
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
Automatic Formal Verification of Liveness for Pipelined
Processors with Multicycle Functional Units

Abstract. Presented is a highly automatic approach for proving bounded liveness of
pipelined processors with multicycle functional units, without the need for the user to
set up an inductive argument. Multicycle functional units are abstracted with a place-
holder that is suitable for proving both safety and liveness. Abstracting the branch
targets and directions with arbitrary terms and formulas, respectively, that are associ-
ated with each instruction, made the branch targets and directions independent of the
data operands. The observation that the term variables abstracting branch targets of
newly fetched instructions can be considered to be in the same equivalence class,
allowed the use of a dedicated fresh term variable for all such branch targets and the
abstraction of the Instruction Memory with a generator of arbitrary values. To further
improve the scaling, the multicycle ALU was abstracted with a placeholder without
feedback loops. Also, the equality comparison between the terms written to the PC
and the dedicated fresh term variable for branch targets of new instructions was
implemented as part of the circuit, thus avoiding the need to apply the abstraction
function along the specification side of the commutative diagram for liveness. This
approach resulted in 4 orders of magnitude speedup for a 5-stage pipelined DLX pro-
cessor with a 32-cycle ALU, compared to a previous method for indirect proof of
bounded liveness, and scaled for a 5-stage pipelined DLX with a 2048-cycle ALU.

1 Introduction
Previous work on microprocessor formal verification has almost exclusively addressed
the proof of safety—that if a processor does something during a step, it will do it cor-
rectly—as also observed in [2], while ignoring the proof of liveness—that a processor
will complete a new instruction after a finite number of steps. Several authors used the-
orem proving to check liveness [15][16][17][19][23][28][32][34], but invested exten-
sive manual work. This paper is the first to prove liveness for pipelined processors
with multicycle functional units in an automatic way.

Functional units in recent state-of-the-art processors usually have latencies of up to
20 – 30 cycles, and rarely up to 200 cycles, but it is expected that the memory latencies
in next generation high-performance designs will reach 1,000 cycles [13]. Thus, the
need to develop automatic techniques to prove the liveness of pipelined processors
where the functional units can have latencies of up to thousands of cycles.

In the current paper, the implementation and specification are described in the high-
level hardware description language HDL [46], based on the logic of Equality with
Uninterpreted Functions and Memories (EUFM) [7]. In EUFM, word-level values are
abstracted with terms (see Sect. 4) whose only relevant property is that of equality with
other terms. Restrictions on the style for describing high-level processors [35][36]
reduced the number of terms that appear in both positive and negated equality compar-
isons—and are so called g-terms (for general terms)—and increased the number of
terms that appear only in positive polarity—and are so called p-terms (for positive
terms). The property of Positive Equality [35][36] allowed us to treat syntactically dif-

Miroslav N. Velev
http://www.ece.cmu.edu/~mvelev

mvelev@ece.cmu.edu

https://core.ac.uk/display/357214094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ferent p-terms as not equal when evaluating the validity of an EUFM formula, thus
achieving significant simplifications and orders of magnitude speedup. (See [5] for a
correctness proof.)

The formal verification is done with an automatic tool flow, consisting of: 1) the
term-level symbolic simulator TLSim [46], used to symbolically simulate the imple-
mentation and specification, and produce an EUFM correctness formula; 2) the deci-
sion procedure EVC [46] that exploits Positive Equality and other optimizations to
translate the EUFM correctness formula to an equivalent Boolean formula, which has
to be a tautology in order for the implementation to be correct; and 3) an efficient SAT-
solver. This tool flow was used at Motorola [18] to formally verify a model of the
M•CORE processor, and detected bugs.

The rest of the paper is organized as follows. Sect. 2 defines safety and liveness.
Sect. 3 discusses related work. Sect. 4 summarizes the logic of EUFM, the property of
Positive Equality, and efficient translations from EUFM to CNF. Sect. 5 presents a pre-
vious indirect method for proving liveness of pipelined processors by exploiting Posi-
tive Equality. Sect. 6 explains the application of that indirect method to proving the
liveness of pipelined DLX processors having ALUs with latencies of up to 2048
cycles. Sect. 7 describes an abstraction for multicycle ALUs that is applicable to prov-
ing both safety and liveness of pipelined processors. The next three sections present
optimizations that speed up the automatic formal proof of liveness for pipelined pro-
cessors with multicycle functional units: Sect. 8 describes techniques for abstracting
the branch targets and directions of instructions; Sect. 9 makes the observation that the
branch targets of newly fetched instructions can be considered to be in the same equiv-
alence class, and so can be replaced with the same fresh term variable; and Sect. 10
shows an approach to avoid the abstraction function along the specification side of the
commutative correctness diagram for liveness. Sect. 11 presents experimental results,
and Sect. 12 concludes the paper.

2 Definition of Safety and Liveness
The formal verification is done by correspondence checking—comparison of a pipe-
lined implementation against a non-pipelined specification. The abstraction function,
Abs, maps an implementation state to an equivalent specification state, and is com-
puted by flushing [7]—feeding the implementation pipeline with bubbles (combina-
tions of control signals that do not modify architectural state) until all partially
executed instructions are completed. The safety property (see Fig. 1) is expressed as a
formula in the logic of EUFM, and checks that one step of the implementation corre-
sponds to between 0 and k steps of the specification, where k is the issue width of the
implementation. FImpl is the transition function of the implementation, and FSpec is the
transition function of the specification. We will refer to the sequence of first applying
Abs and then FSpec as the specification side of the diagram in Fig. 1, and to the
sequence of first applying FImpl and then Abs as the implementation side.

The safety property is the inductive step of a proof by induction, since the initial
implementation state, QImpl, is arbitrary. If the implementation is correct for all transi-

tions that can be made for one step from an arbitrary initial state, then the implementa-
tion will be correct for one step from the next implementation state, Q′Impl, since that
state will be a special case of an arbitrary state as used for the initial state, and so on for
any number of steps. For some processors, e.g., where the control logic is optimized by
using unreachable states as don’t-care conditions, we may have to impose invariant
constraints for the initial state in order to exclude unreachable states. Then, we need to
prove that those constraints are satisfied in the implementation state after one step,
Q′Impl, so that the correctness will hold by induction for that state, and so on for all
subsequent states. (See [1][2] for a discussion of correctness criteria.)

Fig. 1. The safety correctness property for an implementation processor with issue width k: one step of the
implementation should correspond to between 0 and k steps of the specification, when the implementation
starts from an arbitrary initial state QImpl that is possibly restricted by a set of invariant constraints.

To illustrate the safety property in Fig. 1, let the implementation and specification
have three architectural state elements—Program Counter (PC), Register File, and
Data Memory. Let PCi

Spec, RegFilei
Spec, and DMemi

Spec be the state of the PC, Regis-
ter File, and Data Memory, respectively, in specification state Qi

Spec (i = 0, ..., k) along
the specification side of the diagram. Let PC*

Spec, RegFile*
Spec, and DMem*

Spec be
the state of the PC, Register File, and Data Memory in specification state Q*

Spec,
reached after the implementation side of the diagram. Then, each disjunct equalityi (i =
0, ..., k) is defined as:

equalityi ← pci ∧ rfi ∧ dmi,

where

pci ← (PCi
Spec = PC*

Spec),
rfi ← (RegFilei

Spec = RegFile*
Spec),

dmi ← (DMemi
Spec = DMem*

Spec).

That is, equalityi is the conjunction of pair-wise equality comparisons for all architec-
tural state elements, thus ensuring that they are updated in synchrony by the same

FImpl

FSpec

Abs

QImpl

Abs

Q′Impl

Q∗
Spec

equalityk

Q0
Spec

equality1

=

equality0 ∨ equality1 ∨ . . . ∨ equalityk = true
Safety property:

FSpec FSpec

equality2

. . .

k steps

1 step

equality0

=

= =

Q1
Spec Q2

Spec Qk
Spec

. . .

number of instructions. In processors with more architectural state elements, an equal-
ity comparison is conjuncted for each additional state element. Hence, for this imple-
mentation processor, the safety property is:

pc0 ∧ rf0 ∧ dm0 ∨ pc1 ∧ rf1 ∧ dm1 ∨ ... ∨ pck ∧ rfk ∧ dmk = true.

We can prove liveness by a modified version of the safety correctness criterion—by
symbolically simulating the implementation for a finite number of steps, n, and prov-
ing that:

equality1 ∨ equality2 ∨ . . . ∨ equalityn × k = true (1)

where k is the issue width of the implementation. The formula proves that n steps of
the implementation match between 1 and n × k steps of the specification, when the
implementation starts from an arbitrary initial state that may be restricted by invariant
constraints. Note that (1) guarantees that the implementation has made at least one
step, while the safety correctness criterion allows the implementation to stay in its ini-
tial state when formula equality0 (checking whether the implementation matches the
initial state of the specification) is true. The correctness formula is generated automat-
ically in the same way as the formula for safety, except that the implementation and the
specification are symbolically simulated for many steps, and formula equality0 is not
included. As in the formula for safety, every formula equalityi is the conjunction of
equations, each comparing corresponding states of the same architectural state ele-
ment. That is, formula (1) consists of top-level positive equations that are conjuncted
and disjuncted but not negated, allowing us to exploit Positive Equality when proving
liveness. The minimum number of steps, n, to symbolically simulate the implementa-
tion, can be determined experimentally, by trial and error, or identified by the user after
analyzing the processor (see Sect. 6).

The contribution of this paper is a highly automatic method to prove bounded live-
ness of pipelined processors with multicycle functional units. The proposed method
enables the liveness check for a 5-stage pipelined DLX processor [13] with a 2048-
cycle ALU, while producing 4 orders of magnitude speedup for a pipelined DLX with
a 32-cycle ALU compared to a previous method for indirect proof of bounded liveness
[42] (see Sect. 5).

3 Related Work
Safety and liveness were first defined by Lamport [20]. Most of the previous research
on formal verification of processors has addressed only safety, as also observed in [2].
The most popular theorem-proving approach for proving microprocessor liveness is to
prove that for each pipeline stage that can get stalled, if the stalling condition is true
then the instruction initially in that stage will stay there, and if the stalling condition is
false then the instruction will advance to the next stage. It is additionally proved that if
the stalling condition is true, then it will eventually become false, given the implemen-
tation of the control logic and fairness assumptions about arbiters. Liveness was
proved in this way by Srivas and Miller [34], Hosabettu et al. [15], Jacobi and Kröning
[16], Müller and Paul [28], Kröning and Paul [17], and Lahiri et al. [19]. Sawada [32]
similarly proved that if an implementation is fed with bubbles, it will eventually get

flushed. However, note that a buggy processor, where the architectural state elements
are always disabled, may pass the check that stall signals will eventually become false,
and that the pipeline will eventually get flushed, as well as satisfy the safety correct-
ness criterion (where formula equality0 will be true), but will fail the liveness check
done here. Using a different theorem-proving approach, Manolios [23] also accounted
for liveness by proving that a given state can be reached from a flushed state after an
appropriate number of steps. McMillan [27] used circular compositional reasoning to
check the liveness of a reduced model of an out-of-order processor with ALU and
move instructions. His method requires the manual definition of lemmas and case-
splitting expressions; the manual reduction of the proof to one that involves two reser-
vation stations and one register; and the manual introduction of fairness assumptions
for the abstracted arbiter. The approaches in the above nine papers will require signifi-
cant manual work to apply to the models that are automatically checked for both safety
and liveness in the current paper. Aagaard et al. [1] formulated a liveness condition,
but did not present results.

Henzinger et al. [14] also enriched the specification, using a different method than
ours, but had to do that even to prove safety of a 3-stage pipeline with ALU and move
instructions. Biere et al. [3][4] enriched a model with a witnessing mechanism that
records whether a property has been satisfied, thus allowing them to model check live-
ness of a communication protocol as safety. Pnueli et al. [29] proved the liveness of
mutual-exclusion algorithms by deriving an abstraction, and enriching it with condi-
tions that allowed the efficient liveness check in a way that implies the liveness of the
original model. A method for indirect proof of liveness for pipelined processors was
presented in [42]—see Sect. 5. Another approach suitable for proving both safety and
liveness of pipelined processors was proposed in [24], but was not applied to designs
with multicycle functional units.

4 EUFM, Positive Equality, and Efficient Translation to CNF
The syntax of EUFM [7] includes terms and formulas. Terms are used to abstract
word-level values of data, register identifiers, memory addresses, as well as the entire
states of memory arrays. A term can be an Uninterpreted Function (UF) applied to a
list of argument terms, a term variable, or an ITE operator selecting between two argu-
ment terms based on a controlling formula, such that ITE(formula, term1, term2) will
evaluate to term1 if formula = true, and to term2 if formula = false. The syntax for
terms can be extended to model memories by means of the functions read and write
[7][39]. Formulas are used to model the control path of a microprocessor, and to
express the correctness condition. A formula can be an Uninterpreted Predicate (UP)
applied to a list of argument terms, a Boolean variable, an ITE operator selecting
between two argument formulas based on a controlling formula, or an equation (equal-
ity comparison) of two terms. Formulas can be negated and combined by Boolean con-
nectives. We will refer to both terms and formulas as expressions. UFs and UPs are
used to abstract the implementation details of functional units by replacing them with
“black boxes” that satisfy no particular properties other than that of functional consis-
tency—that equal values of the inputs to the UF (UP) produce equal output values.

The efficiency from exploiting Positive Equality is due to the observation that the
truth of an EUFM formula under a maximally diverse interpretation of the p-terms
implies the truth of the formula under any interpretation. A maximally diverse inter-
pretation is one where the equality comparison of a term variable with itself evaluates
to true; that of a p-term variable with a syntactically distinct term variable (a p-equa-
tion) evaluates to false; and that of a g-term variable with a syntactically distinct g-
term variable (a g-equation) could evaluate to either true or false, and can be encoded
with Boolean variables [10][30][41].

In the formal verification tool flow, we can apply an optimization [44] that produces
Boolean formulas with many ITE-trees. An ITE-tree can be translated to CNF with a
unified set of clauses [44], without intermediate variables for outputs of ITEs inside
the tree. ITE-trees can be further merged with one or more levels of their AND/OR
leaves that have fanout count of 1. We can also merge other gate groups [43][44].
Merging of ITE-trees and other gate groups results in fewer variables and clauses, i.e.,
reduced solution space, and so less Boolean Constraint Propagation (BCP) and fewer
cache misses.

5 Indirect Proof of Liveness
This section summarizes one of the results from [42]. To avoid the validity checking of
the monolithic liveness correctness formula (1), which becomes complex for designs
with long pipelines and many features, we can prove liveness indirectly:

THEOREM 1. If after n implementation steps, equality0 = false under a maximally
diverse interpretation of the p-terms, and the safety property is valid, then the liveness
property is valid under any interpretation.

Note that under an interpretation that is not a maximally diverse interpretation of the
p-terms, the condition equality0 may become true, e.g., in the presence of software
loops, or if multiple instructions raise the same exception and so update the PC with
the same exception-handler address. However, the liveness condition (1) will be still
valid, since it can only get disjuncted with other formulas that result from equations
between syntactically distinct p-terms that become equal under an interpretation that is
not a maximally diverse interpretation of the p-terms.

Since equality0 is the conjunction of the pair-wise equality comparisons for all
architectural state elements, it suffices to prove that one of those equality comparisons
is false under a maximally diverse interpretation of the p-terms. In particular, we can
prove that pc0 = false, where pc0 is the equality comparison between the PC state after
the implementation side of the diagram (see Fig. 1), and the PC that is part of the initial
specification state. Note that choosing the Register File or the Data Memory instead
would not work, since they are not updated by each instruction, and so there can be
infinitely long instruction sequences that do not modify these state elements. Note that
proving forward progress—that the PC is updated at least once after n implementation
steps, i.e., proving pc0 = false under a maximally diverse interpretation of the p-
terms—is done without the specification. However, the specification is used to prove
safety, thus inductively the correctness for any number of steps.

6 Processor Benchmarks and Their Liveness
Experiments will be conducted with variants of a 5-stage pipelined DLX processor
[13] that can execute ALU, branch, load, and store instructions. The 5 pipeline stages
are: Fetch, Decode, Execute, Memory, and Write-Back. The Execute stage contains an
ALU that can take either a single cycle or up to m cycles to compute the result of an
ALU instruction. The actual latency may depend on the instruction opcode, the values
of the data operands, etc., and so the choice between 1 and m cycles is made non-deter-
ministically [37] in order to account for any actual implementation of the ALU. The
processor benchmarks are named DLX-ALU4, DLX-ALU8, ..., and DLX-ALU2048,
for values of m equal to 4, 8, ..., and 2048, respectively. The branch instructions have
both their target address and their direction (indicating whether the branch is taken or
not taken) computed in the Execute stage in a single cycle. ALU results, data memory
addresses, branch targets, and branch directions depend on the instruction opcode, and
two data operands read from the Register File (in the Decode stage) at locations speci-
fied by source register identifiers. ALU and load instructions also have a destination
register identifier, indicating the Register File location where the result will be stored.
Data hazards are avoided by forwarding logic in the Execute stage. While the ALU is
computing the result of a multicycle operation, the instructions in previous stages are
stalled, and bubbles are inserted in the Memory stage.

To illustrate the choice of number of steps, n, for the liveness proof of one of the
above benchmarks where the ALU has a maximum latency of m cycles, note that the
longest delay before such a processor fetches a new instruction that is guaranteed to be
completed is m + 3 cycles. This will happen if the Decode stage contains a branch that
will be taken, but the Execute stage contains an ALU instruction that will take m
cycles. Then, the branch will be stalled for m – 1 cycles, followed by one cycle to go
through Decode, another cycle to go through Execute (where the branch target and
direction will be computed), a third cycle to go through Memory (where the PC will be
updated with the branch target, and all subsequent instructions that are in previous
pipeline stages will be cancelled), and a fourth cycle to fetch a new instruction that is
guaranteed to be completed since the pipeline will be empty by then. Thus, a correct
version of these processors has to be simulated symbolically for m + 3 steps in order to
fetch a new instruction that is guaranteed to be completed.

7 Placeholder for Abstracting Multicycle Functional Units for
Proving Safety and Liveness

Multicycle functional units are abstracted with a placeholder that is suitable for prov-
ing both safety and liveness (see Fig. 2), a modified version of a placeholder suitable
for proving only safety [37]. Uninterpreted function ALU abstracts the functionality of
the replaced multicycle functional unit.

In Fig. 2, when signal Flush is false (during regular symbolic simulation) and a mul-
ticycle instruction is in the pipeline stage of the abstracted functional unit, as indicated
by signal Take_m being true in that stage, then the chain of m – 1 latches will be used
to delay the multicycle computation for m cycles before the result of that computation
is allowed to continue to the next stage. When signal Flush becomes true during the

computation of the abstraction function by flushing, then the chain of m – 1 latches
will be cleared on the next clock cycle; signal Complete will become true for 1 clock
cycle as long as the placeholder contains a valid instruction in flight, thus completing
that instruction; and signal Stall will be false, thus allowing the instructions in the pre-
vious pipeline stages to advance. Hence, this placeholder of a multicycle functional
unit can be used for proving both safety (by setting Flush to false for one cycle of reg-
ular symbolic simulation, and then setting Flush to true in order to quickly complete
partially executed instructions during flushing) and liveness (by setting Flush to false
for as many cycles as required, and then setting Flush to true in order to quickly com-
plete partially executed instructions during flushing). Multicycle memories are
abstracted similarly, by using a memory model instead of the uninterpreted function
ALU.

Fig. 2. Abstracting a multicycle ALU with a placeholder suitable for proving both safety and liveness of the
pipelined processor. The latency is 1 cycle when signal Take_1 is true (i.e., RegWrite is true and IsMCInstr is
false) or m cycles when signal Take_m is true (i.e., RegWrite is true and IsMCInstr is true). The chain of m – 1
latches delays signal IsMCInstr for m cycles in the stage of the functional unit. The previous pipeline stages
are stalled by signal Stall when the functional unit takes more than 1 cycle for an operation. Signal CancelLa-
terMCInstructions avoids the need to impose and check an invariant that at most one latch in the chain has
value true.

An alternative implementation of the placeholder is without the feedback loop of
signal CancelLaterMCInstructions that clears the m – 1 latches when a multicycle oper-
ation completes. Instead, constraints are imposed that at most one of the m – 1 latches
contains a valid instruction. These constraints have to be checked for invariance after 1
cycle of regular symbolic simulation.

8 Abstracting the Branch Targets and Directions
The indirect proof of liveness (see Sect. 5) checks that the PC is modified by at least
one new instruction after n implementation steps. However, for this proof it does not
matter what the actual values of the branch targets and branch directions are when the
PC is updated. The safety proof already guarantees that those values will be correct.
Thus, we can abstract each instruction’s branch target and direction with an oracle
term and an oracle formula, respectively, such that there is a 1-to-1 relation between
the instruction and its oracles. This can be done by either extending the Instruction
Memory to produce the oracles, or introducing a new uninterpreted function and a new

1

0

Forwarding
Logic

ALUOpcode

Data1

Result

RegWrite. . .IsMCInstr

RegWrite ...

Stall

chain of m – 1 latches

CancelLaterMCInstructions

Flush

Stall

Complete
Take_m

Take_1

uninterpreted predicate, respectively, that depend on the PC of the instruction.
The oracles for the branch target and direction are propagated along the processor

pipeline in the same way as the instruction’s opcode. These oracles are used in the
Execute stage only when proving liveness, by being connected (e.g., by means of a
multiplexor controlled by a signal indicating whether the proof is for liveness) to the
signals for the branch target and branch direction, respectively, which are otherwise
computed by an uninterpreted function and an uninterpreted predicate, respectively,
when proving safety. The introduction of auxiliary state in a processor can be viewed
as design for formal verification. Note that the oracle branch target and branch direc-
tion can be used as abstractions for the final actually chosen branch target and branch
direction, respectively, in a design where several branch targets and branch directions
are prioritized for each instruction. This abstraction technique, using oracles to abstract
result terms and formulas, is general and applicable to other functional units, once it is
proven that their operands are provided correctly for each instruction.

Since the above abstractions make the branch targets and directions independent of
the data operands, we can perform automatically a cone-of-influence reduction to sim-
plify the processor for its liveness proof by removing any circuitry that does not affect
the PC—the only architectural state element in the EUFM formula for the indirect
proof of liveness. That allows us to remove the uninterpreted function and uninter-
preted predicate abstracting the functionality of, respectively, the functional unit com-
puting the branch target and that computing the branch direction in the Execute stage;
the forwarding logic for those functional units; the uninterpreted function abstracting
the functionality of the multicycle ALU in the Execute stage, since the produced result
no longer affects the updating of the PC; the forwarding logic for the multicycle ALU;
the Register File and the Data Memory, since the data operands that they produce no
longer affect the updating of the PC; and all connections for transferring of data oper-
ands. What is left after an automatic cone-of-influence reduction is a timing abstrac-
tion of the pipelined processor with multicycle functional units. The timing abstraction
does not depend on the data operands in the original implementation, but only on sig-
nals that affect the stalling and squashing of the oracle branch targets and oracle
branch directions in the reduced pipelined design.

LEMMA 1. If the timing abstraction of a pipelined processor model satisfies the condi-
tion pc0 = false under a maximally diverse interpretation of the p-terms after n steps,
then that condition is also satisfied by the pipelined processor model itself.

Sketch of the proof: Because of the way that the oracles are generated and then propa-
gated along the processor pipeline together with the instruction opcode, there is a 1-to-
1 correspondence between each instruction and its oracles. Also, since the oracles are
not constrained in any way—i.e., the oracles for the branch targets and branch direc-
tions are arbitrary terms and formulas, respectively—then each such oracle can be
viewed as a “placeholder” for the actual value of a branch target or a branch direction,
respectively. The safety proof already guarantees that any actual branch target and
branch direction will be computed correctly. Furthermore, since no control decisions
are made based on the values of the oracles for the branch targets, then those oracle
terms will be classified as p-terms, allowing us to exploit Theorem 1. (In the case of

pipelined processors with branch prediction, where the actual branch targets are com-
pared for equality with predicted branch targets in order to correct a branch mispredic-
tion, we can use special abstractions that turn the actual and predicted branch targets
into p-terms [42].) Hence, a liveness proof based on arbitrary terms for the branch tar-
gets and arbitrary formulas for the branch directions will account for any outcome of
the branches, and will ensure that the PC will be updated by at least one new instruc-
tion after any sequence of instructions executed during n implementation steps. Then,
there will be no execution scenario of stalling or cancelling of instructions over n
implementation steps, resulting in violation of the indirect liveness condition, pc0 =
false, under a maximally diverse interpretation of the p-terms. �

9 Abstracting the Branch Targets of New Instructions with a Ded-
icated Term Variable

Recall that we want to prove that formula pc0 is false under a maximally diverse inter-
pretation of the p-terms, which implies that equality0 = false, and thus from Theorem 1
that the liveness condition holds (see Sect. 5). That is, we want to prove that the repre-
sentation of pc0 as (PC0

Spec = PC*
Spec) is false under a maximally diverse interpreta-

tion of the p-terms, where PC0
Spec is the PC term after flushing the implementation

along the specification side of the diagram in Fig. 1, and PC*
Spec is the PC term after n

regular implementation steps followed by flushing along the implementation side of
the diagram.

After abstracting the branch targets with arbitrary terms, the term for PC0
Spec will

be a nested-ITE expression that has as leaves the term variables for branch targets of
instructions that are initially in the pipeline. The term for PC*

Spec will too be a nested-
ITE expression that also has as leaves all of those term variables, as well as the terms
for the branch targets of new instructions fetched during the n regular implementation
steps. Because of modeling restrictions [35][36], all branch targets will appear as p-
terms. Thus, in formula pc0 the branch target p-terms of new instructions will be com-
pared for equality with only branch target p-terms of instructions that are initially in
the pipeline. Since the branch target p-terms of new instructions are syntactically dis-
tinct from the branch target p-terms that are initially in the pipeline, then such low-
level equations will simplify to false when evaluating pc0 under a maximally diverse
interpretation of the p-terms. The only low-level equations in pc0 that will evaluate to
true are those where both arguments are the same p-term variable that is initially in the
pipeline. Hence, the value of pc0 under a maximally diverse interpretation of the p-
terms will be preserved if all branch target p-terms of new instructions are considered
to be in the same equivalence class, representing branch target p-terms that are syntac-
tically distinct from those that are initially in the pipeline. This observation allows us
to abstract the branch targets of newly fetched instructions with the same dedicated
fresh term variable. By reducing the number of distinct p-term variables that are leaves
of the nested-ITE arguments of equation pc0, we will improve the efficiency of evalu-
ating pc0 under a maximally diverse interpretation of the p-terms.

Note that along the implementation side of the diagram, the PC is also updated with
SequentialPC terms produced by an uninterpreted function that maps the current PC

term to a term for the sequential instruction address. Hence, applications of that unin-
terpreted function will also appear as leaves of term PC*

Spec. Applying the above rea-
soning, we can replace all applications of that uninterpreted function with the
dedicated fresh term variable used to abstract the branch targets of newly fetched
instructions, since the PC is not updated with its sequential values during flushing
along the specification side of the diagram. However, this will result in updating the
PC with the dedicated fresh term variable on many clock cycles, and then in fetching
the same symbolic instruction from the Instruction Memory on the next cycles. In
order to prove liveness for an arbitrary instruction sequence executed over n imple-
mentation steps, we can abstract the Instruction Memory with a generator of arbitrary
values [37], thus producing a completely arbitrary symbolic instruction and associated
oracles on every clock cycle. As before, we will prove that there is no execution sce-
nario that will prevent the fetching and completion of at least one new instruction.

10 Avoiding the Abstraction Function Along the Specification Side
of the Diagram

Instead of checking that (PC0
Spec = PC*

Spec) is false under a maximally diverse inter-
pretation of the p-terms, we can check that (new_PC_var = PC*

Spec) is true under a
maximally diverse interpretation of the p-terms, thus proving that the PC is overwrit-
ten with the dedicated fresh term variable new_PC_var after all execution sequences
of length n. If that holds, then PC*

Spec evaluates to new_PC_var under a maximally
diverse interpretation of the p-terms, so that (PC0

Spec = PC*
Spec) is equivalent to

(PC0
Spec = new_PC_var), which will be false under a maximally diverse interpretation

of the p-terms, since new_PC_var is not a leaf of PC0
Spec because by the definition of

flushing new_PC_var is not written to the PC along the specification side of the dia-
gram for liveness. Thus, we avoid the specification side of the diagram, since PC0

Spec
is no longer needed.

Additionally, we can automatically introduce an auxiliary circuit that when simu-
lated symbolically will construct a formula that is equivalent to the formula
(new_PC_var = PC*

Spec) but is much simpler to evaluate. Intuitively, we can push the
equation (new_PC_var = PC*

Spec) to the leaves of PC*
Spec, where PC*

Spec is a nested-
ITE expression with leaves that are term variables representing branch targets, and
ITE-controlling formulas that are the enabling conditions for the updates of the PC
along the implementation side of the diagram for liveness. Then, we can introduce an
auxiliary circuit where a new latch is used to track whether each new update of the PC
has value that is equal to new_PC_var, such that the latch is initialized with false, since
the initial PC value is syntactically different from new_PC_var. This latch is updated
under the same conditions that control the PC updates, but with the formula
(new_PC_var = new_PC_term), where new_PC_term is the new term that is written to
the PC in that clock cycle. Furthermore, we can apply automatically a retiming trans-
formation [25][26], and move the equation (new_PC_var = new_PC_term) across
pipeline latches that provide versions of new_PC_term in different clock cycles. The
effect is to replace the term-level signal for a version of new_PC_term in each pipeline
latch with a bit-level signal, indicating whether the initial version of new_PC_term in

that pipeline latch is syntactically equal to new_PC_var. This transformation replaces
the term-level signal for branch targets with a bit-level signal, having initial values
false in all pipeline latches (since the term variables representing the initial state of
branch targets in pipeline latches are syntactically distinct from new_PC_var), while
the value of this signal in the first pipeline stage is true (since the original term-level
signal there is exactly new_PC_var that is fed both to the PC instead of the Sequen-
tialPC and to the first pipeline latch). This transformation is applied entirely automati-
cally. Thus, we obtain a modified circuit, where a new latch records whether the PC
has been updated with new_PC_var, such that the new latch is controlled by the enable
signal for the original PC (that is no longer needed), but is updated with formulas. The
formula built in the new latch represents directly the result from evaluating
(new_PC_var = PC*

Spec) under a maximally diverse interpretation of the p-terms, and
thus avoids the increase in memory and CPU time necessary for an EUFM decision
procedure to evaluate (new_PC_var = PC*

Spec). Damm et al. [9] also reduced the
domain to {0, 1} when formally verifying pipelines with a certain structure.

11 Results
The processor benchmarks from Sect. 6 were first checked for safety—each bench-
mark required less than 0.2 seconds—and then for liveness—see Tables 1 – 5. The
term-level symbolic simulator TLSim [46] was used to symbolically simulate all mod-
els. The resulting EUFM correctness formulas were translated to equivalent proposi-
tional formulas by the decision procedure EVC [46] that then applied efficient
translations to CNF [43][44][45]. Equations between g-term variables were encoded
with the eij encoding [10]. The SAT-solvers siege_v4 [31] and BerkMin621 [11][12]
—two of the top performers in the SAT’03 competition [21]—were used for all exper-
iments; siege_v4 was faster on all of the resulting CNF formulas, but could not process
a formula with more than 219 CNF variables (see Table 2)—that formula was solved
with BerkMin621. The computer was a Dell OptiPlex GX260 with a 3.06-GHz Intel
Pentium 4, having a 512-KB on-chip L2-cache, 2 GB of memory, and running Red Hat
Linux 9.0.

From Table 1, the previous method for indirect proof of liveness [42] (see Sect. 5)
scaled up to the model with a 32-cycle ALU, DLX-ALU32, for which the proof took
2,483 seconds.

Table 2 shows the results after abstracting the branch targets and branch directions
with oracles, thus making the branch targets and directions independent from the data
operands, and then performing automatically a cone-of-influence reduction to elimi-
nate all logic associated with the computation, transfer, and storage of operands (see
Sect. 8). The time for the automatic cone-of-influence reduction was less than 0.1 sec-
ond for each benchmark and is included in the time for symbolic simulation with
TLSim. This approach produced 3 orders of magnitude speedup for DLX-ALU32,
reducing the total time for the liveness check from 2,483 seconds to 1.6 second
(1,552× speedup). For this benchmark, the CNF variables were reduced almost 3×, the
clauses more than 10×, and the literals almost 50×. The approach enabled scaling up to
the model with a 128-cycle ALU, for which the proof took 258 seconds.

Table 3 presents the results after using a dedicated fresh term variable for all branch
targets of newly fetched instructions, and abstracting the Instruction Memory with a
generator of arbitrary values. This approach produced an order of magnitude speedup
of the liveness check for the model with a 64-cycle ALU, DLX-ALU64, reducing the
total time from 50 seconds to 2.75 seconds. The speedup was more than 8× for the
model with a 128-cycle ALU, DLX-ALU128, for which the total time was reduced
from 258 seconds to 30 seconds. Most importantly, this approach enabled scaling up to
the model with a 256-cycle ALU, for which the proof took 393 seconds.

Table 1. Results from the previous method for indirect proof of liveness by proving pc0 = false under a
maximally diverse interpretation of the p-terms [42].

Processor
CNF Formal Verification Time [sec]

Variables Clauses Literals TLSim EVC SAT Total

DLX-ALU4 3,249 32,239 142,749 0.02 0.49 0.05 0.56

DLX-ALU8 7,905 102,699 555,272 0.03 5.72 0.22 5.97

DLX-ALU16 18,597 381,414 2,937,085 0.03 42.53 1.36 44

DLX-ALU32 63,285 2,137,614 26,113,861 0.06 2,462.94 20.20 2,483

Table 2. Results from indirect proof of liveness after also abstracting the branch targets and branch
directions with oracles, and performing a cone-of-influence reduction.

Processor
CNF Formal Verification Time [sec]

Variables Clauses Literals TLSim EVC SAT Total

DLX-ALU32 23,735 171,974 551,002 0.04 1.24 0.32 1.60

DLX-ALU64 165,159 1,195,077 3,841,960 0.08 12.31 37.59 50

DLX-ALU128 784,587 6,198,558 20,833,828 0.19 100.68 157.13a

a. BerkMin621 was used, since siege_v4 cannot process CNFs with more than 219 variables.

258

DLX-ALU256 —— —— —— 0.39 > mem. —— ——

Table 3. Results from indirect proof of liveness after also using a dedicated fresh term variable for all branch
targets of newly fetched instructions, and abstracting the Instruction Memory with a generator of arbitrary
values.

Processor
CNF Formal Verification Time [sec]

Variables Clauses Literals TLSim EVC SAT Total

DLX-ALU32 1,827 34,979 105,580 0.04 0.29 0.09 0.42

DLX-ALU64 5,635 220,243 663,052 0.08 1.79 0.88 2.75

DLX-ALU128 19,395 1,566,643 4,708,684 0.18 18.26 11.11 30

DLX-ALU256 71,491 11,832,947 35,532,748 0.46 234.36 158.13 393

Table 4. Results from indirect proof of liveness after also abstracting the multicycle ALU with a placeholder
without feedback loops.

Processor
CNF Formal Verification Time [sec]

Variables Clauses Literals TLSim EVC SAT Total

DLX-ALU32 1,991 23,857 72,519 0.05 0.26 0.11 0.42

DLX-ALU64 5,959 130,369 392,887 0.11 1.08 0.61 1.80

DLX-ALU128 20,039 854,369 2,566,551 0.33 8.60 2.60 12

DLX-ALU256 72,775 6,181,281 18,550,615 1.78 92.30 36.24 130

Table 4 presents the results after abstracting the multicycle ALU with a placeholder
without feedback loops, and using a constraint to restrict the initial state of that place-
holder so that it contains at most one valid instruction in the chain of m – 1 latches.
Checking the invariance of this constraint took less than 1 second for each of the
benchmarks. This approach resulted in 3× speedup of the liveness check for the model
with a 256-cycle ALU, DLX-ALU256, reducing the total time from 393 seconds to
130 seconds. Furthermore, while the CNF variables increased only slightly, the CNF
clauses and literals were almost halved for DLX-ALU128 and DLX-ALU256.

Table 5 presents the results after implementing the equation with the dedicated fresh
term variable for the new PC values as an auxiliary circuit and avoiding the specifica-
tion side of the diagram (see Sect. 10). The auxiliary circuit was introduced automati-
cally—that required less than 0.2 seconds for each benchmark and the exact time is
included in the time for symbolic simulation with TLSim. This approach resulted in a
6.5× speedup for the model with a 256-cycle ALU, DLX-ALU256, reducing the total
time from 130 seconds to 19 seconds, while the CNF variables, clauses and literals
were reduced by an order of magnitude. Most importantly, this approach enabled the
scaling for the model with a 2048-cycle ALU, DLX-ALU2048, for which the liveness
check took 6,058 seconds. Note that the speedup for DLX-ALU32 is 4 orders of magni-
tude relative to the previous method for indirect proof of liveness (see Table 1).

12 Conclusions
Presented was an approach for proving liveness of pipelined processors with multicy-
cle functional units, without the need for the user to set up an inductive argument. The
method scaled for a 5-stage pipelined DLX with a 2048-cycle ALU, and resulted in 4
orders of magnitude speedup for a design with a 32-cycle ALU, compared to a previ-
ous method for indirect proof of liveness [42]. Given that functional units in recent
state-of-the-art processors usually have latencies of up to 20 – 30 cycles, and rarely up
to 200 cycles, the presented approach will enable the automatic formal verification of
liveness for realistic pipelined processors targeted to embedded and DSP applications.
Future work will improve the scaling of the new approach.

Table 5. Results from indirect proof of liveness after also implementing the equation with the dedicated fresh
term variable for the new PC values as an auxiliary circuit and avoiding the specification side of the
diagram.

Processor
CNF Formal Verification Time [sec]

Variables Clauses Literals TLSim EVC SAT Total

DLX-ALU32 837 6,562 20,768 0.05 0.09 0.08 0.22

DLX-ALU64 1,783 21,278 63,129 0.11 0.22 0.35 0.68

DLX-ALU128 3,422 71,234 226,927 0.32 0.78 0.89 1.99

DLX-ALU256 6,995 259,793 914,040 1.77 3.46 13.95 19

DLX-ALU512 13,907 978,001 3,465,464 8.24 19.79 43.22 71

DLX-ALU1024 27,731 3,790,673 13,483,512 71 252 210 533

DLX-ALU2048 51,276 16,992,534 55,198,573 899 4,117 1,042 6,058

References
[1] M.D. Aagaard, N.A. Day, and M. Lou, “Relating multi-step and single-step microprocessor correctness statements,” Formal

Methods in Computer-Aided Design (FMCAD ’02), LNCS 2517, Springer-Verlag, November 2002.
[2] M.D. Aagaard, B. Cook, N.A. Day, and R.B. Jones, “A framework for superscalar microprocessor correctness statements,” Soft-

ware Tools for Technology Transfer (STTT), Vol. 4, No. 3 (May 2003).
[3] A. Biere, C. Artho, and V. Schuppan, “Liveness checking as safety checking,” Electronic Notes in Theoretical Computer Sci-

ence 66, 2002.
[4] V. Schuppan, and A. Biere, “Efficient reduction of finite state model checking to reachability analysis,” International Journal on

Software Tools for Technology Transfer (STTT), Vol. 5, No. 2–3, Springer-Verlag, March 2004.
[5] R.E. Bryant, S. German, and M.N. Velev, “Processor verification using efficient reductions of the logic of uninterpreted func-

tions to propositional logic,” ACM Transactions on Computational Logic (TOCL), Vol. 2, No. 1 (2001).
[6] R.E. Bryant, and M.N. Velev, “Boolean satisfiability with transitivity constraints,” ACM Transactions on Computational Logic

(TOCL), Vol. 3, No. 4 (October 2002), pp. 604–627.
[7] J.R. Burch, and D.L. Dill, “Automated verification of pipelined microprocessor control,” CAV ’94, June 1994.
[8] J.R. Burch, “Techniques for verifying superscalar microprocessors,” 33rd Design Automation Conference (DAC ’96), June 1996.
[9] W. Damm, A. Pnueli, and S. Ruah, “Herbrand Automata for Hardware Verification,” 9th International Conference on Concur-

rency Theorey (CONCUR ’88), D. Sangiorgi and R. de Simone, eds., Springer-Verlag, LNCS 1466, 1988.
[10] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD based procedures for a theory of equality with uninterpreted func-

tions,” Computer-Aided Verification (CAV ’98), LNCS 1427, Springer-Verlag, June 1998, pp. 244–255.
[11] E. Goldberg, and Y. Novikov, “BerkMin: A fast and robust sat-solver,” DATE ’02, March 2002, pp. 142–149.
[12] E. Goldberg, and Y. Novikov, SAT-solver BerkMin621, June 2003.
[13] J.L. Hennessy, and D.A. Patterson, Computer Architecture: A Quantitative Approach, 3rd ed., Morgan Kaufmann, San Francisco,

2002.
[14] T.A. Henzinger, S. Qadeer, and S.K. Rajamani, “Decomposing refinement proofs using assume-guarantee reasoning,” Interna-

tional Conference on Computer-Aided Design (ICCAD ’00), 2000.
[15] R. Hosabettu, M. Srivas, and G. Gopalakrishnan, “Proof of correctness of a processor with reorder buffer using the completion

functions approach,” Computer-Aided Verification (CAV ’99), LNCS 1633, Springer-Verlag, 1999.
[16] C. Jacobi, and D. Kröning, “Proving the correctness of a complete microprocessor,” 30. Jahrestagung der Gesellshaft für Infor-

matik, Springer-Verlag, 2000.
[17] D. Kröning, and W.J. Paul, “Automated pipeline design,” Design Automation Conference (DAC ’01), June 2001.
[18] S. Lahiri, C. Pixley, and K. Albin, “Experience with term level modeling and verification of the M•CORE™ microprocessor

core,” International Workshop on High Level Design, Validation and Test (HLDVT ’01), November 2001.
[19] S.K. Lahiri, S.A. Seshia, and R.E. Bryant, “Modeling and verification of out-of-order microprocessors in UCLID,” Formal

Methods in Computer-Aided Design (FMCAD ’02), LNCS 2517, Springer-Verlag, November 2002.
[20] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE Trans. on Software Engineering,” Vol. 3, No. 2 (1977).
[21] D. Le Berre, and L. Simon, “Results from the SAT’03 solver competition,” 6th International Conference on Theory and Applica-

tions of Satisfiability Testing (SAT ’03), 2003. http://www.lri.fr/~simon/contest03/results/
[22] S. Malik, A.R. Wang, R.K. Brayton, and A. Sangiovani-Vincentelli, “Logic Verification Using Binary Decision Diagrams in a

Logic Synthesis Environment,” International Conference on Computer-Aided Design, November 1988.
[23] P. Manolios, “Mechanical verification of reactive systems,” Ph.D. Thesis, Computer Sciences, Univ. of Texas at Austin, 2001.
[24] P. Manolios, and S.K. Srinivasan, “Automatic verification of safety and liveness for XScale-like processor models using WEB

refinements,” Design, Automation and Test in Europe (DATE ’04), Vol. 1, February 2004.
[25] J. Matthews, and J. Launchbury, “Elementary microarchitecture algebra,” Computer-Aided Verification (CAV ’99), N. Halbw-

achs, and D. Peled, eds., LNCS 1633, Springer-Verlag, July 1999, pp. 288–300.
[26] J.R. Matthews, “Algebraic specification and verification of processor microarchitectures,” Ph.D. Thesis, Department of Com-

puter Science and Engineering, Oregon Graduate Institute of Science and Technology, October 2000.
[27] K.L. McMillan, “Circular compositional reasoning about liveness,” Technical Report, Cadence Berkeley Labs, 1999.
[28] S.M. Müller, and W.J. Paul, Computer Architecture: Complexity and Correctness, Springer-Verlag, 2000.
[29] A. Pnueli, J. Xu, and L. Zuck, “Liveness with (0, 1, infinity)-counter abstraction,” CAV ’02, LNCS 2404, Springer-Verlag, July

2002.
[30] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel, “The small model property: how small can it be?”, Journal of Information and

Computation, Vol. 178, No. 1 (October 2002), pp. 279–293.
[31] L. Ryan, Siege SAT Solver v.4. http://www.cs.sfu.ca/~loryan/personal/
[32] J. Sawada, “Verification of a simple pipelined machine model,” in Computer-Aided Reasoning: ACL2 Case Studies, Kluwer

Academic Publishers, Boston/Dordrecht/London, 2000.
[33] H. Sharangpani, and K. Arora, “Itanium processor microarchitecture,” IEEE Micro, Vol. 20, No. 5 (2000).
[34] M.K. Srivas, and S.P. Miller, “Formal verification of an avionics microprocessor,” Tech. Report CSL-95-4, SRI International,

1995.
[35] M.N. Velev, and R.E. Bryant, “Exploiting positive equality and partial non-consistency in the formal verification of pipelined

microprocessors,” 36th Design Automation Conference (DAC ’99), June 1999.
[36] M.N. Velev, and R.E. Bryant, “Superscalar processor verification using efficient reductions of the logic of equality with uninter-

preted functions to propositional logic,” CHARME ’99, LNCS 1703, September 1999, pp. 37–53.
[37] M.N. Velev, and R.E. Bryant, “Formal verification of superscalar microprocessors with multicycle functional units, exceptions,

and branch prediction,” 37th Design Automation Conference (DAC ’00), June 2000.
[38] M.N. Velev, “Formal verification of VLIW microprocessors with speculative execution,” Computer-Aided Verification (CAV

’00), E.A. Emerson, and A.P. Sistla, eds., LNCS 1855, Springer-Verlag, July 2000.
[39] M.N. Velev, “Automatic abstraction of memories in the formal verification of superscalar microprocessors,” Tools and Algo-

rithms for the Construction and Analysis of Systems (TACAS ’01), LNCS 2031, April 2001, pp. 252–267.
[40] M.N. Velev, and R.E. Bryant, “Effective use of boolean satisfiability procedures in the formal verification of superscalar and

VLIW microprocessors,” Journal of Symbolic Computation (JSC), Vol. 35, No. 2 (February 2003).
[41] M.N. Velev, “Automatic abstraction of equations in a logic of equality,” Automated Reasoning with Analytic Tableaux and

Related Methods (TABLEAUX ’03), LNAI 2796, Springer-Verlag, September 2003.
[42] M.N. Velev, “Using positive equality to prove liveness for pipelined microprocessors,” Asia and South Pacific Design Automa-

tion Conference (ASP-DAC ’04), January 2004.
[43] M.N. Velev, “Efficient translation of Boolean formulas to CNF in formal verification of microprocessors,” Asia and South

Pacific Design Automation Conference (ASP-DAC ’04), January 2004.
[44] M.N. Velev, “Exploiting signal unobservability for efficient translation to CNF in formal verification of microprocessors,”

Design, Automation and Test in Europe (DATE ’04), February 2004.
[45] M.N. Velev, Comparative Study of Strategies for Formal Verification of High-Level Processors, 22nd International Conference

on Computer Design (ICCD '04), October 2004, pp. 119–124.
[46] M.N. Velev, and R.E. Bryant, “TLSim and EVC: A term-level symbolic simulator and an efficient decision procedure for the

logic of equality with uninterpreted functions and memories,” International Journal of Embedded Systems (IJES), Special Issue
on Hardware-Software Codesign for Systems-on-Chip, 2004.

	Automatic Formal Verification of Liveness for Pipelined Processors with Multicycle Functional Units
	1 Introduction
	2 Definition of Safety and Liveness
	3 Related Work
	4 EUFM, Positive Equality, and Efficient Translation to CNF
	5 Indirect Proof of Liveness
	6 Processor Benchmarks and Their Liveness
	7 Placeholder for Abstracting Multicycle Functional Units for Proving Safety and Liveness
	8 Abstracting the Branch Targets and Directions
	9 Abstracting the Branch Targets of New Instructions with a Dedicated Term Variable
	10 Avoiding the Abstraction Function Along the Specification Side of the Diagram
	11 Results

	Table 1. Results from the previous method for indirect proof of liveness by proving pc0 = false u...
	Table 2. Results from indirect proof of liveness after also abstracting the branch targets and br...
	Table 3. Results from indirect proof of liveness after also using a dedicated fresh term variable...
	Table 4. Results from indirect proof of liveness after also abstracting the multicycle ALU with a...
	Table 5. Results from indirect proof of liveness after also implementing the equation with the de...
	12 Conclusions
	[1] M.D. Aagaard, N.A. Day, and M. Lou, “Relating multi-step and single-step microprocessor corre...
	[2] M.D. Aagaard, B. Cook, N.A. Day, and R.B. Jones, “A framework for superscalar microprocessor ...
	[3] A. Biere, C. Artho, and V. Schuppan, “Liveness checking as safety checking,” Electronic Notes...
	[4] V. Schuppan, and A. Biere, “Efficient reduction of finite state model checking to reachabilit...
	[5] R.E. Bryant, S. German, and M.N. Velev, “Processor verification using efficient reductions of...
	[6] R.E. Bryant, and M.N. Velev, “Boolean satisfiability with transitivity constraints,” ACM Tran...
	[7] J.R. Burch, and D.L. Dill, “Automated verification of pipelined microprocessor control,” CAV ...
	[8] J.R. Burch, “Techniques for verifying superscalar microprocessors,” 33rd Design Automation Co...
	[9] W. Damm, A. Pnueli, and S. Ruah, “Herbrand Automata for Hardware Verification,” 9th Internati...
	[10] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD based procedures for a theory of e...
	[11] E. Goldberg, and Y. Novikov, “BerkMin: A fast and robust sat-solver,” DATE ’02, March 2002, ...
	[12] E. Goldberg, and Y. Novikov, SAT-solver BerkMin621, June 2003.
	[13] J.L. Hennessy, and D.A. Patterson, Computer Architecture: A Quantitative Approach, 3rd ed., ...
	[14] T.A. Henzinger, S. Qadeer, and S.K. Rajamani, “Decomposing refinement proofs using assume-gu...
	[15] R. Hosabettu, M. Srivas, and G. Gopalakrishnan, “Proof of correctness of a processor with re...
	[16] C. Jacobi, and D. Kröning, “Proving the correctness of a complete microprocessor,” 30. Jahre...
	[17] D. Kröning, and W.J. Paul, “Automated pipeline design,” Design Automation Conference (DAC ’0...
	[18] S. Lahiri, C. Pixley, and K. Albin, “Experience with term level modeling and verification of...
	[19] S.K. Lahiri, S.A. Seshia, and R.E. Bryant, “Modeling and verification of out-of-order microp...
	[20] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE Trans. on Software Engi...
	[21] D. Le Berre, and L. Simon, “Results from the SAT’03 solver competition,” 6th International C...
	[22] S. Malik, A.R. Wang, R.K. Brayton, and A. Sangiovani-Vincentelli, “Logic Verification Using ...
	[23] P. Manolios, “Mechanical verification of reactive systems,” Ph.D. Thesis, Computer Sciences,...
	[24] P. Manolios, and S.K. Srinivasan, “Automatic verification of safety and liveness for XScale-...
	[25] J. Matthews, and J. Launchbury, “Elementary microarchitecture algebra,” Computer-Aided Verif...
	[26] J.R. Matthews, “Algebraic specification and verification of processor microarchitectures,” P...
	[27] K.L. McMillan, “Circular compositional reasoning about liveness,” Technical Report, Cadence ...
	[28] S.M. Müller, and W.J. Paul, Computer Architecture: Complexity and Correctness, Springer-Verl...
	[29] A. Pnueli, J. Xu, and L. Zuck, “Liveness with (0, 1, infinity)-counter abstraction,” CAV ’02...
	[30] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel, “The small model property: how small can i...
	[31] L. Ryan, Siege SAT Solver v.4. http://www.cs.sfu.ca/~loryan/personal/
	[32] J. Sawada, “Verification of a simple pipelined machine model,” in Computer-Aided Reasoning: ...
	[33] H. Sharangpani, and K. Arora, “Itanium processor microarchitecture,” IEEE Micro, Vol. 20, No...
	[34] M.K. Srivas, and S.P. Miller, “Formal verification of an avionics microprocessor,” Tech. Rep...
	[35] M.N. Velev, and R.E. Bryant, “Exploiting positive equality and partial non-consistency in th...
	[36] M.N. Velev, and R.E. Bryant, “Superscalar processor verification using efficient reductions ...
	[37] M.N. Velev, and R.E. Bryant, “Formal verification of superscalar microprocessors with multic...
	[38] M.N. Velev, “Formal verification of VLIW microprocessors with speculative execution,” Comput...
	[39] M.N. Velev, “Automatic abstraction of memories in the formal verification of superscalar mic...
	[40] M.N. Velev, and R.E. Bryant, “Effective use of boolean satisfiability procedures in the form...
	[41] M.N. Velev, “Automatic abstraction of equations in a logic of equality,” Automated Reasoning...
	[42] M.N. Velev, “Using positive equality to prove liveness for pipelined microprocessors,” Asia ...
	[43] M.N. Velev, “Efficient translation of Boolean formulas to CNF in formal verification of micr...
	[44] M.N. Velev, “Exploiting signal unobservability for efficient translation to CNF in formal ve...
	[45] M.N. Velev, Comparative Study of Strategies for Formal Verification of High-Level Processors...
	[46] M.N. Velev, and R.E. Bryant, “TLSim and EVC: A term-level symbolic simulator and an efficien...

