10,892 research outputs found

    Entity Query Feature Expansion Using Knowledge Base Links

    Get PDF
    Recent advances in automatic entity linking and knowledge base construction have resulted in entity annotations for document and query collections. For example, annotations of entities from large general purpose knowledge bases, such as Freebase and the Google Knowledge Graph. Understanding how to leverage these entity annotations of text to improve ad hoc document retrieval is an open research area. Query expansion is a commonly used technique to improve retrieval effectiveness. Most previous query expansion approaches focus on text, mainly using unigram concepts. In this paper, we propose a new technique, called entity query feature expansion (EQFE) which enriches the query with features from entities and their links to knowledge bases, including structured attributes and text. We experiment using both explicit query entity annotations and latent entities. We evaluate our technique on TREC text collections automatically annotated with knowledge base entity links, including the Google Freebase Annotations (FACC1) data. We find that entity-based feature expansion results in significant improvements in retrieval effectiveness over state-of-the-art text expansion approaches

    Use of Wikipedia Categories in Entity Ranking

    Get PDF
    Wikipedia is a useful source of knowledge that has many applications in language processing and knowledge representation. The Wikipedia category graph can be compared with the class hierarchy in an ontology; it has some characteristics in common as well as some differences. In this paper, we present our approach for answering entity ranking queries from the Wikipedia. In particular, we explore how to make use of Wikipedia categories to improve entity ranking effectiveness. Our experiments show that using categories of example entities works significantly better than using loosely defined target categories

    Learning Relatedness Measures for Entity Linking

    Get PDF
    Entity Linking is the task of detecting, in text documents, relevant mentions to entities of a given knowledge base. To this end, entity-linking algorithms use several signals and features extracted from the input text or from the knowl- edge base. The most important of such features is entity relatedness. Indeed, we argue that these algorithms benefit from maximizing the relatedness among the relevant enti- ties selected for annotation, since this minimizes errors in disambiguating entity-linking. The definition of an e↔ective relatedness function is thus a crucial point in any entity-linking algorithm. In this paper we address the problem of learning high-quality entity relatedness functions. First, we formalize the problem of learning entity relatedness as a learning-to-rank problem. We propose a methodology to create reference datasets on the basis of manually annotated data. Finally, we show that our machine-learned entity relatedness function performs better than other relatedness functions previously proposed, and, more importantly, improves the overall performance of dif- ferent state-of-the-art entity-linking algorithms

    A Relation-Based Page Rank Algorithm for Semantic Web Search Engines

    Get PDF
    With the tremendous growth of information available to end users through the Web, search engines come to play ever a more critical role. Nevertheless, because of their general-purpose approach, it is always less uncommon that obtained result sets provide a burden of useless pages. The next-generation Web architecture, represented by the Semantic Web, provides the layered architecture possibly allowing overcoming this limitation. Several search engines have been proposed, which allow increasing information retrieval accuracy by exploiting a key content of Semantic Web resources, that is, relations. However, in order to rank results, most of the existing solutions need to work on the whole annotated knowledge base. In this paper, we propose a relation-based page rank algorithm to be used in conjunction with Semantic Web search engines that simply relies on information that could be extracted from user queries and on annotated resources. Relevance is measured as the probability that a retrieved resource actually contains those relations whose existence was assumed by the user at the time of query definitio

    Personalized content retrieval in context using ontological knowledge

    Get PDF
    Personalized content retrieval aims at improving the retrieval process by taking into account the particular interests of individual users. However, not all user preferences are relevant in all situations. It is well known that human preferences are complex, multiple, heterogeneous, changing, even contradictory, and should be understood in context with the user goals and tasks at hand. In this paper, we propose a method to build a dynamic representation of the semantic context of ongoing retrieval tasks, which is used to activate different subsets of user interests at runtime, in a way that out-of-context preferences are discarded. Our approach is based on an ontology-driven representation of the domain of discourse, providing enriched descriptions of the semantics involved in retrieval actions and preferences, and enabling the definition of effective means to relate preferences and context

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Ranking Archived Documents for Structured Queries on Semantic Layers

    Full text link
    Archived collections of documents (like newspaper and web archives) serve as important information sources in a variety of disciplines, including Digital Humanities, Historical Science, and Journalism. However, the absence of efficient and meaningful exploration methods still remains a major hurdle in the way of turning them into usable sources of information. A semantic layer is an RDF graph that describes metadata and semantic information about a collection of archived documents, which in turn can be queried through a semantic query language (SPARQL). This allows running advanced queries by combining metadata of the documents (like publication date) and content-based semantic information (like entities mentioned in the documents). However, the results returned by such structured queries can be numerous and moreover they all equally match the query. In this paper, we deal with this problem and formalize the task of "ranking archived documents for structured queries on semantic layers". Then, we propose two ranking models for the problem at hand which jointly consider: i) the relativeness of documents to entities, ii) the timeliness of documents, and iii) the temporal relations among the entities. The experimental results on a new evaluation dataset show the effectiveness of the proposed models and allow us to understand their limitation
    • 

    corecore