resources(R)). There are a variety of types of edges such a
network can contain. Purely social edges connect two members of U : the “friends” rela-
tionship in Facebook, for example. Domain-specific links may connect members of R: for
example, one Web page will often contain links to other pages. Even annotations might be
linked to each other. For example, there may be an ontology in a tagging system by which
one tag is related to another. Figure 3.3 shows the possible relations in a social graph.

The complexity of the navigational space in social applications makes accurate recom-
mendations even more critical. While applications vary in the underlying resource and the
form of the annotations, the model described above, nevertheless captures the essential ele-
ments of many social Web applications and can be used to characterize different recommen-
dation tasks and modalities. For example, in traditional collaborative recommender appli-
cations such as in Netflix the user generates annotations that are typically numerical ratings
and associates them to resources (movies). The recommendation task is to predict ratings for
movies not yet rated by a target user.

53

Social tagging applications such as Delicious are another example of social annotation
systems in which users annotate resources with tags rather than ratings. Social tagging sites
routinely permit users to explore each others tags and resources creating rich navigational
opportunities. Collaborative tagging gives rise to a variety of recommendation tasks: rec-
ommending resources, suggesting tags given a resource, or recommending other users with
potentially similar interests.

Other forms of annotations can include reviews which are often incorporated into online
retail stores such as Amazon or they can get a more structured form such as categories
associated to pages in Wikipedia.

As the last row of table 3.3 shows, social Web domain is considered as high churn and
heterogeneous domain. The heterogeneity and the fact that the items can be added by normal
users at any time, impedes any knowledge-based possibility for recommendation in this do-
main. On the other hand, the high churn might make sparsity a problem for recommending
some items. However, since the domain has the advantage of having many users interacting
with the system very often, there can be possibility of collaborative recommendation for the
dense part of the data. For the other parts, content-based approaches are appropriate.

The evolution of annotations from numerical ratings to other above mentioned forms
break the assumptions of many traditional algorithms. These algorithms must either be
adapted to the social Web context or new algorithms such as graph-based techniques need to
be developed. In the next chapter, we discuss most effective tag recommendation techniques
up to date and introduce novel approaches to improve them.

3.10 Conclusion
In this chapter, we presented a framework for matching domains to recommendation tech-
nologies with the goal of assisting researchers and developers in selection and application of
these systems. Recommendation methods are usually classified into three main categories:
collaborative, content-based, and knowledge-based. In contrast to previous taxonomies on
recommender systems, our framework focuses on various characteristics of the domain. We
identified six domain characteristics including heterogeneity, risk, churn, interaction style,
preference stability, and inscrutability and and mapped these characteristics to the underlying
knowledge sources and recommendation technologies. We presented guidelines for selecting
among different kinds of recommendation technologies based on the problem characteristics.
We provided examples from the real world applications and recommender system literature.
Finally, we focused the social Web domain as it is the domain of this thesis; we presented
the main differences of this domain with other ones and the important points that should be
considered when designing recommenders in this domain.

54

3.11 Acknowledgements
The work presented in this chapter has been initiated by support of IBM Watson Research
Center in summer 2007. An abbreviated version of the work appeared as a paper “Maryam
Ramezani, Lawrence Bergman, Rich Thompson, Robin Burke and Bamshad Mobasher, Se-
lecting and Applying Recommendation Technologies, Workshop on Recommendation and
Collaboration at the Intelligent User Interfaces conference 2008.” The work has been later
continued and with additional contributions from Dr. Robin Burke, it has been published as
a chapter in the recommender system hand book: “ Robin Burke and Maryam Ramezani,
Matching Recommendation Technologies and Domains, Recommender Systems Handbook:
A Complete Guide for Research Scientists and Practitioners, Springer 2011.”

55

Chapter 4

Improving Link Analysis for Tag
Recommendation in Folksonomies

4.1 Introduction
Collaborative tagging systems such as Delicious1, lastFm2, and Bibsonomy3 have emerged
as powerful applications for Internet users. Tagging systems support users with several ben-
efits. First they allow users to organize their own data with a level of freedom not possible in
traditional taxonomic filing systems. Secondly they provide users with the means to openly
share this information among friends and colleagues. Thirdly they also allow anyone to uti-
lize the collective knowledge of others for discovering new topics, resources or perhaps even
new friends.

While Folksonomies have many benefits, they also present several challenges. Most
collaborative tagging applications permit unsupervised tagging; users are free to use any tag
they wish to describe a resource. This unsupervised tagging can result in tag redundancy –
in which several tags have the same meaning – or tag ambiguity – in which a single tag has
many different meanings. Such inconsistencies can confound users as they attempt to utilize
the folksonomy. It can be difficult for users to traverse the sheer volume of data. Moreover,
noise in the data can impede the users experience. Data mining applications such as tag
recommenders make it easier for the user to navigate the system.

Tag recommendation, the suggestion of tags during the annotation process reduces the
user effort. By reducing the effort users are encouraged to tag more frequently, apply more
tags to an individual resource, reuse common tags, and perhaps use tags the user had not
previously considered. Moreover, user error is reduced by eliminating redundant tags caused

1http://delicious.com/
2http://www.last.fm/

3www.bibsonomy.org/

56

by capitalization inconsistencies, punctuation errors, misspellings and other discrepancies.
The tag recommender can further promote a core tag vocabulary steering the user toward
adopting certain tags while not imposing any strict rules. The tag recommender may even
avoid ambiguous tags in favor of tags that offer greater information value. This may aid other
users when navigating through the folksonomy to find interesting resources related to a tag
which is more often used by other users. In order to develop a recommender applications in
a social tagging system the first step is to create a model of the folksonomy that takes into
account the information flow between users, resources and tags.

In this chapter we propose a weighted directed graph which models the informational
channels of a folksonomy. We then apply PageRank to this model for tag recommendation.
Our claim for a directed graph to model the folksonomy is based on the observation that the
user navigation from one object (user, resource, or tag) to another object is not symmetric
and by considering different weights on the edges of each direction we can better model the
navigating from one node to the other.

4.2 Related Work
We provided an overview of existing approaches for tag recommendation in section 2.4.3. In
this section, we look the most current state of the art of tag recommendation and present a
comparison of the most successful tag recommendation approaches.

Hotho et al. suggest an approach for converting the folksonomy into an undirected
tripartite graph and use an adaptation of PageRank (called Adapted PageRank or simply
PageRank) to facilitate search and recommendation in folksonomies [29, 102, 101]. How-
ever, their representation based on an undirected graph has a shortcoming in that weights
that flow in one direction of an edge will go back along the same edge in the next itera-
tion of PageRank. To overcome this shortcoming, FolkRank was proposed. FolkRank has
been one of the most successful tag recommendation algorithms in folksonomies to date.
Rendle and Thieme [174] use pairwise interaction tensor factorization for tag recommenda-
tion. The algorithm explicitly models the pairwise interactions between users, items and tags.
This approach was the most successful algorithm in the ECML/PKDD Discovery Challenge
2009 [60] for graph-based tag recommendation. Figure 4.1 shows the results from authors’
experiments on comparison of their proposed approach with other popular tag recommen-
dation algorithms. We can see in this figure that PageRank shows the worst results wile
FolkRank and the suggested algorithm are comparable.

Our contributions in this chapter are two-fold. First, we demonstrate that with appropriate
parameterizations, PageRank can outperform FolkRank in tag recommendation. Second, our
extensive evaluation on three real world datasets reveal that PageRank generates better tag

57

Figure 4.1: Comparion of different state of the art tag recommendation techniques taken
from [174]

recommendations with a weighted directed graph model of the folksonomy than with an
undirected graph model.

The rest of this chapter is organized as follows. In section 4.3, we provide a background
on the PageRank algorithm and then we present the Adapted PageRank and FolkRank for
folksonomies. Next, in section 4.3.3 we describe how to apply these algorithms for tag rec-
ommendation. Section 4.4 presents our proposed algorithm for creating a weighted directed
graph from a folksonomy. Our experimental methodology, datasets and results are offered in
section 4.5.2. Finally, we conclude the chapter with directions for future work.

4.3 Background on PageRank Algorithm
PageRank is a link analysis algorithm, introduced by Page and Brin [29] and it is the basic
algorithm of the Google search engine. The underlying idea of PageRank is that pages
that have many in-links from important pages are important themselves. PageRank uses
probability distribution to represent the likelihood that a person randomly clicking on links
will arrive at any particular page. The probability that the random surfer clicks on one link
is given by the number of links on that page. For example, in figure 4.2 the probability of
surfing from page B to page C is 1 while the probability of surfing from page A to page B is
.5 since A has two out-links. The probability for the random surfer reaching one page is the
sum of probabilities for the random surfer following links to this page. In our example,
the probability of surfing to C is the sum of probability of surfing to B and probability

58

Figure 4.2: A simplified example for presentation of PageRank algorithm

of surfing to A. The PageRank algorithm considers that even an imaginary surfer who is
randomly clicking on links might not click on an infinite number of links, but might get
bored sometimes and jump to another page at random. At any step, the probability that
the surfer does not follow the hyperlinks and instead jumps to a different page is γ . More
formally, in PageRank, the authority of a page p, xp, expresses the popularity of the page
p and is defined based on the number of incoming links and on the authority of every page
q ∈ Qp that connects to p with a forward link [19] and can be calculated as follows:

xp = (1− γ) ∑
q∈Qp

xq∣∣Hq
∣∣ + γ (4.1)

Where Hq is the set of all pages linked from q, and
∣∣Hq

∣∣ is the outdegree of q. The equation
can be reformulated as the following linear system:

x = (1− γ)Wx+ γv (4.2)

Here, the damping factor γ determines the influence of v, which is typically defined as v =
[1, · · · ,1]T but may be personalized with user preferences. The transition matrix, W = {wi, j}
is defined as wi, j = 1/

∣∣Hj
∣∣ if there exists a link from j to i and wi, j = 0 otherwise. Every

column must sum to either 1 or 0, making the matrix W column stochastic. The transition
matrix for our simple example is shown in figure 4.2.

In order to compute personalized PageRank, v can be used to express user preferences by
giving a higher weight to the components which represent the users preferred web pages. We
call such vector, v, a “preference vector” and will use that for tag recommendation. In this
case, the value of γ ∈ [0,1] controls the influence of the preference vector. The preference
vector allows the algorithm to be trained on a specific region of the graph.

4.3.1 Folksonomy-Adapted PageRank
Hotho et.al [100] introduced an adaptation to PageRank for folksonomies with the same ba-
sic notion that a resource which is tagged with important tags by important users becomes

59

Figure 4.3: The folksonomy adjacency matrix

important itself. The same holds, symmetrically, for tags and users. Unlike the original
PageRank that only deals with pages and links between them, the folksonomy Adapted
PageRank considers three dimensions of users, resources, and tags. The folksonomy can
be represented by a tripartite hypergraph in which the vertices are mutually reinforcing
each other by spreading their weights. Hotho et. al use the projections introduced in sec-
tion 2.3.2 and reduce the tripartite hypergraph to three bipartite graphs with regular edges,
RT , UR, and UT , which reflect the relations between resources and tags, users and re-
sources, and users and tags respectively. These three projections taken together produce
a weighted undirected tripartite graph with set of nodes: V = U ∪ R∪ T and weighted
edges E = {{u, t},{r, t},{u,r}|(u, t,r) ∈ A}, with each edge {u, t} being weighted with
UT (u, t) = |r ∈ R : (u, t,r) ∈ A|, each edge {t,r} with RT (r, t) = |u ∈U : (u, t,r) ∈ A|, and
each edge {u,r} being weighted with UR(u,r) = |t ∈ T : (u, t,r) ∈ A|. The adjacency matrix
of this graph is shown in figure 4.3. The folksonomy transition matrix is built by normalizing
each column of the matrix to 1. Such column-stochastic matrix is applied as W in equation
4.2 to find the rank of each element in folksonomy.

4.3.2 FolkRank
The problem with adapted PageRank is that it is based on an undirected graph while the
origin of PageRank comes from the in-link and out-link concepts. Thus, in the Adapted
PageRank algorithm, weights that flow in one direction of an edge will basically swash back
along the same edge in the next iteration. Therefore the result is very similar to a ranking
based on counting edge degrees [102]. Hotho et al. [102, 101] suggest FolkRank to solve
this problem.

The FolkRank vector is taken as a difference between two computations of PageRank:

60

one with a preference vector and one without the preference vector. The preference vector
(v in equation 4.2) is designed in a way that it gives higher weight to specific elements based
the goal of ranking. For example, if the goal is to search for resources given a specific tag,
the preference vector would give higher weight to that tag. More formally, if we consider x0
to be the fixed point from equation 4.2 without preference vector and x1 as the fixed point
with preference vector p, then the FolkRank vector is defines as

x = x1− x0 (4.3)

Because a generic but popular item will receive a similar PageRank score in both models,
its FolkRank will be reduced to 0 (or less, if its new score is less than the original). The
inventors of FolkRank [102, 105] claim that x resulted from FolkRank provides valuable
results on a large-scale real-world dataset while x1, provides an unstructured mix of topic-
relevant elements with elements having high edge degree.

However, our experimental results and analysis in the next sections show that with cor-
rect parametrization of the damping factor, adapted PageRank produces better results than
FolkRank.

4.3.3 Graph-Based Tag Recommendation in Folksonomies
In traditional recommendation algorithms the input is often a user, u, and the output is a set
of items, I. The user experience is improved if this set of items is relevant to the user’s needs.
Tag recommendation in folksonomies however differs in that the input is both a user, u, and
a resource, r. The output remains a set of items, in this case a recommended set of tags, Tr.
An algorithm for tag recommendation in folksonomies therefore requires a means to include
both user and resource information in the process so that the recommendation set includes
tags that are relevant to the resource and also represent the user’s tagging practice.

In order to generate tag recommendations the preference vector is biased towards the
query user and resource [105]. These elements are given a substantial weight in the prefer-
ence vector where all other elements have uniformly small weights. Similar to [105] each
user, tag and resource gets a preference weight of 1 while the target user and resource get a
preference weight of 1+ |U | and 1+ |R|, resp.

The value of γ controls the impact of the preference vector. The higher it gets, the
more the algorithm is biased toward the target user and resource. However, in previous tag
recommendation experiments, authors [105, 174] have only tested the algorithms by fixing
the value of γ = .3 without any specific reasoning, which indeed provides the best results
for FolkRank but not for the PageRank algorithm. In this work, we will show that with
increasing the value of γ , FolkRank will not do as well and PageRank can provide much
better results.

61

Figure 4.4: An arbitrary example of folksonomy

4.4 A weighted Directed Graph Model for Folksonomies
The problem with the weighting schema of Adapted PageRank is that the weight of the
undirected edges does not accurately reflect the flow of information across the folksonomy.
We extend this graph model to consider the expectation of hypothetical user navigating from
one node to another. Consider r representing a non-popular resource and t representing a
popular tag associated to r in a folksonomy. For instance, in figure 4.4, an arbitrary example
is given where T1 is a popular tag while R3 is a non-popular resource. In the current weighting
schema of Adapted PageRank, the weight between r and t is defined by the number of users
who associate them together represented with RT(r,t):

RT (r, t) = |u ∈U : (u, t,r) ∈ A| (4.4)

Our weighting schema suggests that the weight from r to t should be higher than the weight
from t to r since t is a popular tag and a user is more likely to navigate from a non-popular
resource to a popular tag than navigating from a popular tag to a non-popular resource.

Our proposed weighting approach is inspired by the weighted PageRank algorithm [1],
where the importance of pages are considered for weighting the graph. The weighted PageR-
ank algorithm in [1] assigns larger rank values to more important (popular) pages instead of
dividing the rank value of a page evenly among its out-link pages. Each out-link page gets a
value proportional to its popularity (its number of in-links and out-links).

We take a similar approach and our goal is to assign different weights to each direction of
the link based on the popularity of the in-link element. Since we face a folksonomy graph,
we have three different types of vertices(U,R,T) and each edge connects two types of the
vertices. The popularity of the elements is defined differently for each type of edge and is
based on the number of connected elements of the third type of vertex. To clarify, consider
an edge between resource r and tag t. Popularity of t is defined as the sum of all users who

62

have used the tag t (sum of the in-links to tag t from the user nodes). The weight from r to
t is defined as multiplicative factor of popularity and RT (r, t). Similarly, the popularity of r
will be the total of number of users who have annotated resource r in their profile. In our
arbitrary example, the number of users who have tag T1 in their profile is 3 while number of
users who have resource R3 is 1. So the weight of the link from R3 to T1 is three times higher
than the weight from T1 to R3. Equations 4.5 and 4.6 show the formal definitions of edge
weights from r to t and from t to r respectively.

weight(r→ t) = RT (r, t)× ∑
r′∈R

RT (r′, t) (4.5)

weight(t → r) = RT (r, t)× ∑
t ′∈T

RT (r, t ′) (4.6)

The weight of an edge between tag t and user u is defined as follows. Popularity of tag t
is the number of all resources associated with t and the popularity of user u is the sum of all
resources tagged by the user u. Following equations show the formal definitions for the edge
weights.

weight(u→ t) =UT (u, t)× ∑
u′∈U

UT (u′, t) (4.7)

weight(t → u) =UT (u, t)× ∑
t ′∈T

UT (u, t ′) (4.8)

Weights of UR edges are defined similarly. Popularity of user u is defined as the number
of all tags the user has applied and popularity of r will be the sum of number of tags assigned
to r. Thus, the weights are defined as following:

weight(u→ r) =UR(u,r)× ∑
u′∈U

UR(u′,r) (4.9)

weight(r→ u) =UR(u,r)× ∑
r′∈R

UR(u,r′) (4.10)

In our arbitrary example, user 1 has associated tags T1 and T2 to resource R4. Thus,
UT (U1,T 1) = 1 and UR(R4,U1) = 2, considering our weighting schema, the weight from
T1 to U1 is 1 while the weight from U1 to T1 is equal to 4 since T1 is associated to resources
R1, R2,R3 and R4.

With the proposed weighting schema, we have a weighted directed graph and we can ap-
ply the PageRank algorithm. In the following section we use the suggested graph model for
tag recommendation and compare the results with FolkRank and PageRank with undirected
graph.

63

4.5 Experimental Evaluation
Our tag recommendation algorithm uses the PageRank algorithm with the directed graph
described above. We also experimentally analyze the effect of changing the parameter γ
in equation 4.2 for the three approaches: PageRank with undirected graph, FolkRank, and
PageRank with directed graph. As described before, for all experiments, we bias the pref-
erence vector by setting the weight of 1+ |U | and 1+ |R| for the target user and resource
respectively, while other users, tags and resources get equal weight of 1.

First, we describe the methods used to gather and pre-process data for the experiments
and provide details of our datasets. Next, we discuss our testing methodology and briefly ex-
plain the common metrics recall and precision and then detail the results of our experiments.

4.5.1 Datasets
We have chosen three datasets for our experiments: Delicious, Bibsonomy and Citeulike. In
order to reduce noise and focus on the denser portion of the dataset a P-core was taken such
that each user, resource and tag appear in at least p posts as in [16, 105]. A post is defined
as as a user, resource and all tags applied by that user to that resource and an annotation is
defined as a user, a resource and one tag associated to that resource by that user.

Delicious

Delicious4 is a popular Web site in which users annotate URLs. On 10/19/2008, 198 of the
most popular tags were taken from the user interface. For each of these tags the 2,000 most
recent annotations including the contributors of the annotations were collected. This resulted
in 99,864 distinct usernames. For each user, the “Network” and “Fans” were explored re-
cursively collecting additional usernames. A user’s Network consists of the other users that
the user has explicitly chosen to watch. Conversely a Fan is another user that has explicitly
chosen to watch the user. For each user the social network was explored recursively resulting
in a total of 524,790 usernames.

From 10/20/2008 to 12/15/2008 the complete profiles of all users were collected. Each
user profile consisted of a collection of posts including the resource, tags and date of the
original bookmark. The top 100 most prolific users were visually inspected; twelve were
removed from the data because their post count was many orders of magnitude larger than
other users and were suspected to be Web-bots. Due to memory and time constraints, 10%
of the user profiles were randomly selected. A p-core of 20 was taken from this dataset for
experiments.

4www.delicious.com/

64

Bibsonomy

This dataset was provided by Bibsonomy for use in the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD)
2009 Challenge. Bibsonomy was originally launched as a social annotation system allowing
users to organize and share scholarly references. It has since expanded its scope allowing
users to annotate URLs. The data includes all public bookmarks and publication posts of
Bibsonomy until 2009-01-01. A 5-core was taken to reduce noise and increase density.

Citeulike

Citeulike is a popular online tool used by researchers to manage and discover scholarly
references. They make their dataset freely available to download. On 2/17/2009 the most
recent snapshot was downloaded. The data contains anonymous user ids and posts for each
user including resources, the date and time of the posting and the tags applied to the resource.
A P-core of 5 was calculated.

Folksonomy Delicious Citeulike Bibsonomy
Users 7,665 2,051 402
Resources 15,612 5,376 2,014
Tags 5,746 3,343 1,755
Posts 720,788 42,278 15,760
Annotations 2,762,235 105,873 53,554
Average # of tags in each post 3.82 2.5 3.39
Average # of post per user 94.04 20.61 39.2
Average # of posts per resource 46.1 7.86 7.82

Table 4.1: Datasets

Table 4.1 summarizes the base statistics for each dataset. From these fundamental num-
bers we derive a few simple statistics which help to characterize the “density” of the post-
processed datasets. The average number of tags in a Delicious post is 3.82, and the average
number of posts per user is 94.04. For Citeulike, the averages are 2.50 tags per post and 20.61
posts per user; for Bibsonomy, 3.39 and 39.2. We therefore note that Delicious has by far
the most tagging data per user, followed by Bibsonomy, and Citeulike last. In terms of posts
per resource, we again see that Delicious has far and away the highest average with 46.1;
Citeulike and Bibsonomy are nearly identical in this respect (7.86 vs. 7.82, respectively).

An important distinction between the datasets is their focus. Users in Delicious are able
to tag any URL available on the Web. As such an individual’s interests are often varied

65

encompassing many topics. In Citeulike, however, researchers tag scholarly publications
and their tagging is often focused in their area of expertise. Due to its dual-nature, we expect
Bibsonomy users to display a somewhat mixed approach.

We have adopted the test methodology as described in [105]. In this approach, called
LeavePostOut, a single post is randomly removed from each user’s profile. The training set
is then comprised of all of the remaining data, while the test set contains one test case per
user. Each test case consists of a user, u, a resource, r, and all the tags the user has applied to
that resource. These tags, Th, are analogous to the holdout set commonly used in Information
Retrieval. The tag recommendation algorithms accept the user-resource pair and return an
ordered set of recommended tags, Tr. From the holdout set and recommendation set utility
metrics were calculated. For each evaluation metric the average value is calculated across all
test cases.

For evaluation we use the common recall and precision measures as is common in Infor-
mation Retrieval. Recall is a measure of completeness and is defined as:

r = |Th∩Tr|/|Th| (4.11)

Where Th is the hold-out set(test set) tags which represent the correct answer and Tr is the
set of recommended tags. Recall measures the percentage of items in the recommendation
set that appear in the holdout set. Precision measures the exactness of the recommendation
algorithm and is defined as:

p = |Th∩Tr|/|Tr| (4.12)

which measures the percentage of items in the holdout set that appear in the recommendation
set. In order to be able to compare the performance of the algorithms, we use F-measure
defined as follows:

F-Measure =
2×Precision×Recall

Precision+Recall
(4.13)

4.5.2 Experimental Results
Here we present our experimental results with tuning of value of γ and changing the number
of recommended tags. We have recorded the values of precision and recall with changing
the number of recommended tags from 1 to 10 and also changing the value of γ between .05
to 1. The Adapted PageRank results are shown with abbreviation of “APR” in the graphs.
Figures 4.5 through 4.7 show the effect of changing the value of γ on precision and recall for
the three data sets. The charts show the precision and recall values for recommendation set
of 10 tags (Recall at 10 and Precision at 10) when changing the value of γ .

66

Figure 4.5: The effect of changing γ on precision and recall for a recommendation set of 10
tags in Bibsonomy data set

Increasing the value of γ indicates a greater emphasis on the preference vector and our
results show that increasing γ has a consistently positive effect on tag recommendation using
the Adapted PageRank algorithm. Even though the results for γ = .99 still show an im-
provement, setting the value of γ = 1 will drastically reduce the recommendation precision
to nearly zero. This is expected, as γ = 1 in equation 4.2 means that there is no learning
involved and the final resulting vector is equal to the preference vector.

Figure 4.6: The effect of changing γ on precision and recall for a recommendation set of 10
tags in Citeulike data set

Our results show that for FolkRank, on the other hand, by increasing the value of γ ,
the performance decreases. To explain this we should note that FolkRank is basically the

67

difference of the resulting weights of the adapted PageRank with and without preference
vector. As the value of γ increases the result is more and more focused on the preference
vector which results in higher weights for the nodes that are connected to the target nodes.
The differential approach in FolkRank is supposed to compute a topic-specific ranking of the
elements in a folksonomy. However, the fact that the weights from the PageRank without
preference (x0) are subtracted from the one with preference vector (x1) creates negative
values in the resulting vector for any node which has a higher value in x1. This is useful
for small values of γ to remove the high weighted popular nodes, however, as the value of
γ increases x1 is more and more representative of the actual ranks considering the specific
resource and tag. By subtracting x0 from x1 we end up with an ad-hoc unrealistic weight
vector, since we might omit many high weighted nodes in x1 only because they have occurred
with a higher weight in x0.

Figure 4.7: The effect of changing γ on precision and recall for a recommendation set of 10
tags in Delicious data set

The above charts show the results when the number of recommended tags is fixed to 10.
We want to examine if this results are valid when we change the number of recommended
tags. Figure 4.8 shows the results for different values of precision and recall when recom-
mending from 1 to 10 tags. In this experiment, we keep the value of γ constant and set it
to the value that results in best performance for each technique. From figure 4.6 we can
observe that this value is .3 for FolkRank and .99 for Adapted PageRank. In this figure we
can observe that the adapted PageRank using the directed graph outperforms the undirected
version and the FolkRank for all values of precision and recall. Figure 4.9 shows similar
results comparing the F-measure for different approaches. This figure confirms that the per-
formance of the adapted pagerank is better than FolkRank, and that the directed graph model

68

outperforms the undirected one for recommendation of any number of tags.5 Note that the
rightmost point of this graph is the one which is presented in figure 4.6. Although in this
figure it seems that all points converge to the same value, our significance tests show that the
differences are significant even for that point.

Figure 4.8: Comparison of undirected APR, directed APR for γ = .99 and FolkRank for
γ = .3

4.5.3 Discussion
The results from different data sets show that increasing the value of γ results in increasing
the recommendation accuracy of the PageRank algorithm and it has the opposite effect for
the FolkRank. We can see that performance of FolkRank drops when the value of γ increases.
The comparison of directed and undirected graphs show that directed graph produces better
or similar results across different datasets. In Bibsonomy and Citeulike the results of the
directed graph are considerably better for certain values of γ .

We performed significance test to determine if the differences between observed values
from each approach in different data sets are significant. We used pair sample t-test and com-
pared the mean of precision and recall resulted from the constant γ which produces the best
results for each technique. The results from the significance test show that the differences
between the values from the directed graph is significantly better than the the undirected

5The difference between the F-measure values in
figure 4.9 and 4.1 is because of the difference in the
data set used in our experiments. Our experiments

were performed before the release of the new data set
by Bibsonomy.

69

Figure 4.9: Comparison of F-measure for undirected APR,directed APR for γ = .99 and
FolkRank for γ = .3

one for Bibsonomy and Citeulike datasets with p < .001. However, in Delicious dataset the
differences are not significant which means that we can not reject the null hypothesis that
the two approaches (directed and undirected graph models) produce similar results. This
difference is likely because of existence of much broader concepts in Delicious and deserves
further investigation. The significance tests show that in all datasets the Adapted PageRank
significantly outperforms FolkRank.

4.6 Conclusion and Future Work
In this chapter we suggested to model the folksonomy as a weighted directed graph which
can capture the informational channels of a folksonomy. We then applied PageRank to this
model for tag recommendation. Our extensive evaluation on three real world datasets re-
veal that with appropriate parameterization, Adapted PageRank can outperform FolkRank
in tag recommendation. In addition, we have shown that with modeling the folksonomy as
a directed weighted graph, we can get additional improvement. Future work can improve
the weighting schemas to better model the probability of navigation in the folksonomy and
apply the graph models for search and resource recommendation. Moreover, efficiency and
scalability are major drawbacks of this algorithm which deserve more attention. In the cur-
rent setting, since the preference vector is dependent on the target resource and user, all the
iterative calculation must be done in online recommendation phase which depending on the
size of the folksonomy can be quite time consuming. Developing new algorithms that can

70

help calculate the personalized PageRank with an incremental approach -so that the com-
plete iteration calculations are not necessary at the run time- can be a valuable future work
which can improve personalized search and recommendation not only in the social tagging
environment but also in other Web applications.

4.7 Acknowledgment
The work presented in this chapter was supported by DePaul University Summer Research
Grants. Thanks to Jonathan Gemmell, Thomas Schimoler, and Bamshad Mobasher for their
help and contribution to this work.

71

Chapter 5

Using Recommender Systems to Support
Continuous Ontology Development

5.1 Introduction
Ontologies are known in computer science as consensual models of domains of discourse,
usually implemented as formal definitions of the relevant conceptual entities [87]. There
are two broad schools of thought on how ontologies are created: the first views ontology
development akin to software development as a - by and large - one off effort that happens
separate from and before ontology usage [154, 201]. The second view is that ontologies are
created and used at the same time, that ontologies are continuously developed throughout
their use. The second view is exemplified by the ontology maturing model [25, 24] and by
the ontologies that are developed in the course of the usage of a semantic wiki [114].

Machine learning, data mining and text mining methods to support ontology develop-
ment have so far focused on the first schools of thought; have focused on creating an initial
ontology from large sets of text or data that is refined in a manual process before it is then
used. For example, recently, many researchers have tried to apply data mining techniques to
create ontologies from folksonomies [93, 13].

In our work, however, we focus on using machine learning techniques to support con-
tinuous ontology development. We suggest a new kind of semantic tagging system which
starts with a seed ontology – created by domain experts – that assists users of the system
with recommendations on how to further develop and mature that ontology. In particular,
we focus on one important decision: given the current state of the ontology, the concepts al-
ready present and the sub/super concept relations between them - where should a given new
concept be placed? Which concept(s) should become the super concept(s) of the new con-
cept? Our work presents a supporting tool for user-driven ontology evolution management

72

proposed by Stojanovic et al. [200].
We investigate this question on the basis of applications that use ontologies to aid in

the structuring and retrieval of information resources (as opposed to for example the use of
ontologies in an expert system). These applications associate concepts of the ontology with
information resources, e.g. a concept “Computer Science Scholar” is associated to a text
about Alan Turing. Such system can use the background knowledge about the concept to
include Alan Turing page in responses to queries like “important British scholars”.

The rest of this chapter is organized as follows. Section 5.2 provides a brief background
on ontologies as well as a summary of the previous related work. In section 5.3 we present
several application scenarios of our work. Section 5.4 presents our proposed algorithms for
the recommendation of super-concepts. In section 5.5, we describe the methodology, the
datasets and the results from the evaluation before section 5.7 concludes the paper.

5.2 Related Work
According to one of the most cited definitions of the Semantic Web literature, an ontology
is a formal, explicit specification of a shared conceptualization [79]. Guarino clarifies Gru-
bers definition by adding that the AI usage of the term refers to “an engineering artifact,
constituted by a specific vocabulary used to describe a certain reality, plus a set of explicit
assumptions regarding the intended meaning of the vocabulary words” [80].

An ontology is engineered by members of a domain by explicating a reality as a set of
agreed terms and logically founded constraints on their use [139]. The ontology construction
either uses a bottom-up methodology which starts with some descriptions of the domain and
then obtains a classification or a top-down methodology which starts with an abstract view
of the domain itself, which is given a priori [55].

One of the most important components of ontologies are concept hierarchies, which
model the information of the domain in terms of concepts and subsumption relationships
between them [103]. A concept hierarchy defines a sequence of mappings from a set of
lower-level concepts to their higher-level correspondences. Such mappings may organize
the set of concepts in partial order, such as in the shape of a tree (a hierarchy, a taxonomy),
a lattice, a directed acyclic graph, etc., although they are still called “hierarchies” for conve-
nience [83].

John Sowa [199] classifies ontologies into three kinds. A formal ontology is a concep-
tualization in which categories are described by axioms and definitions. They are stated in
logic or in some computer-oriented language that could be automatically translated to logic.
In contrast, in prototype-based ontologies, categories are distinguished by typical instances
or prototypes rather than by axioms and definitions in logic. Categories are formed by col-

73

lecting instances rather than describing the set of all possible instances in an intensional
way, and the most typical members are selected for description. The third kind of ontology
is terminological ontology which is specified by subtype-supertype relations. The concepts
are described by concept labels or synonyms rather than prototypical instances [20]. A well
known example for a terminological ontology is WordNet [140]. Figure 5.1 illustrates differ-
ent ontology paradigms for a toy example in the food domain taken from [20]. In this work,
we focus on terminological ontologies specifically on subtype-supertype relations among
concepts.

Ontologies can be learnt from various sources, structured and unstructured documents,
databases or more recently from folksonomies. Maedche and Staab [126] present an ontol-
ogy learning framework that extends typical ontology engineering environments by using
semi-automatic ontology construction tools. The framework includes ontology import, ex-
traction, pruning, refinement, and evaluation. The authors also present a survey on ontology
learning approaches from text, dictionaries, and legacy ontologies. We presented a detailed
related work on the area of emergent ontologies from folksonomies in section 2.4.5. Here,
we review the related work specifically on machine learning techniques for ontology learn-
ing.

Ontology learning techniques can be divided to two groups: constructing ontologies from
scratch and extending existent ontologies. The former includes various clustering techniques
(unsupervised learning) and the latter can be viewed as a classification task (supervised learn-
ing) [20].

Different approaches of clustering has been applied for ontology learning from text. Hi-
erarchical clustering for ontology learning allocates sets of terms in a hierarchy that can be
transformed directly into a prototype-based ontology. A distance or similarity measure on
terms is defined, and the terms with higher similarity than a specified threshold are merged
into one cluster. An overview of clustering methods for obtaining ontologies from different
sources is presented in [48].

In addition to hierarchical clustering, other data mining and statistical techniques have
been used for ontology learning. Maedche and Staab [125] present a general architecture for
discovering conceptual structures and engineering ontologies. Based on this architecture,
they apply association rule mining to learn ontologies from textual data. Chen and Li [46]
use spectral graph partitioning to construct concept hierarchy from web pages. Sanderson
and Craft [184] use subsumption which is basically based on co-occurrence of terms to
automatically create concept hierarchy from text. Aussenac-Gilles et al. [12] use natural
language processing techniques to analysis a corpus for creation of ontologies. A semi-
automatic construction of ontologies using text is presented in [43]. The proposed method
compares the relative frequency of terms in the text with their typical, expected use and
identifies concepts and relations. For a comprehensive overview on ontology learning from

74

Figure 5.1: Formal vs. terminological vs. prototype-based food ontology [20]

text, methods, evaluation and applications, refer to [158].
On the other hand, extension of an existing ontology can be viewed as a classification

task. Features of the existing data can be used as a training set to design a classifier for new
instances. Our work in this chapter is an extension of such approach in Web 2.0 environment.
Thus, we elaborate more on the previous works in this specific area.

Alfonseca and Manandhar [8] propose enrichment of WordNet with new concepts learnt
from general purpose texts. For each new concept, the algorithm performs a top-down search
along the ontology, and stops at the synset that is most similar to the new concept. The on-
tology is traversed top-down from the root until an appropriate position is found. The largest
problem with this approach is the general nature of top-level concepts that leads to taking the
wrong path in the beginning of the process. Similar work is presented by Witschel [220] in
which decision trees are used for extending lexical taxonomies. In this work, co-occurrence
statistics is used to discover the relations among concepts and the semantic descriptions are

75

propagated iteratively upwards to the root.
Fleischman and Hovy [65] focus on one specific category of named entities, persons, and

describe a method for automatically classifying person instances into eight sub-categories,
e.g politician, entertainer, etc . A supervised learning method is suggested that considers
the local context surrounding the entity as well as more global semantic information de-
rived from topic signatures and WordNet. An unsupervised algorithm is presented by Wid-
dows [218] for placing unknown words into Wordnet taxonomy. The algorithm first finds
semantic neighbors of the unknown word by applying latent semantic analysis with part-of-
speech information. Then, the unknown word is placed in the part of the taxonomy where
these neighbors are most concentrated, using a class-labeling algorithm.

Cimiano et al. [49] propose the learning of taxonomic relations as a classification task.
They suggest using Hearst-patterns [86] for learning taxonomic relations by considering
various and heterogeneous forms of evidence including large text corpus, World Wide Web,
and Wordnet.

Our approach is similar to the classification tasks described above with several differ-
ences. First, most the abovementioned techniques are appropriate for a taxonomic relation-
ship where each concept has only one super-concept while our approach does not have this
limitation. Our algorithms can propose several potential super-concepts ordered by the as-
sociated confidence. Second, our approach suggests a recommendation algorithm to support
end users for continuous ontology development collaboratively [25, 24] , i.e. where any-
body can add a new element to the ontology, and refine or modify existing ones in a work-
integrated way. That means the ontology is continuously evolving and gradually built up
from social tagging activities and it is not derived once at a specific time. Our work provides
a supporting tool for such ontology building by helping users with recommendation of taxo-
nomic relations. We continue this chapter by first providing several application scenarios of
our work and then description of the algorithms.

5.3 Application Scenarios
We present several application scenarios for this work. The examples include industry appli-
cations as well as social Web applications. All these systems are “Web 2.0” style semantic
applications; they enable users to change and develop the ontology (or concept hierarchy)
during their use of the system. Our work assists users in this task by utilizing recommender
system algorithms. The algorithms suggest potential super-concepts for new concepts intro-
duced to the system.

76

5.3.1 Floyd
Floyd is a new product developed at SAP for supporting knowledge intensive enterprise
processes such as product design, product management, market research, etc. Market re-
searchers and support experts use Floyd to analyze and solve technical problems that their
customers communicate them. The system supports several functionalities including seman-
tic annotations, semantic search, semantic navigation, and semantic suggestions for relevant
terms. Our work suggests an approach for improving the semantic suggestions functionality.
Semantic suggestions are used when a term is entered into the system that does not exist in
the current ontology. Users enter new terms into the system in two basic situations: (1) anno-
tations (assigning tags to documents) (2) search (when the user tries to retrieve information
about a term).

Semantic suggestions have to take into account the user input and the context. Examples
of semantic relations include polysemy (ambiguous user input should be disambiguated),
synonymy, and abstraction (super-concepts of a particular concept or term). The Floyd sys-
tem is initially deployed with a semantic network developed by domain experts based on the
existing company vocabulary.

5.3.2 SOBOLEO
SOBOLEO [229] is a system for web-based collaborative engineering of SKOS ontologies
and annotation of web resources. Users collaboratively create a taxonomy, use it to annotate
web resources and as background knowledge during search. Figure 5.2 shows a screenshot
of the system. SOBOLEO consists of 4 main parts:

• Search: A search engine that searches through the annotated web resources using the
taxonomy as background knowledge.

• Browse: An interface to browse through the taxonomy and the annotated resources.

• Annotate: An annotation interface to add bookmarks to the index. Users can use
concepts from the taxonomy or arbitrary tags to annotate web resources.

• Edit: A collaborative real time editor for the taxonomy - all users can observe the
changes others make on the taxonomy in real time. The taxonomy is collaboratively
edited by everyone using the system.

There are several other examples of similar social semantic bookmarking application [26].

77

Figure 5.2: Screenshot of SOBOLEO system

5.3.3 Wikipedia
Wikipedia is the world’s largest collaboratively edited source of encyclopedic knowledge. It
is based on the MediaWiki1 software. The idea of Wikipedia is to allow everyone to edit and
extend the encyclopedic content. Wikipedia uses a hierarchy of categories to classify articles
according to their content and they are mainly used to assist browsing. Category links are
always displayed at the bottom of an article to help the readers for navigating through the
system. Figure 5.3 shows screenshot of the sub-categories of the category of “computer
science”. We can see that as in many other broad categories, Wikipedia suggests to move
the articles to appropriate sub-categories to facilitate search and navigation. Users can have
a better search experience if the category hierarchy is complete and articles are associated to
the relevant sub-categories.

We can view categories as akin to concepts and support the creation and placement of
new categories by proposing candidate super-categories.

1http://www.mediawiki.org

78

Figure 5.3: Screenshot of category hierarchy in Wikipedia; The sub-categories of “Computer
science” and suggestion of Wikipedia to move the articles to appropriate subcategories

5.4 Algorithms
We propose three algorithms for the recommendation of super-concepts for a new concept.
First, we presume that a seed hierarchy is not available or if there is one, it is not populated
enough to be used for learning purpose. Second, we assume to have an existing concept
hierarchy and our goal is to assist users to place a new concept in the right place in the
hierarchy. Finally, we present a hybrid algorithm which combines the first two algorithms.

5.4.1 Algorithm 1: Recommendation of Super-Concepts Without An
Existing Seed Hierarchy

We propose algorithm 1 for cases where little data and (almost) no existing hierarchy is
present (for example for cases where a system is just starting to be used). For these cases we
propose to use a string-based approach inspired by [96]; an approach focusing on compound
terms. There are different approaches to find the similarity of two concepts only based
on string-based attributes. The common approaches included edit-distance, token-based,
and hybrid distance functions. Refer to [148] for overview and comparison of different

79

approaches. These approaches are pretty well-established in the literature and our goal is
not to contribute to string-based similarity functions but just use them as a first step for
our recommendation. We use two of the string-based approaches: Soft-TFIDF and Jaccard
similarity. We selected Jaccard similarity for its simplicity and Soft-TFIDF since it has been
shown to be the most successful algorithm for string name matching in comparison with
other approaches[52].

Jaccard Simialrity

Two strings S1 and S2 can be considered as multi-sets (or bags) of words (or tokens). The
Jaccard similarity between the word sets S and T is simply defined as:

J(S1,S2) =
S1∩S2
S1∪S2

(5.1)

Soft-TFIDF

TFIDF is a measure widely used in information retrieval and can be also used to compute
string similarity between bags of words in a corpus. In this case, the TFIDF value represents
the importance of each feature w (e.g. word) for an entity S belonging to the set E of entities:

tf(w,S) =
nw,S

∑w′ nw′,S
, idf(w)) = log

|E|
|S ∈ E|w ∈ S| (5.2)

TFIDF(w,S) = tf(w,S)× idf(w) (5.3)

Where nw,S is the number of times w appears in S. The TFIDF similarity between S1 and
S2 is defined as the COS similarity between the TFIDF vector representations of the S1 and
S2.

Soft-TFIDF is a hybrid similarity measure introduced by [52] which is designed to take
advantage of the good performance of TFIDF, without automatically discarding words which
are not strictly identical. Soft-TFIDF combines TFIDF with Jaro-Winkler distance [219]
which is a measure based on the number and order of the common characters between two
strings. We have used the available java implementation provided by [52]. For more details
of the algorithm, please refer to [52].

Super-concept Recommendation

We first compute the similarity between the name of the new concept and the names of con-
cepts already known to the system (the candidate super-concepts) as described above. The

80

super-concept recommendation is then based on the observation that the head of a compound
is often a super-concept of the compound itself [96]. Therefore, we can observe that sub-
concepts generally consist of more terms than their super-concepts, and – if they are formed
out of super-concepts by adding so-called modifiers – usually also have significant string
overlap with their super-concepts. For example “Computer Science” is a sub-concept of
“science”.

Thus, we define recommendation confidence as W (S,T) = Sim(S,T) if S has fewer terms
than T and 0 otherwise. More formally:

W (S,T) =

{
Sim(S,T) If ∑w∈S nw,S < ∑w′∈T nw′,T
0 otherwise

(5.4)

Where Sim(S,T) is the string-based similarity and nw,S is the number of times w appears in
S.

To find the super concepts for a new concept Ct , we find W (Ci,Ct) where Ci ∈ E repre-
sents all existing concepts in the existing concept-hierarchy E. Concepts with the highest W
can be recommended as possible super concept for the new concept. We can recommend a
list of top n concepts with highest W where n is a pre-fixed number or we can use a threshold
value and only recommend concepts with W higher than the threshold.

Other imaginable algorithms for this task could build on data distribution properties such
as entropy or co-occurrence. However, we do not consider those approaches here because our
main goal in this chapter is to learn from an existing hierarchy. We only suggest algorithm 1
for cases that there is not enough data to learn from, and in such cases, statistical approaches
are also not a practical approach. Our main contribution in this chapter will be presented in
the next section, in algorithm 2, in which we assume to have a seed hierarchy to start with.

5.4.2 Algorithm 2: Recommendation of Super-Concepts by Learning
From an Existing Concept Hierarchy

We propose algorithm 2 for cases where there already exists a sizeable hierarchy. The ab-
stract idea for the proposed algorithm is to place a new concept at a location in the hierarchy
where the most similar concepts to the new concept are located. We first present a simple
approach to measure the degree of sub-super relationship between concepts in a concept
hierarchy. Our algorithm tries to predict this value for the new introduced concepts.

Degree of Sub-Super Relationship in a Concept Hierarchy

There are various approaches to calculate the semantic similarity between concepts in a
concept hierarchy. The simplest approach is probably the edge-counting which goes back

81

Figure 5.4: An example from a part of concept Hierarchy from Wikipedia. We define “SSA”
as the reverse of shortest path distance between the super-sub concept.

to Quillians semantic memory model [53]. Later, more factors including depths of concept
nodes, the density of the hierarchy, link type, and link strength were considered to enhance
the path length approach [223, 225].

In this work, we are interested in measuring the degree of sub-super relationship be-
tween two concepts rather than the semantic similarity of them since our goal is to find the
super-concepts for a particular new concept. We consider the reverse of the shortest path
distance between two concepts, starting from the sub-concept and allowing only upward
edges to be used to arrive at the super-concept. We call this “super-sub affinity” (“SSA”). To
clarify how we find SSA, consider the concept hierarchy in figure 5.4. In this example the
SSA(Computer Science,Algorithms)=1, SSA(Computer Science, Computer Vision)=1/2 and
SSA(Algorithms, Structured Storage)=0. Note that SSA is not a symmetric relation, distin-
guishing it from common semantic similarity measures. In fact, the definition of SSA would
entail “if SSA(A,B)�=0 then SSA(B,A)=0”. We define SSA(A,A)=1. Thus, we can store all
SSA values of a concept hierarchy in an n×m matrix where n is the number of concepts
which have at least one sub-concept, m is the total number of concepts in the hierarchy, and
the matrix diagonal is always 1. We will use this matrix in our recommendation algorithm
described in section 5.4 for discovering super-concepts. The transpose of this matrix can be
used for suggesting sub-concepts using the same algorithm. However, in this work, we focus
only on recommending super-concepts.

82

Figure 5.5: Recommender Architecture

General Architecture

Figure 5.5 shows the general architecture of our system. Generally, we assume that users
interact with a Web 2.0 application. While they do so, the database gets updated with new
concepts that they enter, for example, tags in a social tagging system or categories in a Wiki.
The new concepts are then introduced to the maturing engine, which recommends potential
super-concepts to the user once it has enough information about the new concept. If the user
accepts the recommendation, the new sub-super relationship will be added to the concept
hierarchy. The maturing engine executes three main steps to compute the potential super-
concepts: Similarity computation, SSA prediction, and recommendation.

Similarity Computation

To find the similarity between a new concept and existing concepts, we consider measures
that use similarities in the concept names as well as measures that use contextual cues.

For string-based similarity we use the same approaches already described in section
5.4.1, Jaccard and Soft-TFIDF. We define Sims(Ci,Ct) as the string-based similarity between
two concepts Ct and Ci. We also define the set of k most similar concepts to the target concept
Ct and call this set Ns(string-based neighborhood).

Context-based similarity aim at using the context that the new concept has been used in
to find similar concepts. Context has been defined by Dey [57] as any information that can
be used to characterize the situation of an entity. In a social tagging system, for example, the
context of a new tag entered into the system can be determined by the related resources, links
between the resources, users who enter the tag, time, language and geographical information.
In this work, we use the resources associated to a concept as a feature set to determine the
context of the concept. We represent each concept, C, as a vector over the set of resources,
where each weight, w(ri), in each dimension corresponds to the importance of a particular
resource, ri.

�C = 〈w(r1),w(r2)...w(r|R|)〉 (5.5)

83

In calculating the vector weights, a variety of measures can be used. The weights may be
binary, merely showing that one or more users have associated that concept to the resource,
or it may be finer grained using the number of users that have associated that concept to the
resource. With either weighting approach, a similarity measure between two vectors can be
calculated by using several techniques such as the Jaccard similarity coefficient or Cosine
similarity [211]. Cosine similarity is a popular measure defined as

Cosine(C1,C2) =
C1.C2

||C1|| ||C2|| (5.6)

In this work, we use binary weighting for representing concepts as a vector of pages and
Cosine similarity to find similar concepts. Thus, the similarity between each concept Ci and
the new target concept Ct is defined as simc(Ct ,Ci) = Cosine(Ct ,Ci). Using this similarity
measure, we find the set of k most similar concepts to the target concept Ct and we call this
set Nc(context-based neighbors).

We define a hybrid similarity measure by combining the string-based and contextual-
based similarity measures. For that purpose, we use a linear combination of the similarity
values found in each approach.

Simh(Ci,Ct) = αSims(Ci,Ct)+(1−α)Simc(Ci,Ct) (5.7)

where Simh(Ci,Ct) is the hybrid similarity value, and α is a combination parameter
specifying the weight of string-based approach in the combined measure. If α = 1, then
Simh(Ci,Ct) = Sims(Ci,Ct), in other words the neighbors are calculated only based on string-
similarity. On the other hand, if α = 0, then only the contextual information is used for find-
ing similar concepts. We choose the proper value of alpha by performing sensitivity analysis
in our experimental section.

Prediction Computation

Based on the Super-Sub Affinity and the similarity measures defined above, we can now
predict the degree of sub-super relationship (SSA) between the new concept and every other
concept in the hierarchy. Our proposed algorithm is inspired by the popular weighted sum
approach for item-based collaborative filtering [188].

We predict the SSA values for a new concept by averaging over the actual SSA values
between the neighbors of the new concept and the existing concepts. Formally, we predict
the SSA between the target concept Ct and all other concepts Ci in the hierarchy as follows.

SSAp(Ci,Ct) =
∑Cn∈N SSA(Ci,Cn)∗ sim(Ct ,Cn)

∑Cn∈N sim(Ct ,Cn)
(5.8)

84

where SSAp(Ci,Ct) stands for the predicted SSA value for the pair (Ci,Ct), SSA(Ci,Cn) stands
for the actual SSA for (Ci,Cn), and sim(Ct ,Cn) is the similarity value between the target
concept and neighbor concept which can be either string-based (Sims), contextual (Simc) or
the hybrid (Simh) similarity. Thus, N can be either Ns, Nc or Nh as described in section
5.4.2. Basically, SSAp is predicted based on the location of the existing concepts that are
similar to Ct ; it becomes large when many of Ct’s neighbors are close to the current candidate
concept Ci in terms of SSA. Hence, the best candidates for becoming a super-concept of Ct
are those Ci for which SSAp(Ci,Ct) is maximal. The weighted sum is scaled by the sum of the
similarity terms to make sure the prediction is within the predefined range. In this work we
have defined the direct sub-super affinity as 1. Thus, the nearer the prediction of SSA(Ci,Ct)
to 1, the more probable that Ci is a good super-concept of Ct .

Recommendation

Once the SSA values for all existing concepts and the new concept are calculated, the con-
cept(s) with the highest SSA can be recommended as super-concept(s) for the new concept.
We can recommend a list of top n concepts with highest SSA prediction or we can use a
threshold value and only recommend concepts with predicted SSA higher than the thresh-
old. The threshold value (between 0 and 1) represents the “confidence” of the algorithm
in recommendations. If there are no similar concepts found in step 1 or the predicted SSA
values are lower than the threshold, the system does not make a recommendation which
might mean that the new concept should be added as a new independent concept in top of
the hierarchy or that the system is not able to find the right place for the new concept.

5.4.3 Algorithm 3: Hybrid Recommendation
As third algorithm we propose a combination of the two algorithms presented above based on
the well known idea of hybrid recommender systems that combine two or more recommen-
dation techniques to gain better performance with fewer of the drawbacks of any individual
one [32]. We combine algorithm 1 and algorithm 2 using a linear combination approach:

Wh(Ci,Ct) = βW (Ci,Ct)+(1−β)SSAp(Ci,Ct) (5.9)

where β is a combination parameter specifying the weight of algorithm 1 in the com-
bined measure. If β = 1, then Wh(Ci,Ct) =W (Ci,Ct), in other words we have only algorithm
1 based on string-similarity and if β = 0, then only SSA from algorithm 2 is used. Find-
ing the appropriate value for β is not a trivial task, and is usually highly dependent on the
characteristics of the data.

85

5.5 Evaluation
In this section, we describe the data sets we used for evaluation, our evaluation methodology,
and our experimental metrics.

5.5.1 Data Sets
Wikipedia

To test our algorithms we need a Web 2.0 application where users can easily add new con-
cepts and create semantic relations. We decided to use Wikipedia which is the most suit-
able Web 2.0 application at hand. Hepp [195] theoretically proves Wikipedia as a reliable
and large living ontology. We treat the categories of Wikipedia as concepts and the exist-
ing relationships between “Sub-categories” as the seed concept hierarchy. Each category in
Wikipedia has several associated pages, which we use as a context vector for the category as
described in section 5.4.2. Thus, each category is represented as a binary vector over the set
of pages. The weight of each page ri for category Cj is 1 if page ri is associated to category
Cj and 0 otherwise.

For running our experiments, we focused on a small part of the English Wikipedia. We
started from the category “Computer Science” as the root concept and extracted the sub-
categories by traversing with breadth first search through the category hierarchy. Our final
data set has over 80,000 categories. For our experiments we created three smaller data sets to
compare how the size and properties of the seed concept hierarchy impact the results. Table
5.1 shows the properties of each data set from Wikipedia.

Data Properties Large Medium Small
Number of Concepts 24,024 9931 3016
Number of Pages 209,076 107,41 47,523
Average depth of the hierarchy 9 6 3

Table 5.1: Properties of the the Wikipedia category data for different sizes

Floyd

As second data set we utilize data from the use of the prototypical Floyd system at SAP. This
data set provides a seed ontology in the sense that 241 known hierarchical relations between
term concepts are defined in the semantic network.

86

Unfortunately, the user base for the Floyd system is still too small to yield any significant
context data and the semantic network which is to be used as the seed concept hierarchy
is still under development. So, only algorithm 1 could be evaluated on this data. It is still
interesting to investigate this data set, especially because of its differences with the Wikipedia
data since it is used within the marketing domain. The system contains mainly named entities
– names of products, competitors, and also terms describing the market addressed by the
company. These terms are quite different from Wikipedia categories and are from a rather
specialized vocabulary.

5.5.2 Evaluation Methodology
We divided each data set into a training set and a test set. Since we were interested to
know how the density of the seed ontology affects the results, we introduced a variable that
determines what percentage of data is used as training and test sets; we call this variable x. A
value of x = 20% would indicate 80% of the data was used as training set and 20% of the data
was used as test set. We remove all information of test cases from the data set to evaluate
the performance of the algorithm. For each experiment, we calculate the SSA values before
and after removing the test cases. If the test case has sub-concept and super-concept, after
removing the test case, its sub-concepts will be directly connected to its super-concepts and
the algorithm has to intelligently discover its original place. Since algorithm 1 does not need
training, we expect no change in performance of the algorithm with different test/train ratio
and we can use leave one out methodology for experiments of algorithm 1.

5.5.3 Experimental Metrics
For the evaluation we adopt the common recall and precision measures from the Information
Retrieval community. Recall is a common metric for evaluating the utility of recommen-
dation algorithms. It measures the percentage of items in the holdout set that appear in
the recommendation set. Recall is a measure of completeness and is defined as:recall =
|Ch ∩Cr|/|Ch| where Ch is the set of holdout concepts and Cr is the set of recommended
concepts. Precision measures the percentage of items in the recommendation set that appear
in the holdout set. Precision measures the exactness of the recommendation algorithm and
is defined as: precision = |Ch∩Cr|/|Cr|

In order to be able to compare the performance of the algorithms, we use the F-measure
defined as following:

F−Measure =
2×Precision×Recall

Precision+Recall
(5.10)

87

Figure 5.6: Result of algorithm 1 for Wikipedia data set

Figure 5.7: Result of algorithm 1 for Floyd data set

5.6 Experimental Results
In this section we present our experimental results of applying the proposed recommendation
algorithms to the data sets described above. In all experiments, we change the threshold value
from 0 to 0.95 and record the values of precision and recall. As the threshold value increases,
we expect precision to increase and recall to decrease since we recommend less items with
higher confidence. In addition, to get a better view of performance of the algorithms, we
use the notion of recall at N. The idea is to establish a window of size N at the top of
the recommendation list and find recall for different number of recommendations. As the
number of recommendations increases, we expect to get higher recall.

88

5.6.1 Experimental Results from Algorithm 1
We applied the string-based techniques discussed in section 5.4.1 for recommendation of
super-concepts for both data sets. The results of those experiments are shown in figure 5.6
and 5.7. The charts show the precision and recall as we increase the threshold value. The
maximum threshold value for each case is the maximum possible string-similarity in the data
set which is not necessarily 1. We can observe a similar trend for both data sets which can
confirm that our evaluation with Wikipedia data set is applicable to an actual real data set.
From these charts, we can also observe that while Jaccard similarity seems to deliver better
precision, TFIDF similarity provides better recall for almost all threshold values.

5.6.2 Experimental Results from Algorithm 2
We applied the recommendation algorithm described in section 5.4.2 to the Wikipedia data
set. Similar to algorithm 1, we change the threshold value from 0 to .95 and record the values
of precision and recall. Before we compare the performance of different similarity measures,
we run several experiments to find the sensibility of different parameters including the data
size, the neighborhood size, and the combination factor for the hybrid similarity.

Effect of the neighborhood size

Figure 5.8: Precision and Recall for different threshold values for different neighborhood
values (k)

To determine the influence of neighborhood size, we performed an experiment where
we varied the number of neighbors to be used and computed precision and recall. The
results of this experiment for the medium data set is shown in figure 5.8. From this figure,
we can observe that there is a trade-off between better precision or better recall depending

89

on the neighborhood size. We select k = 3 for our neighborhood size which gives better
precision for high threshold values assuming that precision is more important for users. In a
real scenario, depending on the goal of the system, the neighborhood size can be tuned for
the optimum performance which can be high precision, high recall or a middle point with
acceptable values for both.

Note that k=1 can be considered as a baseline algorithm since it simply finds the most
similar concept to the new concept and recommends its super-concepts.

Effect of data set size

To determine the effect of the size of the data in our results, we conducted experiments
with differently sized data sets. We recorded the values of precision and recall for different
threshold values for our three data sets with 10% test data (x=10%). We can observe from the
results shown in figure 5.9 and our significant tests that the differences between the values are
not significant . While the small data set seems to create slightly better results, the large data
set shows slightly better precision and recall than the medium data set. Thus, the algorithm
is not really sensitive to the data size. For that reason and also because of need of more
computation time for larger data set, we used the small data set for the further experiments.

Figure 5.9: Precision and Recall for different threshold values in three data sets with different
sizes

Effect of combination factor α

To determine the sensitivity of the value of α for combining different similarity cues, we
conducted experiments with different values of α . The result of this experiments is shown
in the left chart of figure 5.10. From this chart we select the value of α = .4.

90

Figure 5.10: Selection of the optimum combination factors

Comparison of similarity measures

Once we obtain the optimal values of the parameters, we compare the performance of the
algorithm when using different similarity computation techniques. In addition,we compared
our approach with a baseline algorithm suggested in [93]. The results of this comparisons are
shown in figure 5.11. The baseline algorithm uses the cosine similarity between concepts and
recommends the concepts with highest cosine similarity. Basically, the baseline algorithm is
similar to similarity computation step of our algorithm where we find the k-nearest neighbors
based on contextual cues. Our results show that the hybrid similarity outperforms other

Figure 5.11: Comparison of Precision and Recall of Algorithm 2 when using different simi-
larity measures

approaches for both precision and recall for all threshold and x values. We can observe
from figure 5.11 that while contextual cues result in less precision than the string-based
techniques, they produce slightly higher recall. That shows that string-based techniques

91

Wikipedia Contextual-based String-based Hybrid Similarity
Multi-agent sys-
tems

Artificial intelligence Multi-agent systems Multi-agent systems

Computer network
security

Multi-agent systems Computer network se-
curity

Artificial intelligence

Computer architecture Computer security or-
ganizations

Computer architecture

Network architecture Artificial intelligence Computer network se-
curity

Distributed computing Computer architecture Distributed computing

Table 5.2: An example: Output of recommendation algorithm 2 using different similarity
cues. Recommendations are predicted super-concepts for the new concept “Botnets”

can suggest more accurate recommendations but they do not have as much coverage as the
contextual cues.

An Example

Table 5.6.2 shows an example from the actual recommendation results. The example shows
the five top recommendation for potential super concepts of the new concept “Botnets”, when
using different similarity measures. The most left column shows the actual super-concepts in
Wikipedia. We can observe that even though the system considers the recommendations that
do not appear in Wikipedia as incorrect and counts them as miss in calculating the precision
and recall, in many cases they might actually make sense.

5.6.3 Experimental Results from Algorithm 3
We applied the hybrid recommendation algorithm described in section 5.4.3 by combining
the results from the hybrid similarity approach of algorithm 2 and TFIDF string-based tech-
nique from algorithm 1. The right chart of figure 5.10 shows the result of the sensitivity
analysis for selecting the optimum β . We selected the combination factor, β = .3 from this
chart.

The precision and recall values shown in figure 5.12 show that the performance of algo-
rithm 3 does not have significant difference with algorithm 2 in respect to recall while it can
result in considerably higher precision. We can achieve precision of 90% when the threshold
value is set accordingly.

Figure 5.13 and 5.14 show comparison of performance of different algorithms. Fig-
ure 5.13 shows the F-measure for each algorithm as threshold value changes and figure

92

Figure 5.12: Comparison of precision and recall values for algorithm 2 and algorithm 3

5.14 shows recall at N. Basically, we count the correct answers as we recommend N super-
concepts. We can observe from both charts that algorithm 3 obviously outperforms all other
techniques. In addition, it is clear from the charts that the hybrid similarity outperforms
each individual similarity cue. However, it is not trivial to determine if string-based similar-
ity performs better in algorithm 2 than the contextual one. The contextual cues outperform
string-based ones when looking at the Recall at N while based on F-measure the string-based
techniques outperform contextual ones.

Figure 5.14: Comparison of recall at N for different algorithms

93

Figure 5.13: Comparison of F-measure for different approaches by changing the threshold
value

Impact of the Seed Hierarchy Density

To determine the effect of density of the seed concept hierarchy, we carried out an experiment
where we varied the value of x from 20% to 80%. Our results are shown in figure 5.15. As
expected, the quality of recommendations of algorithm 2 decreases as we increase x since
there is less information for the algorithm to learn from the existing hierarchy. However, the
performance of algorithm 1 does not change as we increase x since algorithm 1 does not need
training. Algorithm 3 benefits from this feature of algorithm 1 and its performance does not
drastically decrease as the seed hierarchy gets smaller. Thus, algorithm 3 can perform well
when the system is almost new and there is not much existing hierarchy information to learn
from and the performance would increase as more information is entered into the system by
the users.

5.6.4 Expert Evaluation
Table 5.3 shows an example of the potential super-concepts suggested by each algorithms
for the concept “Computer hardware researchers”. We can see that the actual super concepts
for this concept in Wikipedia are “Computer scientists by field of research” and “Computer
architecture”. While only these two concepts are considered as correct answer, we can see
that some of the recommendations might be even more relevant than these two concepts.
For example, “Computer scientists” and “Computer systems researchers”, recommended by

94

Figure 5.15: Impact of the test/train ratio (the density of the seed hierarchy)

algorithm 2 and algorithm 3 are certainly more relevant to be the super-concept of “Computer
hardware researchers” than “Computer architecture”.

To gain insight into the quality of the recommendation created by our algorithm, we
further performed an expert evaluation by exploring sample recommendation results from
algorithm 3. We extracted 100 examples from the data set and asked 10 computer science
experts (senior PhD students and postdocs) to evaluate if the recommended super-concepts
are appropriate. We provided the experts with two sets of potential super-concepts for each
concept. The first set consists of the super categories directly extracted from Wikipedia and
the other set consists of the results of our algorithm. Thus, the experts have evaluated our
algorithm as well as the Wikipedia category hierarchy.

The results from the expert evaluation is shown in table 5.4. The Wikipedia category
hierarchy has precision of 82% which means that in some cases (18% of the cases), the
experts thought that Wikipedia super-categories are inappropriate. Since our algorithm learns
from exiting relations in Wikipedia, we do not naturally expect to get better results than
Wikipedia. However, we can see that based on expert evaluation reported in table 5.4, our
algorithm performs even better than the reported values in the charts. For example, in figure
5.12, the precision is equal to 58% when the threshold is set to .5 while in table 5.4, the
precision for this threshold is 89%.

We report the average number of super-concepts instead of recall since it is only possible
to measure recall if the correct super-concepts are clearly defined in advance. The average
number of super-concepts for each concept in Wikipedia is 1.7. We can see that to get

95

Wikipedia Algorithm 1: Jac-
card

Algorithm 2: Hybrid Algorithm 3

Computer scientists by
field of research

Computer vision Computer scientists by
field of research

Computer scientists by
field of research

Computer architecture Computer architecture Computer scientists Computer scientists
Database researchers Computer systems re-

searchers
Computer architecture

Graphics hardware Computer graphics Computer systems re-
searchers

Computer scientists Computer graphics re-
searchers

Graphics hardware

Table 5.3: An example: Output of different recommendation algorithms. Recommendations
are predicted super concepts of the new concept “Computer hardware researchers”

similar coverage from our algorithm (average number of super-concepts=1.65), we should
set the threshold to .4 which results in precision of 77%. We also looked at the precision
when exactly one super-concept is recommended for each new concept independent of the
threshold value. In this case, the average number of super-concept is obviously 1 and it
results in precision of 81%.

Threshold Precision Average number of super-concepts
.9 100% .16
.7 97% .45
.5 89% .87
.4 77% 1.65
– 81% 1

Wikipedia Hierarchy 82% 1.7

Table 5.4: Expert evaluation results

5.6.5 Discussion
From the experimental evaluation of the algorithms, we make some important observations.
Each of the proposed algorithms has certain pros and cons. Algorithm 1 does not require a
seed hierarchy and this feature makes it applicable to any kind of system. However, the algo-
rithm is very basic and does not learn or get better as more data enters to the system. Thus,
this algorithm might only be appropriate at start phase of a system. On the other hand, algo-
rithm 2 requires a seed hierarchy to start with but it has the advantage that it can learn from

96

the existing hierarchy and also considers the contextual information. Therefore, it results in
considerably higher accuracy and coverage. Algorithm 3 can benefit from both algorithms
1 and 2 without having the limitations of each individual algorithm. We can conclude from
the overall results that the hybrid algorithm (algorithm 3) can be used as a strong algorithm
for recommendation of potential super-concepts independent of the properties of the seed
hierarchy.

The qualitative results from expert evaluations show that our proposed algorithm can
produce results which are almost as accurate as the existing Wikipedia hierarchy. Thus, the
system can also be used directly in Wikipedia for improving the coverage of the category
hierarchy.

In this work, we have focused on recommendation of super-concepts. An important
feature of our proposed algorithm, is that it is not only limited to super-concepts. Other
types of semantic relations such as sub-concepts, synonymy, antonymy, polysemy, etc. can
be recommended by defining the SSA value in the right way. For example, to recommend
sub-concepts, it is enough to define the SSA(C1,C2) = 1 when C1 is sub-concept of C2.
Similarly, for any other type of semantic relations, it is enough to define the SSA accordingly.

5.7 Conclusion and Future Work
In this chapter, we presented machine learning algorithms to support continuous ontology
development. Our main contribution in this chapter is suggestion of a machine learning
algorithm that learns from exiting relations of an ontology. Our extensive experiments with
Wikipedia data set and our expert evaluation show excellent results. The important property
of our proposed algorithm is that it can easily be adapted for learning other kinds of relations
in an ontology.

This work introduces a new direction on semi-automatic collaborative ontology devel-
opment. There is a lot of opportunity for further investigation in this area. We list several
possible extensions to this work.

Contextual similarity In this work, we have used associated pages to a concept as con-
textual information. Other contextual information such as links between pages, user
information, and other contextual cues can be also considered. Understanding and
modeling user context is an area of active research and can have many applications in
search, personalization and recommendation including recommendation of semantic
relations as presented in this work.

Other semantic relations In this work, we have focused on recommendation of super-
concepts. Similar techniques can be utilized for recommendation of other types of
semantic relations such as synonymy, antonymy, polysemy, etc.

97

Evaluation Our evaluation methodology removes all the test cases from the ontology and
does not consider the temporal aspect of the development of the ontology. The more
accurate evaluation would be to add each test case to the training set after it receives
a correct recommendation. This evaluation would also show us how the ontology
develops over time as users use the system and contribute.

Evaluation of the algorithms in an actual interactive social semantic bookmarking ap-
plication can help us answer the question whether the generated recommendations are
actually perceived as useful by the user.

5.8 Acknowledgment
The work presented in this chapter was initiated by support of SAP Research during my in-
ternship at SAP Research, Karlsruhe in summer 2009. With support of FZI (Forschungszen-
trum Informatik), the simplified version of the algorithms were implemented into SOBOLEO 2

system. Thanks to Hans Friedrich Witschel, Simone Braun, and Valentin Zacharias for their
contributions to this work. This work was supported in part by the MATURE Project co-
funded by the European Commission.

2www.soboleo.com/

98

Chapter 6

Combating Attacks Against Social
Tagging Environments

6.1 Introduction
Security is one of major challenges of open adaptive systems. In this chapter, we address
the problem of attacks against social tagging systems by modeling different kind of attacks
and evaluating their impact on the systems’ behavior. Gaining a fundamental understanding
of the nature and impact of such attacks will hopefully lead to more secure and robust social
Web applications.

Social tagging environments are gaining popularity in part because they provide an open
social environment for users to share resources and opinions and give them the ability to
classify information in a natural way. There is typically no limit to the number of tags
that may be assigned to a resource and there is no strict hierarchy of tags. Social tagging
systems can be considered as an extension of social recommendation behavior: people share
resources and tags, which connect them implicitly in a social network. For example, in
Delicious or last.fm users can find other users with similar tags or resources and build a
network with them. Like other publicly accessible adaptive systems such as collaborative
recommender systems, tagging systems present a security problem. Attackers, who cannot
be readily distinguished from ordinary users, may inject biased profiles in an attempt to force
a system to adapt in a manner advantageous to them.

Recent work has established that adaptive Web applications, such as collaborative rec-
ommender systems, can be manipulated via “profile injection attacks”. In a profile injection
attack (sometimes called “shilling”), an attacker uses fictitious identities to insert biased im-
plicit or explicit ratings into a recommender system [34]. Such profiles may be generated
manually by an attacker or an automated agent. These attacks do not require a great deal of

99

Figure 6.1: Spurl.net response to attacks(screenshot made in 2009)

knowledge about the details of the recommender system or its algorithms [155, 117, 33, 142].
Tagging systems are also dependent on public input, and are therefore susceptible to

profile injection attacks. Attackers may use misleading tags to confuse others or to achieve
some goal, such as promoting or demoting a product or brand.

There have been numerous real-world examples of suspicious behavior in social tagging
systems. For instance, Delicious popular, a collection of most popular URLs in the delicious
bookmarking service, has been reported spammed by a malicious user [129]. In Flickr, users
have reported spam tags on their personal photos[208]. Another social bookmarking Web-
site, “Spurl.net”, had to reduce functionality due to spam. Figure 6.1 shows an screenshot of
the Website response to spam attacks. Hundreds of such examples can be found by simply
browsing popular social Websites. Figure 6.2 shows an attack against Windows Vista in the
popular e-commerce Website, Amazon.com. The most popular tag for this product is “de-
fectivebydesign” which has been associated to this product 258 times. We looked the list of
users who have used the tag “defectivebydesign” in their profile and we observed that the
user “Ole Tange” is one of the users who have mostly used this tag and this user has 23,496
items tagged. Looking at the list of tags is his profile, we noticed that his most frequent
used tags are “defectivebydesign”, “defective by design”, “infected”, and “drm”. This is an
example of a goal-oriented attack to demote a target product.

The above examples underline the importance of security in social tagging sites. To ana-
lyze the vulnerability of a tagging system, we must first understand the nature of the attacks
against it. We are primarily interested in attacks where an attacker’s aim is to maliciously
influence the system. For instance, consider the example shown in Figure 6.3 of a tagging
system that allows users to annotate URLs. A subset of tag assignments are displayed for
users (User1 - User6). Suppose a user is searching for the resource that is most related to

100

Figure 6.2: An attack example in Amazon.com (screenshot made in 2010)

the tag “coffee”. Prior to attack, the system will display the resource “Starbucks” based
on the number of occurrences of the tag. Now suppose another coffee shop, “Jonbucks”,
wishes to promote the resource “Jonbucks” to a segment of users interested in coffee. At-
tack profiles (Attack1 - Attack3) are created, assigning the tag “coffee” and “starbucks” to
“Jonbucks” webpage. After the attack, the system displays Jonbucks Webpage as the most
related resource to users who search for tags “cofee” or “starbucks”.

Our goal in this chapter is to systematically study the problem of attacks against social
tagging systems and utilize data mining approaches to address this problem. In this chap-
ter, we first present a set of attack dimensions that establish a context for our analysis. We
next discuss attack types, based on navigation channels and attack targets within a tagging
system. These attack types represent in abstract the strategies that could be employed by
attackers in order to manipulate the output of the system. We present experimental results
using real world data sets to show the system’s vulnerabilities using several proposed evalu-
ation metrics. Finally, we conclude the chapter with directions for future work.

101

Figure 6.3: An hypothetical example of promoting a resource.

6.2 Related Work
Previous studies on profile injection attacks against collaborative filtering recommenders [143,
155, 117, 33, 142] have examined the effects of attack types that require varying degrees of
knowledge about the system, and proposed several responses to attack. The outcome of
this research produced guidelines for developing more robust alternatives to standard col-
laborative filtering algorithms and it demonstrated that a number of model-based and hybrid
algorithms offer substantial improvement over standard algorithms [185, 144]. Another pro-
posed response is to detect and defeat attackers before they cause harm [164]. Supervised
classification approach are used to identify and respond to profile injection attacks [38].

Researchers have begun to study attacks on social tagging systems. Xu et al. [224] have
introduced basic criteria for a good tag and proposed a collaborative algorithm for suggest-
ing tags that meet these criteria. From their perspective, a set of tags that is used by a large
number of people for a particular item is less likely to be spam and thus those tags are con-
sidered as high quality tags for that item. The authors have accounted for spam by assigning
a reputation score to each user, based on the quality of the tags contributed by that user.
These reputation scores have been used for identifying good candidate tags for a particular
document, i.e., for automatic tag selection. In the proposed tagging system, a new user has
to get a certain reputation score to be able to have impact on the system and to get such
reputation score, the user needs to associate the typical tags that others have associated to an
item. While such system might be able to produce accurate tag recommendation for many
users, it has several problems. First, tags that are considered to be high quality are normally
very general and ambiguous. Second, attackers can get a high reputation score by using most
popular tags for certain items and then they can influence the system behavior to their favor.

Koutrika et al. [111] have proposed an ideal tagging system where malicious tags and
malicious user behaviors are well defined. They propose a trusted moderator who periodi-
cally checks if user postings are “reasonable”. The moderator also identifies good and bad

102

tags for any resource in the collection. The authors have also defined several query schemes
and moderator strategies to counter tag spam.

Heymann et al. [92] surveyed three categories of potential countermeasures: those based
on detection, demotion, and prevention. Although many of these countermeasures have pre-
viously been proposed for email and Web spam, the authors found that their applicability
to social Web sites differs. The authors identify four characteristics of social tagging sys-
tems that change the dynamic of the adversarial relationship between service providers and
spammers. These characteristics are: (1) One controlling entity who owns and manages
the system’s content and maintenance (2) Well-defined interactions determined by the con-
trolling entity; For example, a social bookmarking system lets users contribute bookmarks
annotated with tags, and possibly share bookmarks with others, but few other actions might
be allowed (3) Content and actions in the system are tied to user identifiers (4) Multiple in-
terfaces and views are available to browse the site content. We discuss these multiple views
in the next section when we introduce the navigation channels in social tagging systems.

Krause et al. [113] use classification techniques to detect spam in Bibsonomy. They
introduce 25 features divided into four categories for classification purpose. The categories
include profile-based, location-based, activity-based, and semantic features. Experimental
results on Bibsonomy data set show that classical machine learning techniques although not
perfectly but can help to solve the problem. The difference of this work with classical web
spam classification is the features applied since more information such as email and tags are
available. In addition, authors found out that spammers reveal their identity by using similar
vocabulary and resources. Thus, it has been suggested that co-occurrence features tackle the
problem very well.

Prior work in this area, however, does not generally take into account the goals of an at-
tacker, the audience of the attack, and the context in which the attack is mounted. Spammers
might have very different goals by spamming Bibsonomy, which is focused on scientific ar-
ticles than more broad systems such as Delicious which captures different kinds of domains
and a broader audience. Our work, in contrast, considers those aspects and is more concen-
trated on the practical aspects of how existing systems handle large-scale profile injection
attacks. We are interested in looking at this problem from a more practical perspective and
try to determine what might motivate an attacker to spam the system.

The goal of our research is to answer the following research questions. What attack
types are more successful? Which attack targets are more vulnerable? How many malicious
users can a tagging system tolerate before results significantly degrade? How much effort
and knowledge is needed by an attacker to attack the system? How can we detect attacks
and protect the system? To answer such questions we first characterize the various realistic
attack scenarios. We believe that studying properties of typical attack strategies will lead to
improved detection algorithms and to robust retrieval algorithms. We empirically examine

103

attack strategies using real-world tagging data towards exposing general vulnerabilities.

6.3 Navigation Channels in Social Tagging Systems
The success of collaborative tagging is partially due to facilitating the retrieval and discov-
ery of resources within a single user-centric environment. Many tagging systems publicly
display each user’s tags and resources, making retrieval of previous annotations both simple
and intuitive. However, the discovery process is much more complex. Users browse the so-
cial tagging graph via the many associations between resources, tags, and users. This ability
to navigate through the folksonomy is one reason for the popularity of collaborative tagging
but it also provides attackers with many possibilities to attack the system.

Understanding the avenues for attacking a social tagging system requires analysis of its
navigation process. However, there has been little formalization of tagging system outputs,
and much research treats tagging systems solely as retrieval engines, ignoring the flexible
browsing environment such sites offer. There is a need therefore for a general model of
navigation options and system outputs that can help us model the impact that an attacker
may have.

It is beneficial to distinguish the roles of interaction between the annotation and navi-
gation processes. In particular, annotation is concerned with a contributor to the tagging
system, whereas navigation is concerned with the viewer. There is no requirement that the
viewer of a tagging system is also a contributor. Although it is often the case that contributors
annotate resources for their own consumption, most tagging systems also allow unregistered
visitors to browse. For example, users of Delicious typically annotate their bookmarks for
personal consumption, but anyone can browse the site [82].

We described our terminology for modeling tagging systems in chapter 2. Briefly, the
model can be described as a four-tuple D = 〈U,R,T,A〉, such that there exists a set of users,
U ; a set of resources, R; a set of tags, T ; and a set of annotations, A. Annotations are
represented as a set of triples containing a user, tag and resource such that A ⊆ {〈u,r, t〉 :
u ∈U,r ∈ R, t ∈ T}. Each combination of element types R, U , and T represents a specific
navigation channel for presenting information in a tagging site. The context of a channel is a
reference point for retrieving associated elements. In particular, it is the specific r ∈ R, t ∈ T ,
or u ∈U that serves as a query. Many tagging systems will also include a global context,
with no specific query, that facilitates exploration of the site. Given a context, the system
will return a set of associated elements of a specified type that are relevant to the context.

As an illustration, consider the Tag-Resource channel. Conceptually, we consider the
Tag-Resource channel from an information retrieval perspective. Viewing the reduced bi-
partite graph T R as a corpus, we map R and T to documents and terms, respectively. The

104

Figure 6.4: Navigation Channels of a Tagging System

channel is represented as a single-term query, such that the tag tq is the user’s current tag
context. The query returns the most relevant resources Rt ⊂ R that have been annotated with
tq.

Other navigation channels can be specified in a similar manner, as shown in Figure 6.4.
“Related tags” can be calculated by the system based on the number of co-occurrence of tags
or other criteria. For example, if the tags “ontology” and “semantic” have been associated
to many resources together, they can be considered as related. Similarly, “related resources”
can present other resources that have similar tag profile. A tagging system may choose to
include only a subset of the possible channels: for example, delicious offers the related tags
but does not have a related resource function. The information that is displayed, however,
will fall into one of the channels described here. This model allows a common analysis of
different systems.

6.4 Attack Dimensions
In this section, we present seven dimensions of an attack against a social tagging systems.
Specifically, we discuss motivation of the attacker, intent of the attacker, generality of the
intended audience, degree of profile obfuscation, size of attack, navigation context, and target
element. These dimensions are based on our work presented in J.J. Sandvig et al. [186] and
are identified by contributions and help of my colleague J.J. Sandvig.

105

Motivation of Attacker

At a basic level, an attacker may be motivated to either disrupt the tagging system as a
whole, or to promote a particular viewpoint within the system. In the first case, an “eBully”
may attempt to introduce random noise into the system, simply to promote anarchy or to
degrade the reputation of the system. Although certainly a concern, it is difficult to quantify
an attack motivated by disruption because of the subjective decision about when an outlier
is considered true noise and when it is considered an attack.

Our primary focus is on the attacker interested in promoting a particular viewpoint. Pre-
sumably, the attacker wants to bias the system in order to produce some economic or political
advantage. Furthermore, the viewpoint may include a short-term or long-term purpose. For
example, a political activist or special interest group may have a short-term goal of influenc-
ing a particular vote, or a long-term goal of promoting some larger issue. Likewise, a firm
may attempt to manipulate a market in the short-term for economic gain or have a long-term
goal of promoting a particular product or brand.

Intent of Attacker

If motivation describes the “why” of an attack, then an attacker’s intent describes the “what”.
It is the desired outcome of a particular attack campaign. The tagging system may be the
direct target of attack, or it may be used indirectly to influence the actual target of attack.

In a direct attack, the intent may be to promote a particular product within the tagging
system itself, or to demote a competitor’s product. We call these “push” and “nuke” attacks,
respectively. In an indirect attack, the intent is to use the tagging system platform in order
to bias some other system. For example, an attacker may use a social bookmarking system
to create a large number of back-links to some target URL, in an attempt to raise its Google
PageRank value.

Intended Audience

It may not always benefit an attacker to throw the widest possible net. Instead, an attack is
likely to be aimed at those users of the system that are most receptive to the overall intent.
For example, in Figure 6.3, “Jonbucks” coffee shop is attempting to promote its Web site
on a social bookmarking system. The company’s goal might be to improve its ranking with
respect to those users that are interested in coffee, a targeted-marketing strategy.

The generality of a targeted user segment may be different, depending on the context
of the attack. The intended audience may range from universal to focused. An attack on a
completely generic user segment is analogous to finding the lowest common denominator

106

within the entire user community – attempting to promote a product to the most common
and popular interests.

As an illustrative example of the difference between universal and focused attacks, look
again at an attack to promote Jonbucks coffee shop. To target all users, Jonbucks would
annotate its site with the most popular tags in the entire tagging system, regardless of their
relevance: “design” and “blog” are the most popular tags on Delicious at the time of writing
this chapter. For targeting a coffee-focused user segment, Jonbucks would use tags such as
“coffee” and “mocha”, which are likely to be of employed by those users. For our purposes,
we will consider an attack that uses the most popular tags to be a general attack. An attack
using any other set of tags is assumed to be a “focused attack” directed towards the users
who tend to employ those tags.

Degree of Attack Profile Obfuscation

Depending on the intent, an attacker may obfuscate the injected user profiles to help mask
the attack. In an extreme example, great care may be taken to ensure that an attack profile
looks exactly like a real user profile. The attacker tries to mimic an expert in the domain of
the targeted user segment, building trust until the attack is carried out.

On the other end of the spectrum, the attacker doesn’t care if the profile looks legitimate
at all, and focuses only on maximum effect in biasing the system’s retrieval algorithms. The
degree of profile obfuscation is a tradeoff, as greater obfuscation is more difficult for the
system to detect, but is more labor intensive to build and takes longer for the attacker to see
returns.

Size of Attack

The size of attack measures the number of coordinated attack profiles that are added to the
tagging system. The minimum number of profiles required for an attacker to obtain the
desired effect is largely influenced by the overall goal of the attack. If the goal is to mimic a
domain expert, the attack may be successful by using only one or two carefully constructed
user profiles.

However, if the goal is to bias the system’s retrieval algorithms, a large number of attack
profiles may be necessary in order to bias the aggregate ranking of the attack target, relative
to related elements. In this case, the popularity of related elements has a large effect on the
size of a successful attack. As an illustration, look again at the Jonbucks attack on the tag
“coffee”. If there are very few bookmarks that are tagged with coffee, then relatively few at-
tack profiles need to be created that annotate Jonbucks with coffee. However, if “Starbucks”
has already been tagged with coffee over 100,000 times, then Jonbucks has a much larger

107

hurdle to clear, requiring a very large number of attack profiles to surpass the popularity of
Starbucks.

Navigation Context

Navigation context refers to a specific resource, tag, or user in the tagging system that pro-
vides a mechanism for navigating its associated elements. It is the current location of a
viewer who is browsing or querying the system. An attacker may focus on a particular navi-
gation context as the reference point of attack. In the Jonbucks example, the tag “coffee” is
the navigation context, and the attacker wants to improve the rank of the Jonbucks Web site
within that context.

An attack may include multiple navigation contexts (e.g., Jonbucks might utilize both
“coffee” and “mocha” tags). However, for the purposes of this paper we will focus on attack
using a single context. This does not mean, however, that an attack aimed at a single context
will only impact one aspect of the tagging system. In the Jonbucks example, attacking the
“coffee” tag context may have the unintended result of making Jonbucks and Starbucks very
similar resources. If the tagging system includes a navigation channel for displaying similar
resources, someone viewing the Starbucks resource may then see Jonbucks ranked highly.

Target Element

Target element refers to the specific resource, tag, or user in the tagging system that is the
actual target of attack. It is the element that the attacker wishes to promote or demote. In
many cases, this is likely to be a resource. In the Jonbucks example, the attacker wants to
improve the visibility of the Jonbucks Web site.

However, the target element could also be a tag or user. An attacker may want to push
the tag “Jonbucks”, simply to raise brand awareness. The tag could be associated to the tag
“coffee” such that Jonbucks is advertised as related to coffee, or the tag could be annotated
to the resource “Starbucks” as an alternative brand. Similarly, an attacker may want to push
a personal user profile as a form of self-promotion.

6.4.1 Attack Types
An attack type is a strategy for building attack profiles. Studying attack types allows us to
classify common patterns of attack and identify their aims and tactics. Our categorization of
attack types is based on the navigation channels shown in Figure 6.4. Figure 6.5 summarizes
the types.

An attack type is a generic strategy for building attack profiles. It is a partial model
based on abstract navigation context and target element types. A particular implementation

108

Figure 6.5: Summary of Attack Types

of an attack type includes specific details, and should be analyzed according to the attack
dimensions introduced in Section 6.4. However, studying generic attack types allows us to
classify common patterns of attacks at a strategic level. We now propose a number of attack
types that correspond to the different navigation channels within a social tagging system. A
summary of attack types is shown in Figure 6.5.

Overload

[Context: tag. Target: resource] The goal of an overload attack, as the name implies, is to
overload a tag context with a target resource so that the system correlates the tag and resource
highly. The assumption is that the attacker wants to associate the target resource with some
high-visibility tag, thereby increasing traffic to the target resource. If the intended audience
of the attack is general, a popular tag is chosen. If the intended audience is specific, a focused
tag is chosen that is particular to the targeted user segment.

Piggyback

[Context: resource. Target: resource] The goal of a piggyback attack is for a target resource
to ride on the success of another resource. It exploits the idea of sharing tags among re-
sources, attempting to associate the target resource with some resource context, such that
they appear similar. The resource context may be popular or focused, depending if the in-
tended audience is generic or specific.

There are two possible implementations of piggyback. The tag duplication technique is
to pick a number of tags highly correlated to the resource context and annotate the target
resource with the same tags, preferably with the same distribution. The tag overlap tactic
is to pick any number of random tags and annotate both the resource context and the target
resource with those tags within the same attack profile.

109

Coattail

[Context: resource. Target: tag] The goal of coattail is for a target tag to be correlated with
a particular resource context. The resource context may be popular or focused, depending if
the intended audience is generic or specific, respectively. An attack is created by annotating
the resource context with the target tag in every attack profile.

For example, an attack can associate the tag “Jonbucks” to the resource “Starbucks”. By
creating multiple attack profiles, the Jonbucks tag may be pushed to the top of the list of
popular tags for Starbucks URL, making it highly visible to users looking for tags associated
with Starbucks.

Co-occurrence

[Context: tag. Target: tag] The goal of co-occurrence is for a target tag to be correlated with
another popular or focused tag. An attack consists of annotating any resource with both tags,
such that they always occur together. The assumption is that the attacker wants the target tag
to show up as a “related tag” to the tag context. Tagging systems that measure the similarity
between tags may increase the rank of the target with respect to the tag context. A user that
views the tag context will have a high chance of seeing the target in the list of related tags.

There are two possible implementations of co-occurrence. The resource duplication
technique is to pick a number of resources highly correlated to the tag context and annotate
each resource with the target tag, preferably with the same distribution as the tag context.
The resource overlap technique is to pick any number of random resources and annotate
them with both the tag context and the target tag within each attack profile.

Mole

[Context: user. Target: resource or tag] The goal of mole (or “shill user”) is to create profiles
intended to build trust within a targeted audience. The audience may be general, or more
likely, a focused user segment. Over time, the attack profiles annotate resources relevant to
the targeted audience in such a way as to mimic a domain expert. At some point after the
attack profile has established trust, the intended target resource or tag is injected into the
profile, hoping that other users in the segment will simply assume it is also relevant to them.

Pivot Point

[Context: resource or tag. Target: user] The goal of pivot point is to create a strong asso-
ciation between an attack profile and its intended audience by correlating it with resources

110

and/or tags that are relevant to the targeted user segment. The user segment may be generic
or focused, which determines the choice of resources and tags in the attack profile.

A mole attack may utilize a pivot point in order to establish the attack profile as an expert
in the particular user segment. However, pivot point may be used in any general scenario
where attack profiles are meant to be highly visible, with the hope that the profiles will
receive more traffic. The defining characteristic of a pivot point attack is an indirect link to
the actual target element – the attacker wants to raise the visibility of the attack profile itself,
which in turn contains the target resource or tag.

6.5 Retrieval Algorithms
In this section, we briefly review the typical retrieval algorithms used in social tagging sys-
tems. Within each navigation channel, a retrieval algorithm defines the particular elements
considered relevant to the context. Relevance may be displayed in different ways between
contexts, such as “popular tags”, “recent tags”, “recent resources”, “active users”, “related
tags”, etc. Generally, results are based on popularity or recency. Some applications may also
allow the viewer to choose the appropriate ranking algorithm. For example, delicious allows
a user to view the most popular or most recent resources that are annotated with the specified
tag.

While other retrieval models may be used, our work focuses on the vector space model
[183] adapted from the information retrieval discipline to work with social tagging systems.
The following equations assume retrieval is based on the Tag-Resource channel using the
reduced TR bipartite graph; however, they may be easily modified to support retrieval in any
navigation channel by using an appropriately defined bipartite graph.

A resource vector is represented as�r = [wt1,wt2, · · · ,wtn] such that wt is the weight of a
particular tag t ∈ T . Vector weights may be derived by many methods, including frequency
or recency. In this work, we will rely on frequency. The tag frequency, tf, for a tag, t ∈ T ,
and a resource, r ∈ R is the number of times the resource has been annotated with the tag.
We define tf as:

tf(t,r) = |{a = 〈u,r, t〉 ∈ A : u ∈U}| (6.1)

Likewise, the well known term frequency × inverse document frequency [182] can be
modified for social tagging systems. The tf.idf multiplies the aforementioned frequency by
the importance of the tag t. The importance is measured by the log of the total number of
resources, N, divided by the number of resources to which the tag was applied, nt . We define
tf.idf as:

tf.idf(t,r) = tf(t,r)× log(N/nt) (6.2)

111

With either term weighting, a similarity measure between a query, q, represented as a
vector of tags, and a resource, r, can be calculated. Cosine similarity is a popular similarity
measure defined as:

cos(q,r) =
∑t∈T tf(t,q)× tf(t,r)√

∑t∈T tf(t,q)2×
√

∑t∈T tf(t,r)2
(6.3)

However, in this work we assume navigation is often initiated by selecting a single tag as
the navigation context. Therefore, a query is a vector with only one tag, reducing cos(q,r) to
simply tf(t,r). After similarity is calculated between the query and each resource, an ordered
list can be returned to the viewer.

Three navigation channels are symmetric in nature – the Resource-Resource, Tag-Tag
and User-User channels. Each has navigation context and target belonging to the same ele-
ment type, and the outputs of these symmetric channels are based on similarity. For example,
Delicious shows a list of tags that are related to a particular tag. In the same way, it is pos-
sible to list similar resources and users. In our experiments we use cosine similarity to find
related resources and tags. This allows us to evaluate the local effects of Piggyback and
Co-occurrence attacks, respectively.

6.6 Evaluating Impact of Attacks
In this section we present our methodology to evaluate the impact of different attack types.
We approach the problem with a combination of theoretical modeling, empirical examination
of data sets, and simulation of user interactions with social tagging systems.

We are interested in evaluating both the local impact of an attack on a single navigation
channel as well as capturing the overall global impact of an attack. By studying localized
tagging system output, as defined by a navigation channel, we can see how an end user of
the system is actually affected by attack. By studying the global changes to the underlying
annotation structure, we are able to gain insight into how attacks propagate through the
tagging system.

6.6.1 Measuring the Local Impact of Attack
From the attacker’s perspective, an attack is successful if it generates the desired visibility
for the targeted element within the intended navigation channel for the targeted audience.
Therefore, it is necessary to have localized metrics showing how end users that are browsing
the channel are affected by the attack. We can track these channel-specific effects by looking

112

at the rank of the target item before and after the attack with regard to specific retrieval al-
gorithm. We use two metrics for measuring the local impact of an attack: rank improvement
and hit ratio.

Rank Improvement

Although the average rank treats differences at the top and bottom of the list identically, from
the attacker’s point of view a difference between a rank of 10 and a rank of 20 is far more
significant than the difference between a rank of 110 and 120. For this reason, we measure
the difference in reciprocal rank before and after attack. Let r be the rank of the target item
before the attack and r′ be the rank afterwards. Rank improvement is given by

Imp =
1
r′
− 1

r
(6.4)

and is relative to the navigation channel, making the local metric specific to the implemented
retrieval algorithm.

Hit Ratio

Hit ratio is a measure that allows us to evaluate the changes in the system from a user per-
spective. We consider the top n results of the retrieval algorithm. Hit ratio is equal to 1 if a
particular attack target appears in the top n results, and it is equal to 0 otherwise.

Hit Ratio =

{
1 If rt ∈ Rn

0 otherwise
(6.5)

Where Rn is the list of top n retrieved results and rt is the attack target.

6.6.2 Measuring the Global Impact of Attack
Although local metrics based on navigation channel output are useful for evaluating how
end users are affected by attack, they are limited because they only measure attack effective-
ness relative to specific navigation channels and retrieval algorithms. A global metric that
observes changes in the underlying network of annotations allows us to study attack effec-
tiveness in a more holistic manner. Annotations belonging to an attack create links between
the target element and other contextual elements. This propagates to subsequent nodes via
other annotations, and so on. Because there are many number of paths to the attacked el-
ement that are beyond the attacker’s control, there may be unexpected effects of an attack
across navigation channels.

113

In [170] we introduced “Hit Probability” to approximate the probability that a user choos-
ing tags randomly would encounter a given target resource. Although useful, this measure
cannot be adapted for other navigation channels or attack types. Thus, we proposed using the
Adapted PageRank algorithm for evaluating the global impact of attack in [171]. Adapted
PageRank algorithm is described in detail in section 4.3.1. We provide a brief description
here as well.

In PageRank, the authority of a page p is defined based on the number of incoming links
and on the authority of every page q ∈ Qp that connects to p with a forward link [19] and
can be calculated as follows:

�x = dW�x+(1−d)�v (6.6)

Where W is the transition matrix. The elements of W are defined as wi, j = 1/
∣∣Hj

∣∣ if there
exists a link from j to i and wi, j = 0 otherwise.

∣∣Hj
∣∣ is the outdegree of j, so every column

adds up to either 1 or 0, making the matrix W column stochastic.
The folksonomy adapted PageRank uses the same equation on the weighted tripartite

graph, G, with set of nodes V = U ∪ R∪ T and three types of edges E ′ = Eu,r ∪ Eu,t ∪
Er,t . The weight of each edge Eu,r is defined as |{〈u,r, t〉 ∈ A : t ∈ T}| , each edge Eu,t =
|{〈u,r, t〉 ∈ A : r ∈ R}|, and each edge Er,t = |{〈u,r, t〉 ∈ A : u ∈U}|. The folksonomy transi-
tion matrix is built by normalizing each column of the matrix to 1.

The damping factor d determines the influence of �v, which is typically defined as v =
[1, · · · ,1]T to make the system randomly jump to another link from time to time but it may
be personalized with user preferences. In all our experiments except the focused attacks we
consider d as 1 since we are not interested in the random jumps of the system. In the focused
attacks, the preference vector is set to target specific group of users.

We believe PageRank can accurately measure global impact because it introduces a no-
tion of page authority that is independent of content and based solely on the graph structure.
In the context of tagging systems, a resource that is annotated by authoritative users with
authoritative tags can be considered to be authoritative itself. An attack exploits this model
because it links the target element to contextual elements and creates a mutual reinforcement
of authority that is measurable by PageRank.

To study the overall effectiveness of an attack we measure the Adapted PageRank of an
attacked item, then calculate the improvement in a similar manner as defined in section 6.6.1.
In this case, the rank of the target item refers to the relative rank of the element based on its
PageRank score across all elements.

114

6.7 Experimental Results
In this section we present results showing the impact of several different attack types de-
scribed in section 6.4.1. For each attack type, we generate a number of attack profiles and
insert them into the system database, testing the effects of different attack sizes and number
of selected tag contexts.

6.7.1 Experimental Setup
We provide an extensive evaluation using data from two large real world social tagging
systems: Bibsonomy, and Delicious. We use the same data set used in chapter 4. The
characteristics of the datasets can be found in table 6.1.

Folksonomy Delicious Bibsonomy
Number of Users 7,665 402
Number of Resources 15,612 2,014
Number of Tags 5,746 1,755
Number of Posts 720,788 15,760
Number of Annotations 2,762,235 53,554
Average Resource Frequency 46.1 7.8
Average Tag Frequency 126.6 10.3
Resource Frequency Std. Deviation 47.6 4.6
Tag Frequency Std. Deviation 461.4 15.8
Resource Frequency Kurtosis 50.2 23.1
Tag Frequency Kurtosis 154.5 25.5

Table 6.1: Properties of the Datasets

To reduce noise we remove the long-tail part of the data by applying p-core to insure that
each user, resource and tag appear in at least p posts as in [16, 105]. A post is defined as a
user, resource and all tags applied by that user to that resource. Similar to our experiments
in section 4.5.1, the chosen p value for Delicious and Bibsonomy is 20 and 5 respectively.

Tag frequency and resource frequency refer to the number of users who have used that
tag or resource. Average and standard deviation of tag frequency and resource frequency
are shown in table 6.1. Figure 6.6 shows the distribution of tag frequency in Delicious and
Bibsonomy data. We can observe that the distribution of the number of users who tag a
URL follows a power law, in which a relatively small number of URLs are tagged with high
frequency while all the rest occur with low frequency. We use “Kurtosis” to measure the

115

“peakedness” of the distribution. Higher kurtosis means more of the variance is the result
of infrequent extreme deviations, as opposed to frequent modestly sized deviations. We can
observe that the kurtosis is considerably higher for tag frequency in Delicious data set which
implies that the long-tail distribution is more extreme in Delicious tags.

One of our goals is to determine whether tagging distribution of the target object influ-
ences attack effectiveness. After p-core pre-processing, we divide the remaining part of data
into two partitions and run experiments on each partition independently to explore if the
different parts of the distribution show different behaviors.

We use the coefficient of variation (CV = stdev/mean) to determine the partition bound-
aries as described in [178]. CV is a statistical measure of the dispersion of data points in
a data series around the mean. CV is a useful statistical measure for comparing the degree
of variation from one data series to another, even if the means are drastically different from
each other.

Input: Frequency distribution of objects in ascending order
Output: P1, P2 The partitions

FREQ = {F1, ...,Fn}, Frequency scores
bin1 = /0 , bin2 = FREQ

AV Gi = avg(bini);
ST Di = std(bini);
Calculate CV1 =

ST D1
AV G1

;

Calculate CV2 =
ST D2
AV G2

;

foreach Fj ∈ FREQ do

while CV2 >CV1 do
bin1 = bin1 ∪Fj
bin2 = bin2−Fj

Calculate CV1 =
ST D1
AV G1

Calculate CV2 =
ST D2
AV G2

;
end

end
Algorithm 1: Partitioning Algorithm

Data Delicious Bibsonomy
Partition HF Resource LF Resource HF Tag LF Tag HF Resource LF Resource HF Tag LF Tag

Max Freq. 809 224 10598 1097 61 19 151 9
Average Freq. 336.77 42.14 2638.96 74.88 27.11 7.28 35 4.2

Table 6.2: Properties of data partitions

We followed the procedure described in Algorithm 1 to partition tags and URLs based
on their frequency distribution to two partitions: low frequency and high frequency. Table
6.2 shows the boundaries for resource and tag frequency in Delicious and Bibsonomy data.

116

Popular tags and resources are located in the high frequency part of the data and are shown
in our figures with “HF”. Tags and resources with less popularity are located in the low
frequency part of the data and are shown with “LF” in our charts. It is important to notice
the differences between the distribution of tags and resources in the high and low frequency
parts in the two data sets. In Delicious, the “HF Tag” has an average frequency of 2638.96
which is far larger than the average frequency of “HF resources”, 336.77. This shows that in
Delicious, there are certain popular tags that many users tend to use them. On the other hand,
comparison of the averages of different partitions in Bibsonomy shows that the differences
between low and high frequency partitions are less extreme.

We show the impact of different attack types on each partition of the data using the local
and global metrics. For measuring the global effect we look at the change in the PageR-
ank of the target item in the overall network. So, the global rank includes all users, tags,
and resources. The local measures include change in the local rank and hit ratio in each
related channel using a particular retrieval algorithm. The results reported here are the final
results from averaging several independent runs. In each run, the attack targets are randomly
selected from each part of the data (low frequency and high frequency) and the results are
recorded.

Figure 6.6: Histogram of resource frequency in Bibsonomy and Delicious data sets

6.7.2 Overload Attack
As mentioned in section 6.4.1, the goal of an overload attack is to associate a set of tags with
a target resource so that the system retrieves the target resource when one of the tags is given
as a query. We implement two variants of this attack: popular and focused.

Popular Overload Attack

We have two sets of experiments for popular overload attack. In both cases, the target re-
source is randomly selected from either the high or low frequency partition and the popular

117

tag is randomly selected from the 50 most popular tags in the system. In the first experi-
ment, we choose one single popular tag, associate it with the target resources and test the
impact of changing the number of attack profiles. Figure 6.7 shows the global impact of
this type of attack for both data sets. We can see the same trend in both data sets, i.e., that
increasing the number of attack profiles increases the reciprocal rank for the target resource.
As expected, the high frequency resources have higher reciprocal rank compared to the low
frequency resources before the attack. The LF partition in Bibsonomy has a higher rate of
increase compared to LF in Delicious which suggests that in a smaller tagging system, it is
easier for low frequency resources to get higher ranks compared to a popular system such as
Delicious.

Figure 6.7: Global impact of popular overload attack with one popular tag in each attack
profile

Similar effects can be found in local rank improvements, shown in figure 6.8. The results
show that much more effort is needed by an attacker to get high ranks for resources located
in the low frequency part of the data in Delicious.

118

Figure 6.8: Local impact of popular overload attack with one popular tag in each attack
profile

Figure 6.9 shows the impact of the attack from the point-of-view of an actual user query-
ing the system; we show the hit ratio of the target for a query consisting of a single popular
tag and considering the top 10 results. The results show that a popular overload attack with
target resource from LF resources in Delicious has a low chance of success unless the at-
tacker injects large amount of attack profiles. However, such attacks can be successful for
the HF resources even for small attack sizes. This difference is due to the fact that most
popular resources in Delicious are already associated to popular tags before the attack. So,
an small attack can make them visible in the top 10 results. Results from the Bibsonomy
data set shows that an attack target from LF and HF part of the data are not so different and
the attack can succeed to push the target resource to the top 10 resources by injecting small
number of attack profiles (10 injected attack profiles).

119

Figure 6.9: Hit Ratio for popular overload attack with one popular tag in each attack profile

For our second round of experiments, we keep the attack size constant and vary the
number of popular tags included in each profile. Figure 6.10 depicts the global effect of
varying the profile size from 1 to 10 tags. Our PageRank metric allows us to directly compare
the effect of attack size vs. profile size. We see that adding more popular tags to each attack
profile can be as effective as adding more attack profiles. For example, at attack size 50,
associating 2 popular tags to the target resource has more or less the same impact as adding
100 attack profiles with 1 popular tag each. Note that it is easier and less costly for an
attacker to associate more popular tags to target resource per profile than it is to add more
attack profiles while it might make it more difficult to be detected.

Figure 6.10: Global impact of popular overload attack with n popular tags in each attack
profile with 50 attack profiles for Bibsonomy and 200 for Delicious

120

Focused Overload Attack

In a focused attack, the attacker targets a particular group of users. Such an attack might
contain profiles that associate the target URL with specific tags that are interesting to a
particular group of users. To measure the global effect of this attack, we bias the preference
vector toward the focused tag to see the impact on the system for users who are interested
in that specific tag. We use the approach taken in [105] to set the weights for the preference
vector. We give higher weights to the focused tag in �v in equation 6.6. While each user,
resource, and tag gets an initial preference weight of 1, the focused tag gets an additional
preference weight, 1+ |T |, where |T | is the number of unique tags in the data. The value
of damping factor, d, in this case is a representative of the degree to which the target group
is focused on a particular topic. We set damping factor d = .15, based on the observation
that in our test cases, users’ most favorite tag forms on average 15% of their profile. We use
random tags from the low density partition as our focused tags.

Figure 6.11: Global impact of focused overload attack

The results from both datasets show that the focused overload attack can drastically
change the behavior of the system for the target users. As shown in Figure 6.11, even
very small attacks can change the rank of the target resource to 1. The hit ratio and local
rank improvement using the tf retrieval algorithm show similar results, which implies that
focused attacks can have an extreme effect on the behavior of the system for a specific target
group.

121

Figure 6.12: An example of change in the network with focused attack for focused tag
“projektmanagement”

In Figure 6.12, we show an example of the impact of a focused attack. In this example
our focused tag which is randomly selected from the low frequency partition is “projektman-
agement”. We can see that before the attack the resource “http://openproj.org/” is the most
highly associated resource with this tag. The right side of the table shows the ranking after
the attack. The target resource in this attack is “http://www.lambdaprobe.org/d/index.htm”
and we can see that not only does the target resource get the highest rank with respect to
the focused tag, but also the other resources and tags which are highly associated with the
focused tag will change. Tags “monitoring” and “tomcat” happen to get higher rank because
they are the tags which are associated with the target resource. As shown in this example,
using PageRank can help us understand the impact of attacks in the overall network which
was not possible using previous approaches such as hit ratio or hit probability.

6.7.3 Piggyback Attack
To evaluate the Piggyback attack we implement two variations of the basic strategy as dis-
cussed before: in the tag duplication technique, a certain number of tags are chosen from
the popular resource’s profile and applied to the target; in the tag overlap technique, both
the target and the popular resource are tagged a predetermined number of times using tags
selected at random.

We perform our experiments using targets from the high and low frequency partitions
of the data. In addition to inverse rank based on PageRank, we measure cosine similarity
between the target resource and the chosen popular resource to measure the local impact of
the attack.

As shown in figure 6.13, the two attack strategies have similar effect at small attack sizes
but the tag overlap strategy is relatively more effective at raising the target’s PageRank at
large attack sizes. One explanation is that in the case of tag duplicate, the attack has the side

122

effect of reinforcing the already-high authorities of the tags in the popular resource’s profile.
The target only receives a small portion of this increased authority in back-propagation; the
popular items’ “outflow” is diluted among their many neighbors. In the tag overlap strategy,
a more exclusive connection is generated between the popular resource and the target at large
attack sizes because the random tags are added to both the target resource and the popular
resource.

An interesting comparison is made when looking at the localized metric of cosine shown
in figure 6.14. Tag duplicate causes the cosine similarity between target and popular resource
to jump considerably after only a small attack, yet it levels out and never surpasses a certain
upper bound. Meanwhile, tag overlap requires a greater effort, but appears to grow bound-
lessly, subject to the size of the attack. The reason for this behavior is that in tag duplicate
strategy, the attacker does not change the tag distribution of the popular resource. The cosine
similarity is higher when both resources have a similar tag distribution. Thus, the tag overlap
strategy can be more effective in large attack sizes to create the same tag distribution for both
resources. That, of course, would need more effort from the attacker because the attacker
has to create enough fake profiles to change the tag distribution of a popular resource.

Figure 6.13: Global (PageRank) impact for two variants of the Piggyback attack

Figure 6.15 shows the impact of piggyback attack on hit ratio when using cosine similar-
ity as retrieval algorithm. We can observe that in Delicious data set, it is almost impossible
to get high visibility through resource-resource channel when tag duplicate is used as the at-
tack strategy. This result can be explained by looking at the cosine similarity results in figure
6.14. We can observe that after a certain limit, adding more attack profiles does not increase
the cosine similarity. In Delicious, there are enough other resources that have a more similar
tag distribution to the popular resource. Thus, the attack target can not easily get to the top
10 similar resources. A successful attacker would need to know about the tag distribution of
the popular resource and try to mimic such distribution. We can observe that the tag overlap

123

Figure 6.14: Local impact (Cosine similarity) for two variants of the Piggyback attack

strategy needs too much effort and very large attack sizes to be successful in Delicious data
set.

In Bibsonomy data set, however, piggyback attack is more successful. Since Bibsonomy
is sparser, fewer resources with similar tag distribution exist in the data. Even though the
maximum cosine similarly for tag duplicate in both data sets is around .8, we can see that
the hit ratio in Bibsonomy gets to 1 after small attack sizes.

Figure 6.15: Local impact (Hit Ratio) for two variants of the Piggyback attack

6.7.4 Co-occurrence Attack (Tag Push)
The goal of co-occurrence is for a target tag to be correlated with another more popular tag.
An attack consists of annotating any resource with both tags, such that they always occur
together. The co-occurrence attack profile consists of n popular tags, n resources –randomly
selected from the high density partition– and the target tag. Basically, this approach is similar

124

to the tag overlap variation of the Piggyback attack, with the difference that in this case
the target is a tag and the goal is to associate it with popular tags. We have three sets of
experiments for this attack. In all experiments the target tag is selected at random from
either partition of the data.

Our first experiment varies the number of attack profiles. An attack profile consists of
one popular tag, one random resource, and the target tag. Figure 6.16 shows the change in
the overall rank of the target tag. Looking at the the results from Delicious data set, we can
see that there is a huge difference between the overall ranks of HF and LF tags even before
the attack (attack size 0). The HF tags have a much higher rank on average than the LF tags.
We can observe that the attack is not as successful when the target is selected from the low
frequency tags. This is due to the fact that the popular tags in delicious are well established
and it is not easy for an attacker to generate a high rank for some random tag in the overall
network. Tags that are located in the HF part have already considerable high rank before the
attack, they are well connected to popular items in the system and they can easily get higher
rank with small attacks.

In Bibsonomy data set, however, we can see much less difference between the low and
high frequency before the attack. Thus, it is easier to push low frequency tags compared to
Delicious. In both data sets, as expected, high frequency targets are more successful.

Figure 6.16: Global impact of co-occurrence attack with 1 popular tag and 1 resource in each
attack profile

The local results reported in figure 6.17 show how the co-occurrence attack can be ef-
fective in the context of “related tags”. We use cosine similarity to find similar tags to the
popular tag. Figure 6.17 shows that even small attacks can change the related tag rank in fa-
vor of the target tag. In Bibsonomy, for example, adding 10 attack profiles makes the target
tag most similar to the popular tag.

125

Figure 6.17: Local impact of co-occurrence attack with 1 popular tag and 1 resource in each
attack profile

Our next experiment is to change the number of popular tags in each profile while keeping
the number of resources and attack size fixed. In this experiment, each attack profile consists
of n popular tags, one random resource and the target tag. The left side of figure 6.18 shows
the results for this type of attack. As we can see, there is no correlation between the number
of popular tags and the rank of the target tag. This result is to be expected since changing
the number of popular tags in one attack profile will not help the target tag get a higher rank,
but it will help the associated resource to get a higher rank as the target tag occurs only once
in each attack profile.

Our third experiment changes the number of resources to be tagged. Thus, each attack
profile consists of one popular tag, n resources, and the target tag. The results for this ex-
periment can be seen in the right side of figure 6.18. We see that the number of resources
can considerably effect the rank of the target tag. This means that one attacker can associate
a target tag with a popular tag over many resources and easily get a high rank for the target
tag.

126

Figure 6.18: Global impact of co-occurrence attack with n popular tag (on the left) and n
resources (on the right) in each attack profile with 50 attack profiles injected to Bibsonomy
data set

6.7.5 Comparison Of Attack Impact On Different Data Sets
Figures 6.19, 6.20, and 6.21 show the comparison of the global rank improvement of the
attack target in different data sets. The attack size is the percentage of the attack profiles
to the total number of users in each data. We can see that in all different attack types,
Bibsonomy is more vulnerable to attack than Delicious. This is because Bibsonomy is a
much sparser data set than Delicious; thus, it is easier to change the behavior of the system
by injecting attack profiles.

We can observe a bigger gap between the impact of overload attack on the low frequency
resources. This gap confirms our previous observation that pushing low frequency resources
in Delicious needs huge effort while it is easier to push such resources in Bibsonomy by an
overload attack strategy.

127

Figure 6.19: Comparison of the global impact of overload attack on different data sets

Figure 6.20: Comparison of the global impact of piggyback attack on different data sets

6.7.6 Comparison of Different Attack Types
Figures 6.22 and 6.23 show the comparison of the global rank improvement of the attack
target for different attack types. Each chart shows the three types of attack- popular overload,
piggyback with overlap strategy, and co-occurrence- on each partition of the data. We can
have several important observation by analyzing these charts.

Figure 6.22 shows the results for the Bibsonomy data set. We can see that there is not
a significant difference among the different attack types when the target of the attack is
selected from high frequency part of the data while there is considerable difference for targets
from low frequency part of the data. The overload attack has the highest impact on rank
improvement of low frequency targets followed by piggyback and co-occurrence attacks .

Looking at figure 6.23, we observe a different behavior in Delicious data set. There is
not a significant difference among different attack types when the attack target is selected

128

Figure 6.21: Comparison of the global impact of co-occurrence attack on different data sets

from the low frequency partition of the Delicious data. However, for attack targets from the
high frequency partition, we can see that the co-occurrence attack has a higher impact than
the other two attack types.

To explain these differences, we look back to the data distribution table 6.2. Comparison
of the average and maximum frequency of tags and resources in Bibsonomy and Delicious
data sets show that the low frequency resources in Bibsonomy are more often used than the
low frequency tags (average frequency of 4.2 for LF tags compared to average frequency of
7.28 for LF resources) while in Delicious the LF tags have a higher popularity than the LF
resources (average frequency of 74.88 for LF tags compared to average frequency of 42.14
for LF resources). This difference in the data distribution is because of different kind of
users in each system, their tagging behavior, and the kind of resources tagged in each system.
Bibsonomy is more focused on scientific articles while Delicious covers more general topics.
In Bibsonomy data set the LF resources are more vulnerable to attack which makes the
overload and piggyback attacks more successful than the co-occurrence attack.

Table 6.2 shows that in Delicious data “HF tags” are significantly more popular than HF
resources(average frequency of 2638.96 for HF tags compared to 336.77 for HF resources).
Thus, attacks with targets from HF tags can be very effective to achieve a higher rank. There-
fore, co-occurrence attack is the most successful attack on HF targets in Delicious.

6.7.7 Comparison of Local Impact
Finally, we compare the local impact of different attack types. We compare the hit ratio
of different attacks on different data sets. In figure 6.24, the size of the attack shows the
percentage of the injected profiles to the number of users in each data set. The results of
this experiment can provide us with several valuable observations. First, we can see that
even though co-occurrence attack with HF tag targets in Delicious can impact the targets to

129

Figure 6.22: Comparison of the global impact of different attack types in Bibsonomy data
set

Figure 6.23: Comparison of the global impact of different attack types in Delicious data set

get higher rank, it is not as successful to change the output of the system in the related tag
navigation channel. This is due to the fact that the HF tags in Delicious are well established
and they are strongly connected to the existing folksonomy graph. Thus, there are existing
related tags that are already connected to these tags through many other resources.

On the other hand, we can observe that overload attack can change the system output
with relatively small attacks. While Delicious shows to be more robust than Bibsonomy
for piggyback and co-occurrence attacks, it is more vulnerable against overload attack for
target resources selected from HF partition. Of course, the robustness of each system in each
navigation channel is relevant to the retrieval algorithms. We have used cosine similarity
for the tag-tag and resource-resource channels and tag frequency, tf, for the tag-resource
channel. In general, we can see that cosine similarity is more robust than tf for a denser data
set.

Based on our hit ratio results, we can conclude that tagging systems can tolerate attack

130

sizes up to 1% of their total number of users before their performance significantly degrade.
This number can decrease considerably if the attack profiles are designed in a way that they
generate more associations in the folksonomy. For example, profiles with larger number
of popular tags in overload attack or larger number of resources in co-occurrence attack.
Our results from the focused attack shows that this tolerance significantly decreases when
attacker targets a particular set of users. For example, for focused overload attack the system
can tolerate only up to .1% attack profiles before the results are totally defected; which
suggests that very small attacks can change the the behavior of the system.

Figure 6.24: Comparison of the local impact of different attack types in different data set

6.8 Discussion
Our results show that tagging systems can be quite vulnerable to attack. Comparison of the
local and global impacts of different attack strategies reveals which attack types are more
successful on different systems.

Both piggyback and overload attack are used to push a target resource into the system.
Our results show that large systems such as Delicious are more vulnerable to overload attack
than to the piggyback attack. Piggyback attack needs more knowledge about the distribution
of the data in the system or very large attack sizes to impact the system while overload
attack can push the target resource with only having knowledge about the popular tags in the
system. Our results on the global impact of overload attack shows that adding more number
of popular tags in one attack profile can be as successful as adding more attack profiles.

The results concerning focused overload attacks showed that a goal-oriented attack which
targets a specific user group can be easily injected into the system. While producing this
attack does not require a great deal of effort or knowledge from an attackers perspective, it
may be more difficult to detect this kind of attack since it resembles the natural behavior of
a person who is interested in a specific topic.

Results from the co-occupance attack show that systems that provide related tag can be
vulnerable to tag push. Our results on the local level show that this kind of attack needs large

131

number of attack profiles to be successful in large tagging systems. However, our results
also show that increasing the number of resources in each attack profile, can be as successful
as increasing the number of injected attack profiles. While it is easier for an attacker to add
more resources in one attack profile than to inject more attack profiles, it might make it more
difficult to detect since such profiles are more similar to an actual user profile.

6.9 Conclusion and Future Work
In this chapter, we discussed the problem of security and robustness in social tagging sys-
tems. We introduced a framework to model the navigation channels in social tagging systems
and we identified different types of potential attacks against the system through different nav-
igation channels. We introduced an effective measurement, based on PageRank, to evaluate
the global impact of attacks against social tagging systems. We modeled three attack types:
Overload (popular and focused), Piggyback, and Co-occurrence, experimenting with real-
world datasets. We showed local and global impacts of each attack type on each data set.
Our results help the social tagging system administrators to have a clear understanding about
potential attacks against their system, how an attack profile might look like and what attack
targets are more vulnerable.

There is a lot of opportunity for further investigation in this area. Future work can include
modeling other attack types and compare their impacts on the system. Taking into account
other important points including the network dynamics and temporal impacts can help un-
derstand the way attacks propagate into the system and how they can be distinguished from
normal users. Developing more robust algorithms as well as approaches for detection and
prevention of attacks can be considered as areas for further research. To better understand
this problem and find approaches for solving the problem, we propose several important
points that can direct future researchers for advancing in this area.

Network Dynamics Every annotation added to the system changes the structure of the net-
work. Some of these changes will have greater impact for user experience than others,
for example, by connecting previously unrelated parts of the network together. We
used PageRank algorithm to measure the changes in the global rank of the attack tar-
get. However, the impact of different kind of attacks on the network dynamics can
be studied in more depth. We can find the aggregated rank improvement to measure
the impact of attack not only on the attack target but also on all other element of the
folksonomy network. The aggregated rank improvement can be calculated as the sum
over all rank changes in the network:

132

AGImp =
N

∑
i=1
|Impi| (6.7)

Where N = |U |+ |R|+ |T | is the total number of graph vertices (sum of number of
all users, resources, and tags) and Impi is the rank improvement of each item after
the attack. Other approaches can be studied based on network theory. Studies of the
patterns and structures of propagation in large networks such as in [120] can be applied
to discover how the propagation of attacks differ from the natural network evolution.

Temporal Impacts Time is a very important factor in the system evolution and should be
considered in the attack models, retrieval algorithms (recency-based algorithms), and
evolution of the system. Considering the temporal aspects of the attacks is an important
issue for both studying the impact of attack in longer period of time and for detection
of attacks.

Attack Detection A social tagging system takes in a stream of data, and the problem is to
detect trends in that data that may indicate an attack before the attack is significant
enough to impact users. Our work in this chapter can suggest how an attack profile
might look like and what are the features that can be considered for machine learning
algorithms for attack detection. In addition, the temporal network evolution properties
can be used for attack detection. Studying the impact of attacks over time and com-
paring them with natural evolution of the network can be a clue to detect the attack
trends. The temporal sequence of tag application is also an important clue that can
help distinguish attackers.

Attack Prevention Considering the users of a social tagging application as a society, they
should be able to protect themselves if they have enough resources to manage the
system. Our hypothesis is that there are enough trustful users in the system that if they
would have the ability to influence the system, they would be able to protect the system
from attacks or spam. Trust-based systems allow for combining classical visibility
measures with trust-based recommendations, giving enhanced visibility measures that
can help prevent the influence of an attack to the system.

6.10 Acknowledgment
The work in this chapter was supported by the National Science Foundation Cyber Trust
program under Grant IIS-0430303 and a grant from the Department of Education, Graduate
Assistance in the Area of National Need, P200A070536. Thanks to J. J. Sandvig, Tom

133

Schimoler, Jonathan Gemmell, Runa Bhaumik, Bamshad Mobasher and Robin Burke for
their considerable contributions in this work.

134

Chapter 7

Conclusion

Social Web applications have emerged as powerful applications for Internet users allowing
them to freely contribute to the Web content, organize and share information, and utilize the
collective knowledge of others for discovering new topics, resources and new friends. The
social Web applications realize the insights of many users rather than a few “experts”, making
the information on the Websites more dynamic, and better able to serve niche communities
as well as general audiences.

While social Web applications such as social tagging systems have many benefits, they
also present several challenges due to their open and adaptive nature. The amount of user-
generated data can be extremely large and since there is not any controlled vocabulary or
hierarchy, it can be very difficult for users to find the information that is of their interest.
In addition, attackers may attempt to distort the system’s adaptive behavior by inserting
erroneous or misleading annotations, thus altering the way in which information is presented
to legitimate users.

In this thesis, we presented data mining and machine learning approaches to address
these problems in two different directions. First, we focused on the role of recommender
systems to aid the user in contributing to the system. Second, we introduced a framework
to model potential attacks against social tagging systems and evaluated their impact on the
system.

In this chapter, we provide a summary of our research in this thesis. First, we briefly
review the answers to the research questions we had presented in the beginning of the thesis.
Next, we present the main contributions of our work and finally we provide several directions
for further research in this area.

135

7.1 Answer to Research Questions
Based on our motivations and objectives, we formalized several research questions which
this thesis has focused on. In this section we summarize the answers to those research ques-
tions.

7.1.1 Objective 1: Matching Recommendation Technology and Domains
We started the thesis with a broad survey on recommender systems with the goal of assisting
researchers and developers in selection and application of these systems. The main research
questions that we addressed are the following.

• What are the main characteristics of a domain that influence the choice of se-
lecting the appropriate recommendation technology?

We identified six domain characteristics that impact the choice of selecting the appropriate
recommendation technology. These properties are heterogeneity, risk, churn, interaction
style, preference stability, and inscrutability.

A heterogeneous domain encompasses many items with different characteristics and
different goals they can satisfy. Risk is the degree of uncertainty that a user can tolerate
in accepting a recommendation. Churn indicates the life span of the items in the domain.
Interaction style characterizes the kind of interaction with the system. Preference stability
refers to the life time of user preferences and inscrutability indicates the degree of explana-
tion needed for a recommendation.

• What are the main knowledge sources in recommendation systems and how do
they relate to the recommendation technology?

We identified three types of knowledge sources in recommender systems: (1) Individual
knowledge which is knowledge about the target user (2) Social knowledge which is knowl-
edge about the larger community of users other than the target user (3) Content knowledge
which is knowledge about the items being recommended and/or the domain of recommen-
dation, including how recommended items are used and what needs they satisfy. We further
categorized individual knowledge to four categories of opinion, demographic, behavior, and
requirement. In content knowledge category, we distinguished between item features and
domain knowledge.

Next, we mapped the knowledge types to recommendation technologies. Social knowl-
edge naturally maps to collaborative filtering, item features map to content-based recom-
mendation, and domain knowledge is appropriate for knowledge-based techniques. While,

136

the choice of kind of individual knowledge is dependent on the interaction style, we can gen-
erally map opinion, behavior, and demographics to collaborative filtering and content-based
techniques while requirements (query, preferences, constraints, context) depending on their
type can map to content-based and knowledge-based techniques.

• How can we map the domain characteristics to recommendation technologies?

We mapped the domain characteristics to recommendation technologies based on the knowl-
edge sources that each technology requires. In a nutshell, high-risk, scrutability, and pref-
erence instability generally lead to knowledge-based recommendation. Heterogeneous do-
mains with implicit input are handled largely with collaborative recommendation and high
churn domains go along with content-based techniques.

7.1.2 Objective 2: Improving Link Analysis for Tag Recommendation
in Social Tagging Systems

We focused on graph-based recommendation approaches in folksonomies with the goal of
improving the quality of personalized tag recommendation. We focused on answering the
following questions.

• How can we model the folksonomy as a graph so that we can capture the flow
of information?

We modeled the folksonomy as a weighted directed tripartite graph. The vertices of the
this graph are users, resources, and tags. The edges are bidirectional but the weight of each
direction is different from the weight of the other direction. The weights are defined based
on the fact that the user navigation from one object (user, resource, or tag) to another object
in a folksonomy is not symmetric and by considering different weights on the edges of each
direction we can better model the navigating from one node to the other. We consider higher
weights for in-links to more popular nodes.

• How can we use the model for tag recommendation?

We used an adaptation of the PageRank algorithm introduced by [102] for ranking the nodes
in the folksonomy. For personalized tag recommendation, we use personalized PageRank
algorithms where we set the preference vector in a way that it has high emphasis on the
target user and resource.

• Does the proposed model produce better recommendation than the previous ap-
proaches?

137

To evaluate our approach, we used three real world data sets from Delicious, Bibsonomy,
and Citeulike. We used common evaluation methodologies for tag recommendation and
used precision and recall as evaluation metrics.

We suggested two improvement to the existing graph-based tag recommendation ap-
proach, FolkRank. First, we investigated the influence of the parameters for tag recommen-
dation and experimentally showed that with correct parameterizations Adapted PageRank
can outperform FolkRank. Second, we showed that with modeling the folksonomy as a
directed weighted graph, we can get even more improvements.

7.1.3 Objective 3: Using Recommender Systems for Continuous Ontol-
ogy Development

Our third objective in this thesis was to investigate how recommender systems can help users
to collaboratively develop an ontology. In particular, we were interested in the following
questions.

• How can we aggregate user activities in a social tagging environment to infer
semantic similarity?

We suggested contextual cues to calculate the similarity between the concepts. Users enter
new concepts in a specific context; for example, they tag a specific document. We modeled
each concept as a vector of the items related to it and used cosine similarity to find the
contextual similarity among concepts.

• How can we use machine learning to learn from existing semantic relations in
a concept hierarchy to predict semantic relations between a new concept and
existing concepts?

We developed a learning algorithm that measures the similarity between a new concept and
existing concepts and based on the location of the most similar concepts, suggests a place for
the new concept. We introduced sub-super affinity (SSA) based on distances in a hierarchy
and developed an algorithm that can predict the SSA value between each new concept and
all existing concepts. We evaluated our algorithm using a data set from Wikipedia and our
evaluation shows excellent results. We could get up to 90% accuracy by setting the threshold
high enough. In addition, we performed an expert evaluation which confirms our algorithm
can produce results which are as accurate as Wikipedia’s existing hierarchy.

• How can the algorithm support collaborative ontology development?

138

We suggested to apply our machine leaning algorithm in a Web 2.0 environment to support
continuous ontology development at the time of their use. From this perspective, ontology
is the backbone of a social semantic system that can be used by users for structuring and
sharing information items. Our algorithm suggests semantic relations between the existing
concepts and the new concepts that users enter into the system and helps them collaboratively
and continuously develop the ontology.

7.1.4 Objective 4: Combating Attacks Against Social Tagging Systems
Our final goal in this thesis was to explore how data mining can help to combat attacks against
social tagging systems. Our study in this topic led us to answer the following questions.

• How can we systematically study the problem of attacks against social tagging
systems?

We presented the dimensions that characterize an attack and outlined a framework to model
the navigation channels in social tagging systems. We identified different types of potential
attacks against the system through different navigation channels.

• How can we evaluate the impact of attacks in social tagging systems?

We introduced two different kinds of evaluation metrics to measure the impact of attacks.
First, local metrics which are dependent on the retrieval algorithms and can be different
based on the navigation channel. Local metrics are useful for evaluating how end users are
affected by an attack. Second, we introduced global metrics, which measure the impact of
attacks globally and can observe changes in the underlying network of folksonomy. Global
metrics allow us to study attack effectiveness in a more holistic manner.

• What model of attacks are more successful?

We performed extensive experimental study on two real world data sets, Delicious and Bib-
sonomy, and studied the local and global impact of three types of attack. Our results show
that focused attacks in which the attacker targets a particular set of users can be extremely
successful to change the behavior of the system for the target users. While these type of
attacks do not need so much effort from an attacker perspective, they are more difficult to
detect from the system perspective.

• How many malicious users can a tagging system tolerate before results signifi-
cantly degrade?

139

We recorded the hit ratio results for different kinds of attacks to monitor how the attack
influences the output of the system from a user perspective. Our results show that, in general,
social tagging systems can tolerate attack sizes up to 1% of their total number of users before
their performance significantly degrade. This number can decrease considerably if the attack
profiles are designed in a way that they generate more associations in the folksonomy. For
example, profiles with larger number of popular tags in overload attack or larger number of
resources in co-occurrence attack.

Our results from the focused attack shows that the tolerance significantly decreases when
attacker targets a particular set of users. For example, for overload attack, the system can
tolerate only up to .1% attack profiles before the results are totally infected.

• How much effort and knowledge is needed by an attacker to attack the system?

Our results show that most attack types do not require a great deal of knowledge about
the details of the tagging systems. Aside from one type of piggyback attack (tag duplicate)
in which attackers need to have knowledge about the tag distribution of a resource in order to
have more success, other attack types do not need more information than publicly available
information on the Website. In terms of effort, our results show that some attacks need larger
attack sizes to change the output of the system. For example, for pushing a target resource,
overload attack needs less effort than piggyback attack.

7.2 Summary of Contributions
This thesis presents a combination of (a) conceptual work (b) design and development of data
mining and machine learning algorithms (c) empirical work, measurements and experiments.
This naturally closes the loop between design and modeling on one hand, and empirical
measurement and evaluation on the other hand.

7.2.1 Conceptual Contributions
This thesis presents two major conceptual contributions to the field: (1) Matching domains
and recommendation technologies (2) A framework for analyzing impact of attacks against
social tagging systems

Matching domains and recommendation technologies

Our in-depth study in the recommender systems literature led us to a valuable contribution in
the field to guide academics and implementers to select and apply recommendation technolo-
gies based on the domain properties. We categorized recommendation technologies based

140

on their knowledge sources, identified domain characteristics that influence on selecting the
appropriate recommendation technology and mapped domain characteristic to the proper
knowledge source and technology.

Attack framework

In this thesis, we introduced a systematic approach to study the the problem of security and
robustness in social tagging systems. We introduced a framework to model the navigation
channels in social tagging systems. We analyzed different types of potential attacks against
the system through different navigation channels. In addition, we introduced approaches to
evaluate local and global impact of attacks.

7.2.2 Algorithm Development
We designed and developed several new data mining and machine learning algorithms in
this thesis for different purposes: personalized tag recommendation in folksonomies and
recommendation of semantic relations.

Personalized tag recommendation

We presented a weighted directed graph of folksonomy that can capture the flow of infor-
mation in a folksonomy. We used our proposed graph model and applied an adaptation of
PageRank algorithm for tag recommendation.

Recommendation of semantic relations

We presented a recommendation algorithm to support continuous ontology development in a
Web 2.0 environment. Our algorithm learns from an existing concept hierarchy and suggests
a place for a given new concept. The algorithm uses the contextual and string similarity
between the new concept and existing concepts and based on the place of the most similar
concepts, recommends potential super-concepts for the new concept. Our work is a novel
approach to ontology learning since unlike previous approaches, we do not focus on creating
an ontology in one off effort. Instead, we propose an approach to learn from an existing
hierarchy and to assist users to further develop the hierarchy at the time of their use.

7.2.3 Empirical Contributions
We applied our algorithms on several real world data sets and our extensive experiments and
evaluations led us to several important observations as well as evaluation of our developed

141

algorithms.

Evaluation of the algorithms

We evaluated our tag recommendation algorithm by extensive experiments on three real
world data sets: Delicious, Citeulike, and Bibsonomy. Our evaluation results show that our
approach improves previous successful tag recommendation algorithms.

We evaluated our algorithm for recommendation of semantic relations on Wikipedia cat-
egory hierarchy, and in part on the Floyd data set from SAP. Our evaluation results show the
algorithm provides good quality recommendations.

Observations

We carried out comprehensive experiments to observe the impact of different types of attack
against social tagging systems and we had several important observations. We provide a
summary of our observations here.

• Smaller tagging systems with sparser folksonomy relations among tags, resources and
users are generally more vulnerable to attacks than larger systems with denser rela-
tions.

• Attack targets from the high frequency partition of the data are more successful in
changing the global network of the tagging system compared to targets from low fre-
quency partitions.

• The vulnerability of different navigation channels in a tagging system highly depends
on the distribution of the data in the system, which naturally depends on the type of
tagging system and the tagging behavior of the users. In general, we could observe
that associating the target element of the attack to popular tags is more successful
than associating them to popular resources (Overload attack is more successful than
piggyback).

• The most successful attacks are focused attacks which target a particular group of
users. These attacks do not need much effort or knowledge about the system but
detecting them can be a big challenge.

7.3 Future Directions
The long-term goal of this research is to support users of social Web applications for three
purposes. First, to reduce their effort to bring in meaningful contributions. Second, to assist

142

them to efficiently navigate through the system and easily find items of interest, and third, to
provide them the security that the information is trustworthy even though the system is open
to the public.

In our thesis, we made several steps towards this long-term goal. We suggested tech-
niques for tag recommendation and semantic relation recommendation. We studied the lo-
cal and global impact of attacks into the system and presented a comprehensive framework
which can provide directions for future research in this area. There are, however, plenty of
directions to further explore this area.

7.3.1 Explore Other Recommendation Tasks

Figure 7.1: An overview of possible recommendation tasks in social tagging systems

We introduced the different navigation channels in social tagging systems in chapter 6.
Considering all the possibilities to navigate in the system, many research directions can be
defined. An overview of possible research tasks on social tagging systems is presented in

143

figure 7.1. This table is an extension of the work presented by Clements [51]. Each task is in
the form of selecting one or two object types as input and then finding other related objects
as the output.

In this thesis, we have contributed in two tasks: personalized tag recommendation and se-
mantic relations. Related work on social tagging has focused on personalized tag recommen-
dation, personalized search, and personalized item recommendation. Other interesting and
useful tasks still remain largely unexplored, such as finding like-minded users (my neighbors
or domain experts in my neighborhood), and selecting specific items to get recommendations
for similar ones (More like this).

Considering users’ needs and their motivations of using the system are important consid-
erations to select which research tasks to explore.

7.3.2 Network Evolution and Attacks
Aside from variety of potential research directions in the area of recommendation in social
tagging system, there is a lot of opportunity for interesting research in extending our work
on combating attacks against social tagging system. We provided several ideas in section
6.9 for further analysis on attacks against social tagging system. Here, we provide a more
long-term vision on this area.

One important question in social media is how does the information propagate? How do
people influence the propagation of the information? How does a topic get a boost in the
network? Answers to these questions can help us to detect the trends in the social network
and build predictive models of upcoming trends. In particular, it can help us detect attacks
which are designed to create a boost for a specific target.

In addition, mechanisms that can help a network to evolve in a healthy manner and natu-
rally resist attacks can be investigated. For example, it is valuable to study which nodes and
activities have more influence on the global structure of the social network. For this goal, it
is important to study how local behaviors propagate to global scale and what factors make a
specific node more influential than others.

7.3.3 Scalability And Real-time Analysis
Although we have used real world data sets from popular social tagging systems in our
research, it is still just a small part of all the data available in these systems. It is valuable to
research on scalability of the approaches on large scale data and design models that are able
to perform predictive analysis on massive amount of data to find patterns that are practically
unobservable at smaller scales.

144

In addition, our analysis is done off-line without real user interactions. Evaluation of
recommendation algorithms would be more valuable if they can be done in real-time setting
with actual users. Ideally, such experiments would have to be run in cooperation with one or
more popular social tagging sites to attract a large enough group of test subjects to be able to
draw statistically significant conclusions about the differences in performance.

145

Bibliography

[1] “Weighted pagerank algorithm,” in CNSR ’04: Proceedings of the Second Annual
Conference on Communication Networks and Services Research. IEEE Computer
Society, 2004, pp. 305–314.

[2] K. Aberer, P. Cudré-Mauroux, A. M. Ouksel, T. Catarci, M.-S. Hacid, A. Illarramendi,
V. Kashyap, M. Mecella, E. Mena, E. J. Neuhold, O. D. Troyer, T. Risse, M. Scan-
napieco, F. Saltor, L. D. Santis, S. Spaccapietra, S. Staab, and R. Studer, “Emergent
semantics principles and issues.” in Proceedings of the 9th International Conference
on Database Systems for Advanced Applications (DASFAA’04), ser. Lecture Notes in
Computer Science, Y.-J. Lee, J. Li, K.-Y. Whang, and D. Lee, Eds. Springer, 2004,
pp. 25–38.

[3] S. Aciar, D. Zhang, S. Simoff, and J. Debenham, “Informed recommender agent: Uti-
lizing consumer product reviews through text mining,” in WI-IATW ’06: Proceedings
of the 2006 IEEE/WIC/ACM international conference on Web Intelligence and Intel-
ligent Agent Technology. Hong Kong: IEEE Computer Society, 2006, pp. 37–40.

[4] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, “Incorporating con-
textual information in recommender systems using a multidimensional approach,”
ACM Trans. Inf. Syst., vol. 23, no. 1, pp. 103–145, 2005.

[5] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions,” IEEE Transactions on
Knowledge and Data Engineering, vol. 17, no. 6, pp. 734–749, 2005.

[6] B. Adrian, L. Sauermann, and T. Roth-Berghofer, “Contag: A semantic
tag recommendation system,” in Proceedings of I-Semantics’ 07, T. Pellegrini
and S. Schaffert, Eds. JUCS, 2007, pp. pp. 297–304. [Online]. Available:
http://www.dfki.uni-kl.de/∼sauermann/papers/horak+2007a.pdf

146

[7] C. C. Aggarwal, J. L. Wolf, K. lung Wu, and P. S. Yu, “Horting hatches an egg: A new
graph-theoretic approach to collaborative filtering,” in Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge discovery and data mining. ACM
Press, 1999, pp. 201–212.

[8] E. Alfonseca and S. Manandhar, “Extending a lexical ontology by a combination of
distributional semantics signatures,” in Proceedings of the 13th International Confer-
ence on Knowledge Engineering and Knowledge Management. Ontologies and the
Semantic Web, ser. EKAW ’02. Springer-Verlag, 2002, pp. 1–7.

[9] A. Almeida, B. Sotomayor, J. Abaitua, and D. López-de Ipiña, “folk2onto: Bridging
the gap between social tags and ontologies,” in International Workshop on Knowl-
edge Reuse and Reengineering over the Semantic Web. hosted by the 5th European
Semantic Web Conference (ESWC), 2008.

[10] M. Ames and M. Naaman, “Why we tag: motivations for annotation in mobile and
online media,” in CHI ’07: Proceedings of the SIGCHI conference on Human factors
in computing systems. ACM, 2007, pp. 971–980.

[11] S. S. Anand and B. Mobasher, “Introduction to intelligent techniques for web person-
alization,” ACM Trans. Interet Technol., vol. 7, no. 4, p. 18, 2007.

[12] N. Aussenac-Gilles, B. Biebow, and S. Szulman, “Revisiting ontology design: A
methodology based on corpus analysis,” in EKAW ’00: Proceedings of the 12th Eu-
ropean Workshop on Knowledge Acquisition, Modeling and Management. London,
UK: Springer-Verlag, 2000, pp. 172–188.

[13] L. Balby Marinho, K. Buza, and L. Schmidt-Thieme, “Folksonomy-based collabu-
lary learning,” in ISWC ’08: Proceedings of the 7th International Conference on The
Semantic Web. Springer-Verlag, 2008, pp. 261–276.

[14] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su, “Optimizing web search using social
annotations,” Proceedings of the 16th international conference on World Wide Web,
pp. 501–510, 2007.

[15] P. Basile, D. Gendarmi, F. Lanubile, and G. Semeraro, “Recommending smart
tags in a social bookmarking system,” in Bridging the Gep between Semantic
Web and Web 2.0 (SemNet 2007), 2007, pp. 22–29. [Online]. Available:
http://www.kde.cs.uni-kassel.de/ws/eswc2007/proc/RecommendingSmartTags.pdf

[16] V. Batagelj and M. Zaveršnik, “Generalized cores,” Arxiv preprint cs/0202039, 2002.

147

[17] S. Berkovsky, L. Aroyo, D. Heckmann, G.-J. Houben, A. Kröner, T. Kuflik, and
F. Ricci, “Providing context-aware personalization through cross-context reasoning
of user modeling data,” in UbiDeUM’2007 - International Workshop on Ubiquitous
and Decentralized User Modeling, at User Modeling 2007, 11th International
Conference, UM 2007, Corfu, Greece, June 26, 2007, Proceedings, S. Berkovsky,
K. Cheverst, P. Dolog, D. Heckmann, T. Kuflik, P. Mylonas, J. Picault, and
J. Vassileva, Eds., 2007. [Online]. Available: ./papers/UM-cross-context-v12.pdf

[18] B. Bi, L. Shang, and B. Kao, “Collaborative resource discovery in social tagging
systems,” in CIKM ’09: Proceeding of the 18th ACM conference on Information and
knowledge management. ACM, 2009, pp. 1919–1922.

[19] M. Bianchini, M. Gori, and F. Scarselli, “Inside pagerank,” ACM Trans. Interet Tech-
nol., vol. 5, no. 1, pp. 92–128, 2005.

[20] C. Biemann, “Ontology learning from text: A survey of methods,” LDV Forum,
vol. 20, no. 2, pp. 75–93, 2005.

[21] D. Billsus and M. J. Pazzani, “User modeling for adaptive news access,” User Model-
ing and User-Adapted Interaction, vol. 10, no. 2-3, pp. 147–180, 2000.

[22] A. M. Bogers, “Recommender systems for social bookmarking,” Ph.D. dissertation,
Universiteit van Tilburg, 2009.

[23] G. Boone, “Concept features in re:agent, an intelligent email agent,” in Proceedings
of the Second International Conference on Autonomous Agents. ACM Press, 1998,
pp. 141–148.

[24] S. Braun, A. Schmidt, and A. Walter, “Ontology maturing: a collaborative web 2.0
approach to ontology engineering,” Proceedings of the Workshop on Social and Col-
laborative Construction of Structured Knowledge (CKC) at the 16th International
World Wide Web Conference (WWW 2007), year=2007,.

[25] S. Braun, C. Kunzmann, and A. Schmidt, “People tagging & ontology maturing: To-
wards collaborative competence management,” in From CSCW to Web2.0: European
Developments in Collaborative Design Selected Papers from COOP08, ser. Computer
Supported Cooperative Work, D. Randall and P. Salembier, Eds. Berlin/Heidelberg:
Springer, 2010.

[26] S. Braun, C. Schora, and V. Zacharias, “Semantics to the Bookmarks: A Review of
Social Semantic Bookmarking Systems,” in Proc. of the 5th I-SEMANTICS, 2009, pp.
445–454.

148

[27] J. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms
for collaborative filtering,” in Uncertainty in Artificial Intelligence. Proceedings of the
Fourteenth Conference. Morgan Kaufman, 1998, pp. 43–53.

[28] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive
algorithms for collaborative filtering,” in Proceedings of the 14th Conference
on Uncertainty in Artiffcial Intelligence, 1998, pp. 43–52. [Online]. Available:
http://citeseer.ist.psu.edu/breese98empirical.html

[29] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”
Computer Networks and ISDN Systems, vol. 30, no. 1-7, pp. 107–117, 1998.

[30] J. Budzik, K. Hammond, and L. Birnbaum, “Information access in context,” Knowl-
edge based systems, vol. 14, no. 1-2, pp. 37–53, 2001.

[31] P. Buono, M. F. Costabile, T. Guida, and A. Piccinno, “Integrating user data and col-
laborative filtering in a web recommendation system,” in Lecture Notes in Computer
Science: Hypermedia: Openness, Structural Awareness, and Adaptivity. Springer-
Link, 2002, pp. 192–196.

[32] R. Burke, “Hybrid recommender systems: Survey and experiments,” User Modeling
and User Adapted Interaction, vol. 12, no. 4, pp. 331–370, 2002.

[33] R. Burke, B. Mobasher, and R. Bhaumik, “Limited knowledge shilling attacks
in collaborative filtering systems,” in Proceedings of the 3rd IJCAI Workshop
in Intelligent Techniques for Personalization, Edinburgh, Scotland, August 2005.
[Online]. Available: http://maya.cs.depaul.edu/∼mobasher/papers/sp-itwp05.pdf

[34] R. Burke, B. Mobasher, R. Zabicki, and R. Bhaumik, “Identifying attack models for
secure recommendation,” in Beyond Personalization: A Workshop on the Next Gener-
ation of Recommender Systems, January 2005.

[35] R. Burke, “Knowledge-based recommender systems,” in Encyclopedia of Library and
Information Systems. Marcel Dekker, 2000.

[36] ——, “Hybrid recommender systems: Survey and experiments,” User Modeling and
User-Adapted Interaction, vol. 12, no. 4, pp. 331–370, 2002.

[37] ——, “Interactive critiquing for catalog navigation in e-commerce,” Artif. Intell. Rev.,
vol. 18, no. 3-4, pp. 245–267, 2002.

149

[38] R. Burke, B. Mobasher, C. Williams, and R. Bhaumik, “Classification features for
attack detection in collaborative recommender systems,” in Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’06), Philadel-
phia, August 2006.

[39] R. Burke and M. Ramezani, Matching Recommendation Technologies and Domains.
Springer, 2011.

[40] R. D. Burke, K. J. Hammond, and B. C. Young, “The findme approach to assisted
browsing,” IEEE Expert: Intelligent Systems and Their Applications, vol. 12, no. 4,
pp. 32–40, 1997.

[41] D. Cameron, B. Aleman-meza, S. L. Decker, and I. B. Arpinar, “Semef: A taxonomy-
based discovery of experts, expertise and collaboration networks,” Tech. Rep., 2007.

[42] J. Canny, “Collaborative filtering with privacy via factor analysis,” in SIGIR ’02: Pro-
ceedings of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval, 2002, pp. 238–245.

[43] L. C. C. Carvalheira and E. S. Gomi, “A method for semi-automatic creation of on-
tologies based on texts,” in Advances in Conceptual Modeling Foundations and Ap-
plications. Springer, 2007, pp. 150–159.

[44] C. Castro-Herrera, C. Duan, J. Cleland-Huang, and B. Mobasher, “Using data mining
and recommender systems to facilitate large-scale, open, and inclusive requirements
elicitation processes,” in RE ’08: Proceedings of the 2008 16th IEEE International
Requirements Engineering Conference. IEEE Computer Society, 2008, pp. 165–
168.

[45] H.-C. Chen and A. L. P. Chen, “A music recommendation system based on music data
grouping and user interests,” in CIKM ’01: Proceedings of the tenth international
conference on Information and knowledge management. ACM, 2001, pp. 231–238.

[46] J. Chen and Q. Li, “Concept hierarchy construction by combining spectral clustering
and subsumption estimation,” in Lecture Notes in Computer Science: Web Information
Systems WISE 2006. Springer-Verlag, 2006, pp. 199–209.

[47] E. H. Chi and T. Mytkowicz, “Understanding Navigability of Social Tagging Sys-
tems,” Proceedings of CHI, vol. 7, 2007.

150

[48] P. Cimiano, A. Maedche, S. Staab, and J. Voelker, Ontology Learning, 2nd ed.,
ser. International Handbooks on Information Systems, S. Staab and R. Studer, Eds.
Springer, 2009.

[49] P. Cimiano, A. Pivk, L. S. Thieme, and S. Staab, “Learning taxonomic relations
from heterogeneous sources of evidence,” in Proceedings of the ECAI 2004 Ontol-
ogy Learning and Population Workshop, 2004.

[50] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin, “Com-
bining content-based and collaborative filters in an online newspaper,” in Proceedings
of the ACM SIGIR ’99 Workshop on Recommender Systems: Algorithms and Evalua-
tion, Berkeley, California, August 1999.

[51] M. Clements, “Personalization of social media,” in Proceedings of the BCS IRSG
Symposium: Future Directions in Information Access, 2007.

[52] W. W. Cohen, P. Ravikumar, and S. E. Fienberg, “A Comparison of String Distance
Metrics for Name-Matching Tasks,” in Proc. of IJCAI’03 Workshop on Information
Integration on the Web, 2003, pp. 73–78.

[53] A. M. Collins and M. R. Quillian, “Retrieval time from semantic memory,” Journal of
Verbal Learning and Verbal Behavior, vol. 8, pp. 240–248, 1969.

[54] R. Cooley, B. Mobasher, and J. Srivastava, “Web mining: Information and pattern dis-
covery on the world wide web,” in Proceedings of the 9th IEEE International Confer-
ence on Tools with Artificial Intelligence (ICTAI’97), Newport Beach, CA, November
1997, pp. 558–567.

[55] M. Cristani and R. Cuel, “A survey on ontology creation methodologies,” Interna-
tional Journal of Semantic Web Information Systems, vol. 1, no. 2, pp. 49–69, 2005.

[56] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news personalization: scalable
online collaborative filtering,” in WWW ’07: Proceedings of the 16th international
conference on World Wide Web. ACM, 2007, pp. 271–280.

[57] A. K. Dey, “Understanding and using context,” Personal and Ubiquitous Computing,
vol. 5, no. 1, pp. 4–7, 2001.

[58] J. Diederich and T. Iofciu, “Finding Communities of Practice from User Profiles Based
On Folksonomies,” Proceedings of the 1st International Workshop on Building Tech-
nology Enhanced Learning solutions for Communities of Practice (TEL-CoPs 06),

151

co-located with the First European Conference on Technology-Enhanced Learning,
Crete, Greece, 2006.

[59] F. Echarte, J. J. Astrain, A. Córdoba, and J. E. Villadangos, “Ontology of folkson-
omy: A new modelling method,” in Proceedings of Semantic Authoring, Annotation
and Knowledge Markup Workshop(SAAKM) co-located with the Fourth International
Conference on Knowledge Capture K-Cap, 2007.

[60] F. Eisterlehner, A. Hotho, and R. Jaeschke, Eds., ECML PKDD Discovery Challenge
2009 (DC09), ser. CEUR-WS.org, vol. 497, Sep. 2009. [Online]. Available:
http://ceur-ws.org/Vol-497

[61] A. Felfernig and R. Burke, “Constraint-based recommender systems: technologies
and research issues,” in ICEC ’08: Proceedings of the 10th international conference
on Electronic commerce. ACM, 2008, pp. 1–10.

[62] A. Felfernig, “Koba4ms: Selling complex products and services using knowledge-
based recommender technologies,” in CEC ’05: Proceedings of the Seventh IEEE
International Conference on E-Commerce Technology (CEC’05). IEEE Computer
Society, 2005, pp. 92–100.

[63] A. Felfernig and A. Kiener, “Knowledge-based interactive selling of financial services
with fsadvisor,” in Proceedings of the National Conference on Artificial Intelligence,
2005, pp. 1475–1482.

[64] P. L. Fisher-Ogden, “Def-cat: Dblp expert finder utilizing categories and topics,” Mas-
ter’s thesis, University of California, San Diego, 2001.

[65] M. Fleischman and E. Hovy, “Fine grained classification of named entities,” in Pro-
ceedings of the 19th International Conference on Computational Linguistics, 2002,
pp. 1–7.

[66] N. Garg and I. Weber, “Personalized, interactive tag recommendation for flickr,” in
RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems.
New York, NY, USA: ACM, 2008, pp. 67–74.

[67] J. Gemmell, A. Shepitsen, B. Mobasher, and R. Burke, “Personalization in Folk-
sonomies Based on Tag Clustering,” Intelligent Techniques for Web Personalization
& Recommender Systems, 2008.

152

[68] ——, “Personalizing navigation in folksonomies using hierarchical tag clustering,” in
Proceedings of the 10th international conference on Data Warehousing and Knowl-
edge Discovery. Springer, 2008.

[69] J. Gemmell, M. Ramezani, T. Schimoler, L. Christiansen, and B. Mobasher, “The im-
pact of ambiguity and redundancy on tag recommendation in folksonomies,” in Rec-
Sys ’09: Proceedings of the third ACM conference on Recommender systems. ACM,
2009, pp. 45–52.

[70] J. Gemmell, T. Schimoler, M. Ramezani, and B. Mobasher, “Adapting k-nearest
neighbor for tag recommendation in folksonomies,” Intelligent Techniques for Web
Personalization & Recommender Systems, 2009.

[71] J. Gemmell, A. Shepitsen, B. Mobasher, and R. Burke, “Personalizing navigation in
folksonomies using hierarchical tag clustering,” in Proceedings of the 10th Interna-
tional Conference on Data Warehousing and Knowledge Discovery. Springer, 2008.

[72] ——, “Personalization in Folksonomies Based on Tag Clustering,” in Intelligent Tech-
niques for Web Personalization & Recommender Systems, 2008.

[73] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filtering to
weave an information tapestry,” Communications of the ACM, vol. 35, pp. 61–70,
1992.

[74] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A constant time col-
laborative filtering algorithm,” Inf. Retr., vol. 4, no. 2, pp. 133–151, July 2001.

[75] S. Golder and B. A. Huberman, “The Structure of Collaborative Tagging Systems,”
Arxiv preprint cs.DL/0508082, 2005.

[76] S. A. Golder and B. A. Huberman, “Usage patterns of collaborative tagging systems,”
Journal of Information Science, vol. 32, no. 2, pp. 198–208, 2006.

[77] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. M. Sarwar, J. L.
Herlocker, and J. Riedl, “Combining collaborative filtering with personal agents for
better recommendations,” in AAAI:Conference on Artificial Intelligence, 1999, pp.
439–446. [Online]. Available: citeseer.ist.psu.edu/good99combining.html

[78] T. Gruber, “Ontology of folksonomy: A mash-up of apples and oranges,” in First
on-Line conference on Metadata and Semantics Research (MTSR’05), 2005.

153

[79] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowl.
Acquis., vol. 5, pp. 199–220, June 1993.

[80] N. Guarino, R. Poli, K. A. Publishers, I. P. Substantial, and T. R. Gruber, “Toward
principles for the design of ontologies used for knowledge sharing,” in In Formal
Ontology in Conceptual Analysis and Knowledge Representation, Kluwer Academic
Publishers, in press., 1993.

[81] S. H. Ha, “Digital content recommender on the internet,” IEEE Intelligent Systems,
vol. 21, no. 2, pp. 70–77, 2006.

[82] T. Hammond, T. Hannay, B. Lund, and J. Scott, “Social bookmarking tools.”

[83] J. Han, , J. Han, and Y. Fu, “Dynamic generation and refinement of concept hierar-
chies for knowledge discovery in databases,” in Proceedings of AAAI’94 Workshop on
Knowledge Discovery in Databases (KDD’94, 1994, pp. 157–168.

[84] C. Hayes and P. Cunningham, “Smart radio: Building music radio on the fly,” in
Proceedings of Expert Systems 2000, Cambridge, UK, 2000.

[85] C. Hayes, P. Avesani, and S. Veeramachaneni, “An analysis of the use of tags in a blog
recommender system,” in IJCAI-07, the International Joint Conference on Artificial
Intelligence, M. M. Veloso, Ed., 2007, pp. 2772–2777.

[86] M. A. Hearst, “Automatic acquisition of hyponyms from large text corpora,” in Pro-
ceedings of the 14th conference on Computational linguistics - Volume 2, ser. COL-
ING ’92. Association for Computational Linguistics, 1992, pp. 539–545.

[87] M. Hepp, “Possible ontologies: How reality constrains the development of relevant
ontologies,” IEEE Internet Computing, vol. 11, pp. 90–96, 2007.

[88] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, “An algorithmic framework for
performing collaborative filtering,” in Proceedings of the 22nd ACM Conference on
Research and Development in Information Retrieval (SIGIR’99), Berkeley, CA, Au-
gust 1999.

[89] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic framework
for performing collaborative filtering,” in SIGIR ’99: Proceedings of the 22nd annual
international ACM SIGIR conference on Research and development in information
retrieval. New York, NY, USA: ACM Press, 1999, pp. 230–237.

154

[90] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative filtering recom-
mendations,” in CSCW ’00: Proceedings of the 2000 ACM conference on Computer
supported cooperative work. ACM Press, 2000, pp. 241–250.

[91] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating collaborative
filtering recommender systems,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 5–53, 2004.

[92] P. Heymann, G. Koutrika, and H. Garcia-Molina, “Fighting Spam on Social Web Sites:
A Survey of Approaches and Future Challenges,” IEEE Internet Computing, vol. 11,
no. 6, pp. 36–45, 2007.

[93] P. Heymann and H. Garcia-Molina, “Collaborative creation of communal hierarchical
taxonomies in social tagging systems,” Stanford University, Tech. Rep. 2006-10,
April 2006. [Online]. Available: http://heymann.stanford.edu/taghierarchy.html

[94] P. Heymann, D. Ramage, and H. Garcia-Molina, “Social tag prediction,” in SIGIR ’08:
Proceedings of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval, 2008, pp. 531–538.

[95] Y. Hijikata, K. Iwahama, and S. Nishida, “Content-based music filtering system with
editable user profile,” in SAC ’06: Proceedings of the 2006 ACM symposium on Ap-
plied computing. ACM, 2006, pp. 1050–1057.

[96] A. Hippisley, D. Cheng, and K. Ahmad, “The head-modifier principle and multilin-
gual term extraction,” Natural Language Engineering, vol. 11, no. 2, pp. 129–157,
2005.

[97] T. Hofmann, “Latent semantic models for collaborative filtering,” ACM Transactions
on Information Systems, vol. 22, no. 1, pp. 89–115, 2004.

[98] R. Holmes, R. J. Walker, and G. C. Murphy, “Approximate structural context match-
ing: An approach to recommend relevant examples,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, pp. 952–970, 2006.

[99] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme, “Emergent Semantics in Bib-
Sonomy,” Proceedings of Workshop on Applications of Semantic Technologies, Infor-
matik, 2006.

[100] A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme, “Information retrieval in folk-
sonomies: Search and ranking,” The Semantic Web: Research and Applications, vol.
4011, pp. 411–426, 2006.

155

[101] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme, “Folkrank: A ranking
algorithm for folksonomies,” in Proc. FGIR 2006, 2006. [Online]. Available:
http://www.kde.cs.uni-kassel.de/stumme/papers/2006/hotho2006folkrank.pdf

[102] ——, “Information retrieval in folksonomies: Search and ranking,” in The Semantic
Web: Research and Applications, 2006, pp. 411–426.

[103] S. hyung Hwang, H.-G. Kim, M.-K. Kim, S.-H. Choi, and H. S. Yang, “A data-driven
approach to constructing an ontological concept hierarchy based on the formal concept
analysis,” in Computational Science and Its Applications - ICCSA 2006. Springer,
2006, pp. 937–946.

[104] J. Illig, A. Hotho, R. Jaeschke, and G. Stumme, “A comparison of content-based tag
recommendations in folksonomy systems,” in Postproceedings of the International
Conference on Knowledge Processing in Practice (KPP 2007). Springer, 2009.

[105] R. Jäschke, L. B. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme, “Tag
recommendations in folksonomies,” in Knowledge Discovery in Databases: PKDD
2007, ser. Lecture Notes in Computer Science, vol. 4702. Springer, 2007, pp. 506–
514.

[106] S. T. Jeff Z. Pan and E. Thomas, “Reducing ambiguity in tagging systems with folk-
sonomy search expansion,” in 6th European Semantic Web Conference 2009, 2009.

[107] A. John, “Collaborative tagging and expertise in the enterprise,” in Proceedings of
Collaborative Web Tagging Workshop held in Conjunction with WWW 2006, 2006.

[108] M. E. I. Kipp and G. D. Campbell, “Patterns and inconsistencies in collaborative
tagging systems : An examination of tagging practices,” Proceedings of the
American Society for Information Science and Technology, November 2006.
[Online]. Available: http://eprints.rclis.org/archive/00008315/

[109] Y. Koren, “Factorization meets the neighborhood: a multifaceted collaborative filter-
ing model,” in KDD ’08: Proceeding of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM, 2008, pp. 426–434.

[110] R. Kosala and H. Blockeel, “Web mining research: a survey,” SIGKDD Explor. Newsl.,
vol. 2, no. 1, pp. 1–15, 2000.

[111] G. Koutrika, F. A. Effendi, Z. Gyöngyi, P. Heymann, and H. Garcia-Molina, “Com-
bating spam in tagging systems,” Proceedings of the 3rd international workshop on
Adversarial information retrieval on the web, pp. 57–64, 2007.

156

[112] A. I. Kovacs and H. Ueno, “Recommending in context: A spreading activation model
that is independent of the type of recommender system and its contents,” in Proceed-
ings of Workshop on Web Personalisation, Recommender Systems and Intelligent User
Interfaces In conjunction with AH 2006:International Conference on Adaptive Hyper-
media and Adaptive Web-Based Systems, G. Uchyigit, Ed., Dublin, Ireland, 2006.

[113] B. Krause, C. Schmitz, A. Hotho, and G. Stumme, “The anti-social tagger - detect-
ing spam in social bookmarking systems,” in Proceedings of the Fourth International
Workshop on Adversarial Information Retrieval on the Web, 2008.

[114] M. Krótzsch, D. Vrandecic, M. Vólkel, H. Haller, and R. Studer, “Semantic
Wikipedia,” Journal of Web Semantics, vol. 5, pp. 251–261, 2007.

[115] B. Krulwich, “Lifestyle finder: Intelligent user profiling using large-scale demo-
graphic data,” Artificial Intelligence Magazine, vol. 18, no. 2, 1997.

[116] M. Kurucz, A. A. Benczúr, T. Kiss, I. Nagy, A. Szabó, and B. Torma, “Kdd cup 2007
task 1 winner report,” SIGKDD Explor. Newsl., vol. 9, no. 2, pp. 53–56, 2007.

[117] S. Lam and J. Riedl, “Shilling recommender systems for fun and profit,” in Proceed-
ings of the 13th International WWW Conference, New York, May 2004.

[118] K. Lang, “Newsweeder: Learning to filter news,” in Proceedings of the 12th Interna-
tional Conference on Machine Learning, 1995, pp. 331–339.

[119] D. H. Lee and P. Brusilovsky, “Fighting information overflow with personalized com-
prehensive information access: A proactive job recommender,” in ICAS ’07: Proceed-
ings of the Third International Conference on Autonomic and Autonomous Systems.
IEEE Computer Society, 2007, p. 21.

[120] J. Leskovec, “Dynamics of large networks,” Ph.D. dissertation, Stanford University,
2008.

[121] J. Li and O. R. Zaiane, “Combining usage, content, and structure data to improve web
site recommendation,” Lecture Notes in Computer Science : E-Commerce and Web
Technologies, pp. 305–315, 2004.

[122] M. Lipczak, “Tag recommendation for folksonomies oriented towards individual
users,” in Proceedings of the ECML/PKDD 2008 Discovery Challenge Workshop,
part of the European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases, 2008.

157

[123] M. Lipczak, Y. Hu, Y. Kollet, and E. Milios, “Tag sources for recommendation
in collaborative tagging systems,” in ECML PKDD Discovery Challenge 2009
(DC09), F. Eisterlehner, A. Hotho, and R. Jaeschke, Eds., vol. 497. Bled,
Slovenia: CEUR Workshop Proceedings, 2009, pp. 157–172. [Online]. Available:
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-497/

[124] G. Macgregor and E. McCulloch, “Collaborative tagging as a knowledge organisation
and resource discovery tool,” Library Review, vol. 55, no. 5, pp. 291–300, 2006.

[125] A. Maedche and S. Staab, “Mining ontologies from text,” in Proceedings of the
12th European Workshop on Knowledge Acquisition, Modeling and Management,
ser. EKAW ’00. Springer-Verlag, 2000, pp. 189–202. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645361.757522

[126] ——, “Ontology learning for the semantic web,” IEEE Intelligent Systems, vol. 16,
no. 2, pp. 72–79, 2001.

[127] T. Mahmood, F. Ricci, A. Venturini, and W. Höpken, “Adaptive recommender sys-
tems for travel planning.” in Information and Communication Technologies in Tourism
2008, P. O’Connor, W. Höpken, and U. Gretzel, Eds. Springer, 2008, pp. 1–11.

[128] V. Maidel, P. Shoval, B. Shapira, and M. Taieb-Maimon, “Evaluation of an ontology-
content based filtering method for a personalized newspaper,” in RecSys ’08: Pro-
ceedings of the 2008 ACM conference on Recommender systems. ACM, 2008, pp.
91–98.

[129] O. Malik, “del.icio.us popular is spammed,” http://gigaom.com/2006/06/05/delicious-
popular-being-spammed/, 2006.

[130] J. Malinowski, T. Keim, O. Wendt, and T. Weitzel, “Matching people and jobs: A
bilateral recommendation approach,” in HICSS ’06: Proceedings of the 39th Annual
Hawaii International Conference on System Sciences. IEEE Computer Society, 2006,
p. 137c.

[131] B. Markines, L. Stoilova, and F. Menczer, “Bookmark hierarchies and collaborative
recommendation,” in Proceedings of the Twenty-First AAAI Conference on Artificial
Intelligence. AAAI Press, 2006.

[132] B. Markines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, and G. Stumme, “Evalu-
ating similarity measures for emergent semantics of social tagging,” in WWW ’09:
Proceedings of the 18th international conference on World wide web. ACM, 2009,
pp. 641–650.

158

[133] C. Marlow, M. Naaman, D. Boyd, and M. Davis, “HT06, tagging paper, taxonomy,
Flickr, academic article, to read,” Proceedings of the seventeenth conference on Hy-
pertext and hypermedia, pp. 31–40, 2006.

[134] A. Mathes, “Folksonomies-Cooperative Classification and Communication Through
Shared Metadata,” Computer Mediated Communication, (Doctoral Seminar), Grad-
uate School of Library and Information Science, University of Illinois Urbana-
Champaign, December, 2004.

[135] D. McSherry, “Explaining the pros and cons of conclusions in cbr,” in Proceedings
of the European Conference on Case-Based Reasoning (ECCBR-04), P. A. G. Calero
and P. Funk, Eds. Springer, 2004, pp. 317–330, madrid, Spain.

[136] ——, “Explanation in recommender systems,” Artif. Intell. Rev., vol. 24, no. 2, pp.
179–197, 2005.

[137] D. McSherry and D. W. Aha, “Mixed-initiative relaxation of constraints in critiquing
dialogues,” in ICCBR ’07: Proceedings of the 7th international conference on Case-
Based Reasoning, vol. 4626, 2007, pp. 107–121.

[138] P. Mika, “Ontologies are us: A unified model of social networks and semantics,” Web
Semantics: Science, Services and Agents on the World Wide Web, vol. 5, no. 1, pp.
5–15, 2007.

[139] ——, “Ontologies are us: A unified model of social networks and semantics,” in In
International Semantic Web Conference, 2005, pp. 522–536.

[140] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller, “Wordnet: An on-
line lexical database,” International Journal of Lexicography, vol. 3, pp. 235–244,
1990.

[141] D. Mladenic and M. Grobelnik, “Feature selection for unbalanced class distribution
and naive bayes,” in ICML ’99: Proceedings of the Sixteenth International Conference
on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1999, pp. 258–267.

[142] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, “Effective attack models for
shilling item-based collaborative filtering systems,” in Proceedings of the 2005 We-
bKDD Workshop, held in conjuction with ACM SIGKDD’2005, Chicago, Illinois, Au-
gust 2005.

159

[143] B. Mobasher, R. Burke, R. Bhaumik, and J. J. Sandvig, “Attacks and remedies in
collaborative recommendation,” IEEE Intelligent Systems, vol. 22, no. 3, pp. 56–63,
2007.

[144] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, “Toward trustworthy recom-
mender systems: An analysis of attack models and algorithm robustness,” ACM Trans-
action on Internet Technology, vol. 7, no. 4, p. 23, 2007.

[145] B. Mobasher, R. Cooley, and J. Srivastava, “Automatic personalization based on web
usage mining,” Communications of the ACM, vol. 43, no. 8, pp. 142–151, 2000.

[146] M. Montaner, B. López, and J. L. D. L. Rosa, “A taxonomy of recommender agents
on the internet,” Artif. Intell. Rev., vol. 19, no. 4, pp. 285–330, 2003.

[147] R. J. Mooney and L. Roy, “Content-based book recommending using learning for
text categorization,” in DL ’00: Proceedings of the fifth ACM conference on Digital
libraries. ACM Press, 2000, pp. 195–204.

[148] E. Moreau, F. Yvon, and O. Cappé, “Robust similarity measures for named entities
matching,” in COLING ’08: Proceedings of the 22nd International Conference on
Computational Linguistics. Association for Computational Linguistics, 2008, pp.
593–600.

[149] P. J. Morrison, “Tagging and searching: Search retrieval effectiveness of folksonomies
on the world wide web,” Information Processing and Management, vol. 44, no. 4, pp.
1562 – 1579, 2008.

[150] R. Y. Nakamoto, S. Nakajima, J. Miyazaki, S. Uemura, and H. Kato, “Investiga-
tion of the effectiveness of tag-based contextual collaborative filtering in website rec-
ommendation,” in Advances in Communication Systems and Electrical Engineering.
Springerlink, 2008, pp. 309–318.

[151] R. Y. Nakamoto, S. Nakajima, J. Miyazaki, S. Uemura, H. Kato, and Y. Inagaki,
“Reasonable tag-based collaborative filtering for social tagging systems,” in WICOW
’08: Proceeding of the 2nd ACM workshop on Information credibility on the web.
Napa Valley, California, USA: ACM, 2008, pp. 11–18.

[152] M. Nauman, S. Khan, M. Amin, and F. Hussain, “Resolving Lexical Ambiguities in
Folksonomy Based Search Systems through Common Sense and Personalization,” in
Proceedings of the Workshop on Semantic Search at the 5th European Semantic Web
Conference, Tenerife, Spain, 2008, pp. 2–13.

160

[153] S. Niwa, T. Doi, and S. Honiden, “Web Page Recommender System based on Folk-
sonomy Mining for ITNG06 Submissions,” Proceedings of the Third International
Conference on Information Technology: New Generations, pp. 388–393, 2006.

[154] N. F. Noy and D. L. McGuinness, “Ontology development 101: A guide to cre-
ating your first ontology,” Stanford Knowledge Systems Laboratory Technical Re-
port KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880,
Tech. Rep., 2001.

[155] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre, “Collaborative recom-
mendation: A robustness analysis,” ACM Transactions on Internet Technology, vol. 4,
no. 4, pp. 344–377, 2004.

[156] J. Z. Pan, S. Taylor, and E. Thomas, “Reducing ambiguity in tagging systems with
folksonomy search expansion,” in Proceedings of the 6th European Semantic Web
Conference on The Semantic Web: Research and Applications, ser. ESWC 2009 Her-
aklion. Springer-Verlag, 2009, pp. 669–683.

[157] A. Paterek, “Improving regularized singular value decomposition for collaborative
filtering,” in Proc. of the of the KDD Cup and Workshop 2007 (KDD 2007), August
2007.

[158] B. M. Paul Buitelaar, Philipp Cimiano, Ontology learning from text: methods, evalu-
ation and applications. IOS Press, 2005.

[159] M. Pazzani and D. Billsus, “Learning and revising user profiles: The identification
ofinteresting web sites,” Machine Learning: Special issue on multistrategy learning,
vol. 27, no. 3, pp. 313–331, 1997.

[160] M. Pazzani, J. Muramatsu, and D. Billsus, “Syskill & webert: Identifying interesting
web sites,” in Proceedings of the Thirteenth National Conference on Artificial Intelli-
gence. AAAI Press, 1996, pp. 54–61.

[161] M. J. Pazzani, “A framework for collaborative, content-based and demographic filter-
ing,” Artif. Intell. Rev., vol. 13, no. 5-6, pp. 393–408, 1999.

[162] A. Plangprasopchok and K. Lerman, “Exploiting Social Annotation for Automatic
Resource Discovery,” eprint arXiv: 0704.1675, 2007.

[163] M. H. Pryor, “The effects of singular value decomposition on collaborative filtering,”
Hanover, NH, USA, Tech. Rep., 1998.

161

[164] B. R, M. B, W. C, and B. R, “Detecting profile injection attacks in collaborative rec-
ommender systems.” In: Proceedings of the IEEE joint conference on e-commerce
technology and enterprise computing, e-commerce and e-services (CEC/EEE 2006),
Palo Alto, CA, June 2006k, 2006.

[165] C. Rack, S. Arbanowski, and S. Steglich, A Generic Multipurpose recommender Sys-
tem for Contextual Recommendations. IEEE Computer Society, 2007, pp. 445–450.

[166] M. Ramezani, “Improving graph-based approaches for personalized tag recommenda-
tion,” Journal of Emerging Technologies in Web Intelligence (JETWI), vol. To appear,
2011.

[167] M. Ramezani, L. Bergman, R. Thompson, R. Burke, and B. Mobasher, “Selecting and
Applying Recommendation Technology,” in International Workshop on Recommen-
dation and Collaboration in Conjunction with 2008 International ACM Conference
on Intelligent User Interfaces (IUI 2008), 2008.

[168] M. Ramezani, H. FriedrichWitschel, S. Braun, and V. Zacharias, “Using machine
learning to support continuous ontology development,” in EKAW 2010:17th Interna-
tional Conference on Knowledge Engineering and Knowledge Management, 2010.

[169] M. Ramezani, J. Gemmell, T. Schimoler, and B. Mobasher, “Improving link analy-
sis for tag recommendation in folksonomies,” in International Workshop on Recom-
mender Systems and the Social Web, Recsys 10, 2010.

[170] M. Ramezani, J. J. Sandvig, R. Bhaumik, R. Burke, and B. Mobasher, “Exploring
the impact of profile injection attacks in social tagging systems,” in Proceedings of
WebKDD, 2008.

[171] M. Ramezani, J. J. Sandvig, T. Schimoler, J. Gemmell, B. Mobasher, and R. Burke,
“Evaluating the impact of attacks in collaborative tagging environments,” in IEEE
International Conference on Social Computing, SocialCom09. IEEE Computer So-
ciety, 2009, pp. 136–143.

[172] M. Ramezani, A. Shepitsen, R. Bhaumik, R. Burke, and B. Mobasher, “Using se-
mantic cues for contextual recomemdnation,” Proceedings of the 2007 DePaul CTI
Research symposium, 2007.

[173] M. Ramezani and H. F. Witschel, “An intelligent system for semi-automatic evolution
of ontologies,” in Proceedings of 5th IEEE International Conference on Intelligent
Systems IS10, 2010.

162

[174] S. Rendle and L. Schmidt-Thieme, “Pairwise interaction tensor factorization for per-
sonalized tag recommendation,” in WSDM ’10: Proceedings of the third ACM inter-
national conference on Web search and data mining. New York, NY, USA: ACM,
2010, pp. 81–90.

[175] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grouplens: an open
architecture for collaborative filtering of netnews,” in CSCW ’94: Proceedings of the
1994 ACM conference on Computer supported cooperative work. Chapel Hill, NC:
ACM Press, 1994, pp. 175–186.

[176] P. Resnick and H. R. Varian, “Recommender systems,” Commun. ACM, vol. 40, no. 3,
pp. 56–58, 1997.

[177] F. Ricci, “Travel recommender systems,” in IEEE Intelligent Systems, 2002, pp. 55–
57.

[178] A. Riska, V. Diev, and E. Smirni, “Efficient fitting of long-tailed data sets into hy-
perexponential distributions,” in IEEE Globecom Conference, Internet Performance
Symposium, Taipei, Taiwan, November 2002. IEEE Catalog Number: 02CH3798C,
2002.

[179] S. Rosset, C. Perlich, and Y. Liu, “Making the most of your data: Kdd cup 2007 ”how
many ratings” winner’s report,” SIGKDD Explor. Newsl., vol. 9, no. 2, pp. 66–69,
2007.

[180] T. R. Roth-Berghofer, “Explanations and case-based reasoning: Foundational issues,”
in AAdvances in Case-Based Reasoning. Springer Verlag, 2004, pp. 389–403.

[181] M. Salam, J. Reilly, L. McGinty, and B. Smyth, “Knowledge discovery from user pref-
erences in conversational recommendation,” in Knowledge Discovery in Databases:
PKDD 2005. Springer Berlin / Heidelberg, 2005, pp. 228–239.

[182] G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval,”
Information Processing and Management: an International Journal, vol. 24, no. 5,
pp. 513–523, 1988.

[183] G. Salton, A. Wong, and C. Yang, “A vector space model for automatic indexing,”
Communications of the ACM, vol. 18, no. 11, pp. 613–620, 1975.

[184] M. Sanderson and B. Croft, “Deriving concept hierarchies from text,” in Proceedings
of the 22nd ACM SIGIR Conference, Berkeley, California, 1999, pp. 206–213.

163

[185] J. J. Sandvig, B. Mobasher, and R. Burke., “Robustness of collaborative recommen-
dation based on association rule mining.” Proceedings of the 2007 ACM Conference
on Recommender Systems, Minneapolis, October, 2007.

[186] J. Sandvig, R. Bhaumik, M. Ramezani, R. Burke, and B. Mobasher, “A Framework
for the Analysis of Attacks Against Social Tagging Systems,” in The 6th Workshop
on Intelligent Techniques for Web Personalization and Recommender Systems, held
in conjunction with The 23nd National Conference on Artificial Intelligence - AAAI
2008, Chicago, Illinois, USA, 2008.

[187] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of dimensionality re-
duction in recommender systems-a case study,” in Proceedings of ACM WebKDD
Workshop, 2000.

[188] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based collaborative filtering
recommendation algorithms,” in WWW ’01: Proceedings of the 10th international
conference on World Wide Web. ACM, 2001, pp. 285–295.

[189] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Incremental singular value decom-
position algorithms for highly scalable recommender systems,” in Fifth International
Conference on Computer and Information Science, 2002, pp. 27–28.

[190] J. B. Schafer, J. A. Konstan, and J. Riedl, “E-commerce recommendation applica-
tions,” Data Mining and Knowledge Discovery, vol. 5, no. 1-2, pp. 115–153, 2001.

[191] C. Schmitz, A. Hotho, R. Jaschke, and G. Stumme, “Mining association rules in folk-
sonomies,” in Proc. IFCS 2006 Conference. Springer, 2006, pp. 261–270.

[192] U. Shardanand and P. Maes, “Social information filtering: algorithms for automating
“word of mouth”,” in CHI ’95: Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM Press/Addison-Wesley Publishing Co., 1995,
pp. 210–217.

[193] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke, “Personalized recommenda-
tion in social tagging systems using hierarchical clustering,” in RecSys ’08: Proceed-
ings of the 2008 ACM conference on Recommender systems. New York, NY, USA:
ACM, 2008, pp. 259–266.

[194] B. Sigurbjörnsson and R. van Zwol, “Flickr tag recommendation based on collective
knowledge,” pp. 327–336, 2008.

164

[195] K. Siorpaes and D. Bachlechner, “Harvesting wiki consensus - using wikipedia entries
as ontology elements,” in IEEE Internet Computing, 2006, pp. 54–65.

[196] B. Smyth, E. Balfe, J. Freyne, P. Briggs, M. Coyle, and O. Boydell, “Exploiting query
repetition and regularity in an adaptive community-based web search engine,” User
Modeling and User-Adapted Interaction, vol. 14, no. 5, pp. 383–423, 2005.

[197] Y. Song, L. Zhang, and C. L. Giles, “A sparse gaussian processes classification frame-
work for fast tag suggestions,” in CIKM ’08: Proceeding of the 17th ACM conference
on Information and knowledge management. New York, NY, USA: ACM, 2008, pp.
93–102.

[198] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee, and C. L. Giles, “Real-time au-
tomatic tag recommendation,” in SIGIR ’08: Proceedings of the 31st annual interna-
tional ACM SIGIR conference on Research and development in information retrieval.
Singapore: ACM, 2008, pp. 515–522.

[199] J. F. Sowa, “Building, Sharing, and Merging Ontologies,”
http://www.jfsowa.com/ontology/ontoshar.htm, 2009.

[200] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic, “User-driven ontology evo-
lution management,” in Proceedings of the 13th International Conference on Knowl-
edge Engineering and Knowledge Management. Ontologies and the Semantic Web,
ser. EKAW ’02. Springer-Verlag, 2002, pp. 285–300.

[201] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke, “OntoEdit: Col-
laborative Ontology Development for the Semantic Web,” in First International Se-
mantic Web Conference (ISWC 2002, vol. 2342. Springer, 2002, pp. 221–235.

[202] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “On the gravity recommendation sys-
tem,” in Proc. of the of the KDD Cup and Workshop 2007 (KDD 2007), August 2007,
pp. 22–30.

[203] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Matrix factorization and neighbor
based algorithms for the netflix prize problem,” in RecSys ’08: Proceedings of the
2008 ACM conference on Recommender systems. ACM, 2008, pp. 267–274.

[204] J. Tang, H. fung Leung, Q. Luo, D. Chen, and J. Gong, “Towards ontology
learning from folksonomies,” in IJCAI’09: Proceedings of the 21st international
jont conference on Artifical intelligence. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2009, pp. 2089–2094. [Online]. Available: http:
//ijcai.org/papers09/Papers/IJCAI09-344.pdf

165

[205] A. Tartakovski, M. Schaaf, and R. Bergmann, “Retrieval and configuration of life
insurance policies,” in Lecture Notes in Computer Science, Case-Based Reasoning
Research and Development. Springer Berlin / Heidelberg, 2005, pp. 552–565.

[206] K. H. L. Tso-Sutter, L. B. Marinho, and L. Schmidt-Thieme, “Tag-aware recom-
mender systems by fusion of collaborative filtering algorithms,” in SAC ’08: Pro-
ceedings of the 2008 ACM symposium on Applied computing. ACM New York, NY,
USA, 2008, pp. 1995–1999.

[207] L. Ungar, D. Foster, E. Andre, S. Wars, F. S. Wars, D. S. Wars, and J. H. Whispers,
“Clustering methods for collaborative filtering,” in Workshop on Recommender Sys-
tems at the 15th National Conference on Artificial Intelligence. AAAI Press, 1998.

[208] F. user forum, “Exclude certain users from all searches,”
http://www.flickr.com/groups/flickrideas/discuss/72157600044251686/, 2006.

[209] D. Vallet, I. Cantador, and J. M. Jose, “Personalizing web search with folksonomy-
based user and document profiles,” in ECIR 2010: Proceedings of the 32nd European
Conference on Information Retrieval, 2010, pp. 420–431.

[210] C. Van Damme, M. Hepp, and K. Siorpaes, “Folksontology: An integrated approach
for turning folksonomies into ontologies,” in Proceedings of the ESWC Workshop
Bridging the Gap between Semantic Web and Web 2.0 (SemNet 2007), 2007, pp. 57–
70.

[211] C. Van Rijsbergen, Information Retrieval. Butterworth-Heinemann Newton, MA,
USA, 1979.

[212] M. van Setten, S. Pokraev, and J. Koolwaaij, “Context-aware recommendations in
the mobile tourist application compass,” in Adaptive Hypermedia 2004, W. Nejdl
and P. De Bra, Eds. Springer Verlag, 2004, pp. 235–244. [Online]. Available:
./papers/settenah2004.pdf

[213] P. Viappiani, P. Pu, and B. Faltings, “Conversational recommenders with adaptive sug-
gestions,” in RecSys ’07: Proceedings of the 2007 ACM conference on Recommender
systems. ACM, 2007, pp. 89–96.

[214] J. Vig, S. Sen, and J. Riedl, “Tagsplanations: explaining recommendations using tags,”
in IUI ’09: Proceedings of the 13th international conference on Intelligent user inter-
faces. New York, NY, USA: ACM, 2009, pp. 47–56.

166

[215] V. Wal, “Folksonomy coinage and definition,” http://vanderwal.net/folksonomy.html,
2004.

[216] Y. Wang, J. Vlker, and P. Haase, “Towards semi-automatic ontology building sup-
ported by large-scale knowledge acquisition,” in AAAI Fall Symposium On Semantic
Web for Collaborative Knowledge Acquisition, vol. FS-06-06, AAAI. Arlington, VA,
USA: AAAI Press, Oktober 2006, pp. 70–77.

[217] R. Wetzker, W. Umbrath, and A. Said, “A hybrid approach to item recommendation in
folksonomies,” in ESAIR ’09: Proceedings of the WSDM ’09 Workshop on Exploiting
Semantic Annotations in Information Retrieval. ACM, 2009, pp. 25–29.

[218] D. Widdows, “Unsupervised methods for developing taxonomies by combining syn-
tactic and statistical information,” in Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on Human Lan-
guage Technology - Volume 1, ser. NAACL ’03. Association for Computational
Linguistics, 2003, pp. 197–204.

[219] W. E. Winkler, “The state of record linkage and current research problems,” Statistical
Research Division, U.S. Census Bureau, Tech. Rep., 1999.

[220] H. F. Witschel, “Using decision trees and text mining techniques for extending tax-
onomies,” in Proceedings of the Workshop on Learning and Extending Lexical On-
tologies by using Machine Learning (OntoML), Bonn, Germany, 2005.

[221] H. Wu, M. Zubair, and K. Maly, “Harvesting social knowledge from folksonomies,”
Proceedings of the seventeenth conference on Hypertext and hypermedia, pp. 111–
114, 2006.

[222] X. Wu, L. Zhang, and Y. Yu, “Exploring social annotations for the semantic web,”
in WWW ’06: Proceedings of the 15th international conference on World Wide Web.
New York, NY, USA: ACM, 2006, pp. 417–426.

[223] X.-h. Xu, J.-l. Huang, J. Wan, and C.-f. Jiang, “A method for measuring semantic
similarity of concepts in the same ontology,” in IMSCCS ’08: Proceedings of the 2008
International Multi-symposiums on Computer and Computational Sciences. IEEE
Computer Society, 2008, pp. 207–213.

[224] Z. Xu, Y. Fu, J. Mao, and D. Su, “Towards the semantic web: Collaborative tag sug-
gestions,” in Collaborative Web Tagging Workshop in conjunction with the 15th WWW
Conference, Edinburgh, Scotland, May 2006.

167

[225] D. Yang and D. M. W. Powers, “Measuring semantic similarity in the taxonomy of
wordnet,” in ACSC ’05: Proceedings of the Twenty-eighth Australasian conference on
Computer Science. Australian Computer Society, Inc., 2005, pp. 315–322.

[226] C. Yeung, N. Gibbins, and N. Shadbolt, “Tag meaning disambiguation through
analysis of tripartite structure of folksonomies,” in Proceedings of the 2007
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent
Technology-Workshops. IEEE Computer Society Washington, DC, USA, 2007, pp.
3–6.

[227] ——, “Understanding the semantics of ambiguous tags in folksonomies,” in Proceed-
ings of the International Workshop on Emergent Semantics and Ontology Evolution
(ESOE2007) at ISWC/ASWC2007, Busan, South Korea, 2007, pp. 108–120.

[228] Z. Yu, X. Zhou, D. Zhang, C.-Y. Chin, X. Wang, and J. Men, “Supporting
context-aware media recommendations for smart phones,” Pervasive Computing,
vol. 5, no. 3, pp. 68–75, 2006. [Online]. Available: ./papers/yu06.pdf

[229] V. Zacharias and S. Braun, “Soboleo - social bookmarking and lightweight ontology
engineering,” in Proc. of the WWW’07 Workshop on CKC. CEUR-WS vol. 273,
2007.

[230] M. Zanker, “A collaborative constraint-based meta-level recommender,” in RecSys
’08: Proceedings of the 2008 ACM conference on Recommender systems. ACM
Press New York, NY, USA, 2008, pp. 139–146.

[231] J. Zhang and P. Pu, “A comparative study of compound critique generation in con-
versational recommender systems,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), vol. 4018 NCS. Springer Verlag, Heidelberg, D-69121, Germany, 2006, pp.
234–243.

[232] L. Zhang, X. Wu, and Y. Yu, “Emergent semantics from folksonomies: A quantitative
study,” Journal on Data Semantics, pp. 168–186, 2006. [Online]. Available:
http://dx.doi.org/10.1007/11803034 8

[233] S. Zhang, W. Wang, J. Ford, F. Makedon, and J. Pearlman, “Using singular value
decomposition approximation for collaborative filtering,” in CEC ’05: Proceedings
of the Seventh IEEE International Conference on E-Commerce Technology. IEEE
Computer Society, 2005, pp. 257–264.

168

[234] N. Zhao, F. Fang, and L. Fan, “An ontology-based model for tags mapping and man-
agement,” in CSSE ’08: Proceedings of the 2008 International Conference on Com-
puter Science and Software Engineering. IEEE Computer Society, 2008, pp. 483–
486.

[235] M. Zhou, S. Bao, X. Wu, and Y. Yu, “An unsupervised model for exploring hierar-
chical semantics from social annotations,” in Proceedings of the 6th International Se-
mantic Web Conference and 2nd Asian Semantic Web Conference (ISWC/ASWC2007),
Busan, South Korea, ser. LNCS, vol. 4825. Berlin, Heidelberg: Springer Verlag,
November 2007, pp. 673–686.

169

List of Figures

1.1 Structure of the thesis . 7

2.1 A simplified example of user-item matrix for movie ratings 12
2.2 Item-based collaborative filtering finds similar items based on users rating

history . 13
2.3 Screenshot of Delicious website showing the popular bookmarks for ontol-

ogy. There are different navigation possibilities through the system. 20
2.4 We can reduce the hypergraph into three bipartite graphs with regular edges.

The graphs model aggregates associations between users and resources (UR),
users and tags (UT), and tags and resources (T R) 25

3.1 Taxonomy of knowledge sources in recommendation 39
3.2 Knowledge sources and recommendation types 41
3.3 Possible relations in the graph of a social Web application 53

4.1 Comparion of different state of the art tag recommendation techniques taken
from [174] . 58

4.2 A simplified example for presentation of PageRank algorithm 59
4.3 The folksonomy adjacency matrix . 60
4.4 An arbitrary example of folksonomy . 62
4.5 The effect of changing γ on precision and recall for a recommendation set of

10 tags in Bibsonomy data set . 67
4.6 The effect of changing γ on precision and recall for a recommendation set of

10 tags in Citeulike data set . 67
4.7 The effect of changing γ on precision and recall for a recommendation set of

10 tags in Delicious data set . 68
4.8 Comparison of undirected APR, directed APR for γ = .99 and FolkRank for

γ = .3 . 69
4.9 Comparison of F-measure for undirected APR,directed APR for γ = .99 and

FolkRank for γ = .3 . 70

170

5.1 Formal vs. terminological vs. prototype-based food ontology [20] 75
5.2 Screenshot of SOBOLEO system . 78
5.3 Screenshot of category hierarchy in Wikipedia; The sub-categories of “Com-

puter science” and suggestion of Wikipedia to move the articles to appropri-
ate subcategories . 79

5.4 An example from a part of concept Hierarchy from Wikipedia. We define
“SSA” as the reverse of shortest path distance between the super-sub concept. 82

5.5 Recommender Architecture . 83
5.6 Result of algorithm 1 for Wikipedia data set 88
5.7 Result of algorithm 1 for Floyd data set 88
5.8 Precision and Recall for different threshold values for different neighbor-

hood values (k) . 89
5.9 Precision and Recall for different threshold values in three data sets with

different sizes . 90
5.10 Selection of the optimum combination factors 91
5.11 Comparison of Precision and Recall of Algorithm 2 when using different

similarity measures . 91
5.12 Comparison of precision and recall values for algorithm 2 and algorithm 3 93
5.14 Comparison of recall at N for different algorithms 93
5.13 Comparison of F-measure for different approaches by changing the threshold

value . 94
5.15 Impact of the test/train ratio (the density of the seed hierarchy) 95

6.1 Spurl.net response to attacks(screenshot made in 2009) 100
6.2 An attack example in Amazon.com (screenshot made in 2010) 101
6.3 An hypothetical example of promoting a resource. 102
6.4 Navigation Channels of a Tagging System 105
6.5 Summary of Attack Types . 109
6.6 Histogram of resource frequency in Bibsonomy and Delicious data sets . . 117
6.7 Global impact of popular overload attack with one popular tag in each attack

profile . 118
6.8 Local impact of popular overload attack with one popular tag in each attack

profile . 119
6.9 Hit Ratio for popular overload attack with one popular tag in each attack profile120
6.10 Global impact of popular overload attack with n popular tags in each attack

profile with 50 attack profiles for Bibsonomy and 200 for Delicious 120
6.11 Global impact of focused overload attack 121

171

6.12 An example of change in the network with focused attack for focused tag
“projektmanagement” . 122

6.13 Global (PageRank) impact for two variants of the Piggyback attack 123
6.14 Local impact (Cosine similarity) for two variants of the Piggyback attack . 124
6.15 Local impact (Hit Ratio) for two variants of the Piggyback attack 124
6.16 Global impact of co-occurrence attack with 1 popular tag and 1 resource in

each attack profile . 125
6.17 Local impact of co-occurrence attack with 1 popular tag and 1 resource in

each attack profile . 126
6.18 Global impact of co-occurrence attack with n popular tag (on the left) and n

resources (on the right) in each attack profile with 50 attack profiles injected
to Bibsonomy data set . 127

6.19 Comparison of the global impact of overload attack on different data sets . . 128
6.20 Comparison of the global impact of piggyback attack on different data sets . 128
6.21 Comparison of the global impact of co-occurrence attack on different data sets129
6.22 Comparison of the global impact of different attack types in Bibsonomy data

set . 130
6.23 Comparison of the global impact of different attack types in Delicious data set 130
6.24 Comparison of the local impact of different attack types in different data set 131

7.1 An overview of possible recommendation tasks in social tagging systems . 143

172

List of Tables

3.1 Impact of recommendation domain on knowledge sources 48
3.2 Domain factors and recommendation techniques 49
3.3 Sample domains for recommendation . 52

4.1 Datasets . 65

5.1 Properties of the the Wikipedia category data for different sizes 86
5.2 An example: Output of recommendation algorithm 2 using different similar-

ity cues. Recommendations are predicted super-concepts for the new con-
cept “Botnets” . 92

5.3 An example: Output of different recommendation algorithms. Recommen-
dations are predicted super concepts of the new concept “Computer hardware
researchers” . 96

5.4 Expert evaluation results . 96

6.1 Properties of the Datasets . 115
6.2 Properties of data partitions . 116

173

