102 research outputs found

    An efficient graph representation for arithmetic circuit verification

    Full text link

    Mapping switch-level simulation onto gate-level hardware accelerators

    Full text link
    In this paper, we present a framework for performing switch-level simulation on hardware accelerators

    Automatic formal verification of liveness for pipelined processors with multicycle functional units

    Get PDF
    Abstract. Presented is a highly automatic approach for proving bounded liveness of pipelined processors with multicycle functional units, without the need for the user to set up an inductive argument. Multicycle functional units are abstracted with a placeholder that is suitable for proving both safety and liveness. Abstracting the branch targets and directions with arbitrary terms and formulas, respectively, that are associated with each instruction, made the branch targets and directions independent of the data operands. The observation that the term variables abstracting branch targets of newly fetched instructions can be considered to be in the same equivalence class, allowed the use of a dedicated fresh term variable for all such branch targets and the abstraction of the Instruction Memory with a generator of arbitrary values. To further improve the scaling, the multicycle ALU was abstracted with a placeholder without feedback loops. Also, the equality comparison between the terms written to the PC and the dedicated fresh term variable for branch targets of new instructions was implemented as part of the circuit, thus avoiding the need to apply the abstraction function along the specification side of the commutative diagram for liveness. This approach resulted in 4 orders of magnitude speedup for a 5-stage pipelined DLX processor with a 32-cycle ALU, compared to a previous method for indirect proof of bounded liveness, and scaled for a 5-stage pipelined DLX with a 2048-cycle ALU. Introduction Previous work on microprocessor formal verification has almost exclusively addressed the proof of safety-that if a processor does something during a step, it will do it correctly-as also observed in In the current paper, the implementation and specification are described in the highlevel hardware description language HD

    *PHDD: an efficient graph representation for floating point circuit verification

    Full text link

    Formal verification of an ARM processor

    Full text link

    A Methodology for Hardware Verification Based on Logic Simulation.

    Full text link

    Cyber-security for embedded systems: methodologies, techniques and tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    On static execution-time analysis

    Get PDF
    Proving timeliness is an integral part of the verification of safety-critical real-time systems. To this end, timing analysis computes upper bounds on the execution times of programs that execute on a given hardware platform. Modern hardware platforms commonly exhibit counter-intuitive timing behaviour: a locally slower execution can lead to a faster overall execution. Such behaviour challenges efficient timing analysis. In this work, we present and discuss a hardware design, the strictly in-order pipeline, that behaves monotonically w.r.t. the progress of a program's execution. Based on monotonicity, we prove the absence of the aforementioned counter-intuitive behaviour. At least since multi-core processors have emerged, timing analysis separates concerns by analysing different aspects of the system's timing behaviour individually. In this work, we validate the underlying assumption that a timing bound can be soundly composed from individual contributions. We show that even simple processors exhibit counter-intuitive behaviour - a locally slow execution can lead to an even slower overall execution - that impedes the soundness of the composition. We present the compositional base bound analysis that accounts for any such amplifying effects within its timing contribution. This enables a sound compositional analysis even for complex processors. Furthermore, we discuss hardware modifications that enable efficient compositional analyses.Echtzeitsysteme müssen unter allen Umständen beweisbar pünktlich arbeiten. Zum Beweis errechnet die Zeitanalyse obere Schranken der für die Ausführung von Programmen auf einer Hardware-Plattform benötigten Zeit. Moderne Hardware-Plattformen sind bekannt für unerwartetes Zeitverhalten bei dem eine lokale Verzögerung in einer global schnelleren Ausführung resultiert. Solches Zeitverhalten erschwert eine effiziente Analyse. Im Rahmen dieser Arbeit diskutieren wir das Design eines Prozessors mit eingeschränkter Fließbandverarbeitung (strictly in-order pipeline), der sich bzgl. des Fortschritts einer Programmausführung monoton verhält. Wir beweisen, dass Monotonie das oben genannte unerwartete Zeitverhalten verhindert. Spätestens seit dem Einsatz von Mehrkernprozessoren besteht die Zeitanalyse aus einzelnen Teilanalysen welche nur bestimmte Aspekte des Zeitverhaltens betrachten. Eine zentrale Annahme ist hierbei, dass sich die Teilergebnisse zu einer korrekten Zeitschranke zusammensetzen lassen. Im Rahmen dieser Arbeit zeigen wir, dass diese Annahme selbst für einfache Prozessoren ungültig ist, da eine lokale Verzögerung zu einer noch größeren globalen Verzögerung führen kann. Für bestehende Prozessoren entwickeln wir eine neuartige Teilanalyse, die solche verstärkenden Effekte berücksichtigt und somit eine korrekte Komposition von Teilergebnissen erlaubt. Für zukünftige Prozessoren beschreiben wir Modifikationen, die eine deutlich effizientere Zeitanalyse ermöglichen

    NuMDG: A New Tool for Multiway Decision Graphs Construction

    Get PDF
    Multiway Decision Graphs (MDGs) are a canonical representation of a subset of many-sorted first-order logic. This subset generalizes the logic of equality with abstract types and uninterpreted function symbols. The distinction between abstract and concrete sorts mirrors the hardware distinction between data path and control. Here we consider ways to improve MDGs construction. Efficiency is achieved through the use of the Generalized-If-Then-Else (GITE) commonly operator in Binary Decision Diagram packages. Consequently, we review the main algorithms used for MDGs verification techniques. In particular, Relational Product and Pruning by Subsumption are algorithms defined uniformly through this single GITE operator which will lead to a more efficient implementation. Moreover, we provide their correctness proof. This work can be viewed as a way to accommodate the ROBBD algorithms to the realm of abstract sorts and uninterpreted functions. The new tool, called NuMDG, accepts an extended SMV language, supporting abstract data sorts. Finally, we present experimental results demonstrating the efficiency of the NuMDG tool and evaluating its performance using a set of benchmarks from the SMV package
    corecore