
Month 200X, Vol.21, No.X, pp.XX–XX J. Comput. Sci. & Technol.

NuMDG: A New Tool for Multiway Decision Graphs Con-

struction

Sa’ed Abed1, Yassine Mokhtari2, Otmane Ait Mohamed2 and Sofine Tahar2

1 Computer Engineering Department, Hashemite University, Jordan

E-mail: sabed@hu.edu.jo

2 Electrical and Computer Engineering Department, Concordia University, Canada

E-mail: {mokhtari,ait,tahar}@ece.concordia.ca

Received MONTH DATE, YEAR.

Abstract Multiway Decision Graphs (MDGs) are a canonical representation of a subset of many-sorted

first-order logic. This subset generalizes the logic of equality with abstract types and uninterpreted func-

tion symbols. The distinction between abstract and concrete sorts mirrors the hardware distinction

between data path and control. Here we consider ways to improve MDGs construction. Efficiency is

achieved through the use of the Generalized-If-Then-Else (GITE) commonly operator in Binary Decision

Diagram packages. Consequently, we review the main algorithms used for MDGs verification techniques.

In particular, Relational Product and Pruning by Subsumption. Theses algorithms are defined uniformly

through this single GITE operator which will lead to a more efficient implementation. Moreover, we pro-

vide their correctness proof. This work can be viewed as a way to accommodate the ROBBD algorithms

to the realm of abstract sorts and uninterpreted functions. The new tool, called NuMDG, accepts an

extended SMV language, supporting abstract data sorts. Finally, we present experimental results demon-

strating the efficiency of the NuMDG tool and evaluating its performance using a set of benchmarks from

the SMV package.

Keywords Infinite state model checking, Multiway Decision Graphs, Uninterpreted Functions

1 Introduction

The recent complexity of semiconductor cir-

cuits has severely increased the cost for design

verification. In addition to the conventional

simulation technology, formal verification has
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become applicable to real-size designs. Formal

verification technology enables us to check the

behaviors of designs against given specifications

exhaustively. However, formal verification still

suffers from intrinsic high computational costs

for accomplishing its task. In order to circum-

vent this difficulty, a method based on datapath

abstraction has been proposed.

Binary Decision Diagrams (BDDs) [6] are

one of the biggest breakthroughs in computer-

aided design in the last decade. BDDs are a

canonical and efficient way to represent and ma-

nipulate Boolean functions and have been suc-

cessfully used in numerous applications and im-

prove the capacity of the model checker. BDDs

have several useful properties. The representa-

tion of many common functions using BDDs is

small. The algorithms to handle BDDs are sim-

ple. Also a function can be evaluated in linear

time in the number of variables and also can be

existentially or universally quantified (Boolean)

variables in time quadratic in the size of the

BDD. Moreover, the order in which the vari-

ables appear can be fixed and hence the BDD is

a canonical representation for Boolean function.

Most BDD packages provide an efficient imple-

mentation based on recursive operations using

a three operand function commonly known as

If-Then-Else (ITE) formulae. Also, they pro-

vide many operations that are extensively used

in automated verification methods. Unfortu-

nately, their power is mostly restricted to propo-

sitional logic, which is often not sufficiently ex-

pressive. Moreover, these methods suffer from

the drawback that they require a binary rep-

resentation of the circuit. Every individual bit

of every data signal must be encoded by a sepa-

rate Boolean variable, while the size of ROBDD

grows, sometimes exponentially, with the num-

ber of variables. This leads to a state explosion

problem when ROBDD-based methods are ap-

plied to circuits with complex datapath.

To deal with the state explosion problem

of traditional Binary Decision Diagram (BDD)

based model checking methods, a Multiway De-

cision Graph (MDG) based model checking ap-

proach was proposed in 1997 [11]. MDG is

an extended BDD-like data structure with ar-

bitrary number of children for each node and

with much more powerful labeling capability

for both the nodes and the edges. BDDs can

be viewed as a special case of MDGs. In the

MDG-based approach, data signals are denoted

by abstract variables instead of Boolean vari-

ables, and data operators are represented by

uninterpreted or partially interpreted function

symbols instead of Boolean functions. Thus, the

verification can be carried out independently of

data path width, which therefore can effectively

alleviate the state explosion problem [24]. In

MDG-based verification, abstract description of

states machines (ASM) are used for modeling

systems. In contrast to ordinary Finite State

Machines (FSM), the ASM supports non-finite

state machines as models in addition to their

intended interpretations. The intent is to rise
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the abstraction level of automated verification

methods to approach those of interactive the-

orem proving methods without sacrificing au-

tomation. MDGs have been investigated from

different angles and it culminated in a MDG

tool providing Prolog-style MDG-HDL for mod-

eling and different verification techniques in-

cluding sequential and combinational equiva-

lence checking, invariant checking and a subset

of first-order LTL model checking [28, 29]. This

work can be viewed as a way to accommodate

the ROBBD algorithms to the realm of abstract

sorts and uninterpreted functions.

The work presented here mainly improves

upon the previous work [11] in one respect. The

set of basic operations on MDGs was imple-

mented separately, while ROBDD operations

are implemented using a single generic algo-

rithm ITE. This is because the two edges that

issue from an ROBDD node labeled x span the

ranges of values {F,T} that x can take, and

this makes it possible to reason by case analysis.

Consequently, MDGs do not enjoy this property

due to abstract variables. The GITE operation

can be considered to be a functionally complete

three-input logic gate that implements the ex-

pression GITE = (P ∧Q)∨(¬P ∧H). If P is an

abstract variable, then there is no MDG repre-

senting the formula ¬P . In this paper, we claim

that it is possible to use the GITE operation to

produce an MDG R that is logically equivalent

to (P ∧ Q) ∨ (¬P ∧ H) except for some cases

that will be discussed later. This leads to im-

prove the efficiency of the existing basic MDG

algorithms.

Finally, the work here is an extension to the

work presented in [19] in that we provide the

correctness proof of all our frame algorithms

and implement the tool. We also support our

new tool by experimental results executed on

different benchmarks from the SMV package.

The goal here is to build a robust model check-

ing tool that accepts an extended SMV input

language and supports an abstraction mecha-

nism through abstract sorts and uninterpreted

functions. Indeed, the results of our proto-

type shows that such an implementation offers a

considerable gain compared to the SMV model

checking tool in terms of the size of the MDG

transition relation. However, more work should

be spent in developing the tool in order to en-

hance the performance.

The structure of this paper is as follows:

Section 2 reviews the closest related work. Sec-

tion 3 introduces a subset of many-sorted first-

order logic that gives MDGs their meaning.

Section 4 describes basic MDG algorithms, their

optimization and their correctness proof. Sec-

tion 5 introduces the architecture of NuMDG

tool and describes some experimental results.

Finally, Section 6 concludes the paper and gives

some future research directions.

2 Related Work
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In using the logic of equality with uninter-

preted functions to verify hardware systems,

specific characteristics of the formula describing

the correctness condition can be exploited when

deciding its validity. Approaches that capture

non-finite aspects of the system, by using unin-

terpreted functions or similar notion like first-

order formulae with quantification, are more

closely related work.

In Fontaine and Gribomont [13], a BDD-

based approach for the combination of theories

is presented. It is noted that BDDs, when they

are used for first order logic, are not canonical

representations any more. For example, BDDs

representing (x ≈ y) ∧ p(x) and (x ≈ y) ∧ p(y)

are different although they are logically equiva-

lent. Special constraints have to be added to re-

move unsatisfiable paths. Then, Goel et al. [14]

proposed to decide equality logic formulae by

replacing all equalities with new propositional

variables, i.e. to replace an equality vi ≈ vj with

a new variable eij. In this approach the BDD

for the resulting formula is calculated without

taking into account the transitivity of equali-

ties, and for assignments satisfying the BDD,

it is inspected on whether they also satisfy the

original equality logic formula.

Burch and Dill [16] have proposed a veri-

fication method that uses propositional logic,

extended with uninterpreted functions, uninter-

preted predicates, and the testing of equality to

denote data operations and a decision procedure

as a theorem-proving search method. Com-

pared to MDG, their approach does not sup-

port representation of a set of states, fixpoint

calculation and the transition relation can be

applied only a given number of times. Burch

and Dills work has generated considerable inter-

est in the use of uninterpreted functions to ab-

stract data operations in processor verification.

A common theme has been to adopt Boolean

methods in two respects: integration of uninter-

preted functions into a symbolic model check-

ers [12, 4] or developing BDD-based decision

procedures [15, 14].

More recently, Bryant et al. [5] translate a

formula with uninterpreted functions to propo-

sitional formula within the theory of equality

while preserving validity. Therefore, the result-

ing formula can be checked efficiently either by

a BDD or SAT solver. Later, as found in [27],

the new efficient SAT solvers would not have

scaled for solving the Boolean formulae if not for

the property of Positive Equality that results in

at least five orders of magnitude speedup when

formally verifying dual-issue superscalar proces-

sors with realistic features. Efficient transla-

tions from propositional logic to CNF [26], ex-

ploiting the special structure of logic of Equal-

ity with Uninterpreted Functions and Memories

(EUFM), formulae produced with the model-

ing restrictions, resulted in additional speedup

of two orders of magnitude. This reduction is

based on Ackermann’s approach [1] that con-

sists of replacing each occurrence of a function

with a new (domain) variable and adding func-
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tional consistency constraints in the formula.

The technique also exploits the polarity of equa-

tions in the formula to restrict the range al-

location. A similar approach is also proposed

by Pnueli et al. [21] where the key differences

are emphasized in [5]. Rodeh et al. [23] have

used the function elimination method of Bryant

et al. [7] to further restrict the domain size of

the variables using the algorithm in [21]. Shu-

vendu et al. [18] present a generalization of posi-

tive equality analysis of Bryant [7], which allows

the decision procedure to exploit positive equal-

ity in situations where previous approach fails.

The new version called robust positive equality,

restricts the interpretations to consider in de-

ciding forumals in Equality with Uninterpreted

Functions (EUF) to a subset of interpretations

considered by the previous approach.

Partial order reduction takes advantages of

the fact that, in many cases, when components

of a system are not tightly coupled, different

execution orders of actions or transitions of dif-

ferent components may result in the same global

state. Then, under some conditions [20, 17], in

particular, when the interim global states are

not relevant to the query being checked, model

checkers only need to explore one of the possi-

ble execution orders. This may radically reduce

model checking complexity.

These approaches are applicable when data

operations can be viewed as black-boxes, i.e.,

the correctness of the system being modeled

does not depend on the meaning of these op-

erations. This is usually the form of RTL de-

signs generated by high-level synthesis algo-

rithms that schedule and allocate data opera-

tions without being concerned with the specific

nature of the operations. However, ignoring

properties of data operations leads sometimes

to false negatives. For example, a multiplier

can be abstracted away when one of its inputs

is 0 or 1. In MDG, a simple rewriting system

is used to deal with such cases. In [25], Velev

combines rewriting rules and Burch and Dill’s

method [16] to verify out-of-order processors

that have a Reorder Buffer.

3 Multiway Decision Graphs Overview

3.1 Sorted Signature

A sorted signature Σ(V ,L,S) consists of an

infinite set of variables V , partitioned into a set

Vabs of abstract variables and a set Vcon of con-

crete variables, a set of symbols L, partitioned

into a set LCO of cross-operators and a set LF

of function symbols and a set of sort symbols

S, partitioned into a set Scon of concrete sorts

and a set Sabs of abstract sorts. All these sets

are disjoint. Furthermore there is:

• An arity function that associates to each

symbol in L a natural number. Constant

symbols are 0-ary function symbol.
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• A function η : V → S which gives a sort

to each variable symbol.

• A set of sort declarations for terms. A

sort declaration for a term is a tuple t : S,

where t is a non-variable term and S ∈

Sabs is a sort symbol. We sometimes ab-

breviate sort declaration f(x1, . . . , xn) : S

as f : S1 × . . . × Sn → S where Si is the

sort of the variable xi.

• A set of sort declaration for cross-

operators. A sort declaration for a cross-

operator is of the form p : S1× . . .×Sn →

S where the Si are sorts and S ∈ Scon

3.2 Well Sorted Terms

The set of well sorted terms T (Σ, S) of sort

S in signature Σ is the smallest set such that:

• x ∈ T (Σ, S) if x ∈ V and η(x) ∈ S

• f(t1, . . . , tn) ∈ T (Σ, S) if ti ∈ T (Σ, Si) for

i = 1, . . . , n and f : S1 × . . . × Sn → S is

a term sort declaration in Σ

The set T (Σ) of all well sorted terms is defined

as the union
∪
{T (Σ, S) : S ∈ S}. If V = ∅,

then TG(Σ, S) denotes a set of ground terms

i.e. terms that are not containing variables. A

substitution σ is represented as a set {x1 7→

t1, . . . , xn 7→ tn} where Dom(σ) = {x1, . . . , xn}

and is defined on terms as usual. Its extension

by another substitution σ′, written σ ⊕ σ′, is

another substitution such that:

• Dom(σ) ∩ Dom(σ′) = ∅ and

• for every variable x ∈ Dom(σ ⊕ σ′):

(σ ⊕ σ′)(x) =

 σ(x) if x ∈ Dom(σ)

σ′(x) if x ∈ Dom(σ′)

3.3 Well Formed Directed Formulae

(DFs)

The set of well formed formulae F(Σ, S) of

sort S in signature Σ is the smallest set such

that:

• x = t if x ∈ T (Σ, S), t ∈ TG(Σ, S) and

S ∈ Scon.

• x = t if x, t ∈ T (Σ, S) and S ∈ Sabs.

• p(t1, . . . , tn) = t if p : S1 × . . . × Sn → S

is a cross-operator declaration in Σ, ei-

ther ti ∈ T (Σ, Si) and Si ∈ Sabs or ti ∈

TG(Σ, Si) and Si ∈ Scon for i = 1, . . . , n

and t ∈ TG(Σ, S).

• ¬P is a formula if Vars(P ) ∩ Vabs = ∅.

• P ∧Q is a formula if Vars(P )∩Vars(Q) =

∅.

• P ∨ Q is a formula if Vars(P ) ∩ Vabs =

Vars(Q) ∩ Vabs and for each variable x ∈

Vars(P ) either it occurs as a primary or

secondary occurrence but not both.

• (∃x : S)P is a formula where x can be

both primary and secondary occurrence in

P .
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where further connectives like T , F , ⇒, ⇔

and ∀ are defined as the standard abbrevia-

tions. Vars(P ) denotes the variables occurring

in P . The occurrence of the variable x in a

Left Hand Side (LHS) of the formula x = t is

called a primary occurrence, otherwise it is a

secondary occurrence. Note that by our syn-

tax definition, only abstract variables have sec-

ondary occurrences. We say a DF formula P is

of type U → V iff (i) the set of abstract pri-

mary variables of P is equal to Vabs, (ii) the set

of secondary abstract variables is a subset of

Uabs and (iii) the concrete variables have occur-

rences in a set Ucon ∪ Vcon. Intuitively, the set

U represents the independent variables while V

represents the dependent variables.

Moreover, we call such x a dependent vari-

able and the variables occurring in t independent

variables. Thus a formula P is of type U → V

where U is a set of independent variables and V

is a set of dependant variables. In the absence

of abstract sorts, the sets of variables U and V

play symmetrical roles.

3.4 Semantics

A Σ-structure M consists of:

• D, a carrier set, is defined as the union

of the denotations for each Sort S i.e.

D =
∪
{DS : S ∈ S} such that if S ∈ Sabs

then DS is non-empty set and if S ∈ Scon

then DS = {a1, . . . , an} where ai ̸= aj for

1 ≤ i < j ≤ n.

• a n-ary function M(f) : Dn → D for ev-

ery n-ary function symbol f .

• a n-ary cross-operator M(p) : Dn → D

for every n-ary cross-operator symbol p.

We say a partial mapping ϕ : V → D is

a partial Σ-assignment iff ϕ(x) ∈ Dη(x) for ev-

ery variable x ∈ Dom(ϕ). We assume that the

structure M is fixed and the formal definition

of the semantics relative to the mapping ϕ is:

[[x]]ϕ = ϕ(x) for x ∈ V

[[f(t1, . . . , tn)]]
ϕ = M(f)([[t1]]

ϕ, . . . , [[tn]]
ϕ)

[[x = t]]ϕ = tt iff [[x]]ϕ = [[t]]ϕ

[[p(t1, . . . , tn)]]
ϕ = tt iff M(p)([[t1]]

ϕ, . . . , [[tn]]
ϕ) = tt

[[¬P ]]ϕ = tt iff [[P ]]ϕ = ff

[[P ∧Q]]ϕ = tt iff [[P ]]ϕ = tt and [[Q]]ϕ = tt

[[(∃x : S)P ]]ϕ = tt iff [[P ]]ϕ[c/x] = tt

for some c ∈ DS

such that ϕ[c/x] is like ϕ

but maps x to c
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The remaining logical connectives are inter-

preted as usual.

3.5 MDG Structure

MDGs subsume the class of Bryant’s

(ROBDD) while accommodating abstract data

and uninterpreted function symbols. An MDG

of type U→V can be seen as a Directed Acyclic

Graph (DAG) G with one root and ordered

edges, such that:

1. Every leaf node is labeled by the formula

T, except if G has a single node, which

may be labeled T or F.

2. For every internal node N , either

(a) N is labeled by T (U ∪ Vcon,LCO,S)

and the edges that issue from N are

labeled by TG(Scon), or

(b) N is labeled by a variable in Vabs and

the edges that issue from N are la-

beled by T (Uabs,LF ,S)

Terms are made out of sorts, constants, vari-

ables, and function symbols. Two kinds of sorts

are distinguished:

• Concrete sort: is equipped with finite enu-

merations, lists of individual constants.

They are used to represent control signals.

• Abstract sort: has no enumeration avail-

able. It uses first order terms to represent

data signals.

MDGs represent and manipulate a certain

subset of first order formulae, which we call Di-

rected Formulae (DFs) and therefore must be

reduced and ordered like ROBDD [6]. DFs can

represent the transition and output relations of

a state machine, as well as the set of possible ini-

tial states and the sets of states that arise during

reachability analysis. Consequently, DFs must

obey a set of well-formedness conditions given

in [11]. Intuitively, these conditions represent

pre-conditions for some basic MDG algorithms

which are mainly disjunction, Relational Prod-

uct and Pruning by Subsumption. We will in-

vestigate these algorithms in the next section.

In order to illustrate MDGs, we consider

the following example DF of type {u1, u2} →

{v1, v2}, where u1 and v1 are variables of a con-

crete sort bool with enumeration {0, 1} while u2

and v2 are variables of an abstract sort α, g is

an abstract function symbol of type α → α and

f is a cross-operator of type α → bool . Then,

Figure 1 shows the MDGs representing this ex-

ample as well as its corresponding DF formula.

Like for ROBDDs, a symbol order accord-

ing to which an MDG is built could be provided

by the user. This symbol order can affect criti-

cally the size of the generated MDG. Otherwise,

MDG can use an automatic dynamic ordering.
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f(u2)

u1

v1v1

v2

0

1

0 1

T

v2

0 1

(f(u2)=0) /\ (v2=u2)) \/
((f(u2)=1) /\ (u1=0) /\ (v1=0) /\ (v2=g(u2))) \/
((f(u2)=1) /\ (u1=1) /\ (v1=1) /\ (v2=g(u2)))

Figure 1: Example of MDG and its Corresponding DF Formula

The MDG model checking is based on an ab-

stract implicit state enumeration. The system is

expressed as an Abstract State Machine (ASM)

and the properties to be verified are expressed

by formulae in LMDG [28]. LMDG atomic for-

mulae are Boolean constants (True and False),

or equations of the form (t1 = t2), where t1 is

an ASM variable (input, output or state vari-

able) and t2 is either an ASM system variable,

an individual constant, an ordinary variable or

a function of ordinary variables. Ordinary vari-

ables are defined to memorize the values of the

system variables in the current state.

The MDG operations and verification proce-

dures are packaged as a tool and implemented

in Prolog [10]. The MDG-tool provide facilities

for invariant checking, verification of combina-

tional circuits, sequential verification, equiva-

lence checking of two state machines and model

checking.

4 MDG Construction

Let P be an MDG of the form:

MDG(x, {a1, . . . , am}, {l1, . . . , ln}, {m1, . . . ,mn})

then top(P ) denotes the root node x, arg(P ) de-

notes the set {a1, . . . , am} (eventually empty)

of the cross-operator arguments, edges(P ) de-

notes a non-empty set {l1, . . . , ln} of labels

(edges), and childs(P ) denotes a non-empty set

{m1, . . . ,mn} of sub-MDGs.

In a ROBDD, Boolean variables are used to

encode the enumerated types. This can be done

by simply using a recursive function that divides

the values into two subsets of roughly equal size,

creates a variable to distinguish between them,
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and then recurses on the two subsets. It results

in an Algebraic Decision Diagram (ADD) [22]

that extends BDD’s by allowing values from

arbitrary finite domain to be associated with

the terminal nodes. Then this ADD is trans-

lated to ROBDD. Due to the presence of ab-

stract sorts, this approach cannot be used for

MDG. Also, in Logic with Equality and Unin-

terpreted Functions (LEUF), or more precisely,

Quantifier-Free First-Order Logic with Equal-

ity and Uninterpreted Functions does not have

universal or existential quantifiers, but has the

equal sign as a special predicate. Therefore, an

equation (atomic formula with equality) is used

to represent directly the MDG without encod-

ing the concrete domains. We will use the no-

tation Eq(x, {a1, . . . , an}, l) to denote an MDG

such that (i) the root node is labeled with x and

the (eventually empty) set {a1, . . . , an} (ii) the

edge is labeled with l and (iii) the terminal node

is labeled with T.

4.1 Generalized-If-Then-Else (GITE)

Given a ROBDD b, a boolean function f rep-

resented by b is recursively defined by:

f = (¬x ∧ fx=0) ∨ (x ∧ fx=1)

where x is the variable in b’s root node and

the cofactor function fx=0 is defined by the

reachable subgraph of b’s 0-branch child. Simi-

larly, fx=1 is recursively defined by the reach-

able subgraph of b’s 1-branch child. There-

fore a ROBDD node can be naturally rep-

resented by an If-Then-Else statement, i.e.

ITE(x, fx=1, fx=0).

Given a variable ordering and three ROB-

DDs f, g and h, the ROBDD result of f, g and h

is easily constructed by Shannon’s expansion in

the depth-first manner. This expansion process

repeats recursively following the given variable

order for the Boolean variables in f , g, and h.

The base case (also called the terminal case) is

when f , g or h are representing a terminal node

(i.e. Tor F node). For example, ITE(T, g, h) can

be trivially evaluated to g. The recursive pro-

cess will terminate because restricting all the

variables of functions produces constant func-

tions T or F. At the end of the expansion phase,

the uniqueness of ROBDD representation is en-

sured by reducing expressions like ITE(x, f, f)

to f . This bottom-up reduction phase is per-

formed in the reverse order of the expansion

phase. Finally, since all the boolean connectives

can be expressed as If-Then-Else statement, this

construction provides a uniform way to build ar-

bitrary Boolean functions.

Similarly, our goal is to provide the same

construction for MDGs. The definition of the

cofactor function is made upon the following ob-

servation. Assuming that x ranges over {0, 1, 3}

and that there could be, say, only three edges

issuing from the root, as in the following graph:



Sa’ed Abed et al.: NuMDG: A New Tool for MDGs Construction 11

X

G2G1 G3

0 3

1

where G1, G2 and G3 represent the formulae P1,

P2 and P3 respectively, then this MDG could

represent the formula

(x = 0 ∧ P1) ∨ (x = 1 ∧ P2) ∨ (x = 3 ∧ P3)

When x denotes 2, this formula is simply a false

sentence. Therefore, the cofactor Px=l,arg(x)

with respect to a (concrete or abstract) variable

x restricted to label l and a set of the cross-

operator arguments arg(x) (possibly empty) is

defined as:

Px=l,arg(x) =


P if x < top(P )

mi if ∃i(l = li) ∧ (arg(P ) = arg(x))

F otherwise

While concrete sorts have enumerations, ab-

stract sorts do not. To overcome this problem,

we can collect all the labels of the abstract vari-

able x from the MDGs involved in the construc-

tion. This task is achieved by the function enum

which is defined as:

enum(x, P ) =

 Scon if x ∈ Scon and top(P ) = x

edges(P ) if x ∈ Sabs and top(P ) = x

This function exploits the variable ordering,

hence there is no need to traverse all the chil-

dren of P to collect the edges. Moreover, we

assume that the set of edges are ordered.

Our GITE algorithm takes as input three

MDGs P,Q and H of type Ui → Vi for

i = 1..3 respectively and produces an MDG R =

GITE(P,Q,H) of type
∪

1≤i≤3 Ui →
∪

1≤i≤3 Vi

such that |= R ⇔ (P ∧ Q) ∨ (¬P ∧ H). Such

MDG R does not always exist due to abstract

variables. For example, let x be an abstract

variable and a be an abstract generic constant.

Let P be x = a (i.e., an MDG with a root node

labeled x and a single edge labeled a leading to

T ), then there is no MDG representing the for-

mula ¬(x = a). Thus there can be no algorithm

for general negation. On the other hand, it is

easy to compute a formula logically equivalent

to ¬P that has no nodes labeled by abstract

variables. Similarly, there does not always exist

an MDG R such that |= R ⇔ (P ∨Q). For ex-

ample, let x and y be distinct abstract variables,

and a and b distinct abstract generic constants,

then there exists no well-formed MDG repre-

senting the formula x = a ∨ y = b. Finally, it

may be impossible to compute the conjunction
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of two MDGs whose root nodes have the same

label, if that label is an abstract variable (i.e.,

x = a ∧ x = b). Note all these formulae are

not DFs since they do not respect the syntax

constraints defined in Section 3. Moreover, we

claim that the logical equivalence between R

and (P ∧ Q) ∨ (¬P ∧ H) can be shown inde-

pendent of the negation of P , particularly when

the top symbol of P is an abstract variable. For

example, it is easy to show that |= (x = a∨x =

b) ⇔ (x = a∧T)∨ (¬(x = a)∧ x = b) in classi-

cal logic. The detailed algorithm is given below:

GITE(P,Q,H)

1. if (terminal case) then

2. return (R = trivial result);

3. else

4. if (computed table has entry {(P,Q,H), R}) then

5. return R from computed table ;

6. else

7. x = top variable of P , Q and H;

8. S = enum(x, P,Q,H);

9. a = arg(x);

10. l,m = ∅;

11. for (each s s.t. s ∈ S) do

12. R = GITE(Px=s,a, Qx=s,a, Hx=s,a);

13. if (R ̸= F) then

14. append(l,s); append(m,R);

15. endif

16. endfor

17. if(l = ∅) then (R = F);

18. else R = find or add unique(x, a, l,m);

19. endif

20. insert (P,Q,H,R) in the computed table

21. return R;

22. endif

23. endif
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The resulting MDG is constructed by recur-

sively performing Shannon’s expansion. This

recursive expansion ends when a terminal node

is reached (lines 1 and 2) or when it is found

in the computed table (line 4 and 5). A com-

puted table stores previously computed results

to avoid repeating work that was done previ-

ously. Line 7 determines the top variable of P,Q

and H. Line 8 extracts a set of labels (edges)

S according to the top variable sort. When this

sort is concrete, then S is equal to the enumera-

tion of this sort. Otherwise, we collect the labels

from the MDGs involved in the construction.

Line 9 and 10 extract eventually the arguments

if the top variable is a cross-operator and ini-

tialize the new set of labels and MDGs to be

constructed. Lines 11 to 16 recursively perform

Shannon’s expansion on the cofactor in respect

to S and computes the new edges and MDGs

by discarding the elements of S that result in

a terminal MDG F. At the end of the expan-

sion (line 17), either the resulting MDG is F or

the reduction step and uniqueness of the result-

ing MDG are performed (line 18). The reduc-

tion step is applied only on the concrete sorts.

Therefore a node is redundant if all the edges

are in the enumeration of the concrete sort and

the corresponding MDGs are the same.

To prove the termination of a recursive call,

we have to prove that an infinite sequence of

recursive calls does not exist i.e. the loop body

executes a finite number of times. We have

to define a mapping function v = depth(P ) +

depth(Q)+depth(H) which represents the depth

or size of MDGs P , Q and H. Where the depth

function represents the number of nodes in the

longest path of an MDG. It is clear from the

definition of the cofactor that v is decreasing

after each call of GITE and since the MDGs

P , Q and H are finite then the termination is

guaranteed.

The correctness procedure consists of apply-

ing the GITE algorithm over P , Q andH MDGs

and get the result R as an MDG. Then using

FormulaMDG algorithm shown below, we build

its corresponding formula and compare it with

the formula obtained by applying the GITE al-

gorithm over P , Q and H.

FormulaMDG(P )

1. if top(P) = 0 then

2. return F;

3. else if top(P) = 1 then

4. return T;

5. else

6. x=top(P);

7. S=enum(x,P);
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8. a=arg(x);

9. for (each s s.t. s ∈ S ) do

10. DF= ∨s∈S(x = s) ∧ FormulaMDG(Px=s,a);

11. endfor

12. return DF;

13. endif

To keep the formula resulted from the For-

mulaMDG algorithm in DF format (disjunction

of conjunction of equations) we add a distribu-

tion rule which allows distribution of conjunc-

tion over the disjunction such that: x∧(y∨z) ⇔

(x ∧ y) ∨ (x ∧ z).

Theorem 4.1. The GITE algorithm is cor-

rect and terminates

PROOF SKETCH: By induction on P. The

MDG resulted from the GITE algorithm is

feeded to the FormulaMDG to get its corre-

sponding DF and then compared with the ite-

operator result. The correctness criteria for the

proof of GITE algorithm is shown in the follow-

ing:

if R = GITE(P,Q,H) then FormulaMDG(R) ≡

(P ∧Q) ∨ (¬P ∧H)

ASSUME: 1. P , Q and H are finite MDGs and

represent a well-formed DF.

PROVE:True

< 1 > 1. CASE: Induction on P:

PROOF:

1. The Base case:

• When P represents a terminal node

which may be labeled as T or F, the

result R of the GITE algorithm will

be either Q or H, respectively.

• When the entry of the call memory

function for the GITE of P , Q andH

in the computed table is computed in

the hash table so the function return

the value of R from the computed ta-

ble (follow the uniqueness condition)

and terminate.

The FormulaMDG will return the corre-

sponding formula for the MDG R. This

result is equivalent to the one resulted

from the ite-operator algorithm (trivial

case).

2. The Induction case: P could be one of the

below cases:

(a) x = t if x is a concrete variable.

(b) f(t1, · · · , tn) = t if f is a cross-

operator.

(c) x = t if x is an abstract variable.

(d) P1 ∧ P2.
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(e) P1 ∨ P2.

(f) ¬P .

(g) (∃x : S)P .

The most difficult case when P = (x = t),

where x ∈ Xabs is the top variable of

P . We show this case in details while the

other cases are straightforward. Applying

the GITE algorithm on P , Q and H re-

sults: Qx=t,ϕ in the case of (x = t) and

in the negation case where ¬(x = t), we

generate a unique fresh variable t′ from

the set of secondary variables (indepen-

dent variables), and thus we have ¬(x =

t) = (x = t′) such that t ̸= t′ and the

result will be Hx=t′,ϕ.

Then it is easy to extract a DF from the

above MDG using the FormulaMDG algo-

rithm such that: R = ((x = t)∧Qx=t,ϕ)∨

((x = t′) ∧Hx=t′,ϕ).

This formula is the same resulted from ap-

plying the ite-operator such that: (P ∧

Q) ∨ (¬P ∧H) = ((x = t) ∧Q) ∨ (¬(x =

t)∧H). An MDG sketch representing the

formula GITE((x = t), Q,H) is shown

below:

X

Qx=t,øHx=t’,ø

t’ tR =

To prove the correctness by induction on

P , we have two cases:

• When (x = t) then

FormulaMDG(Qx=t,ϕ) = Q.

• When ¬(x = t) = (x = t′) then

FormulaMDG(Hx=t′,ϕ) = H.

Which is equivalent to the result from the

GITE algorithm.

< 1 > 2. Q. E. D.

PROOF: Step < 1 > 1 and assumption 1.

Lets take a simple example for illustration

purposes, if P1 = (x = a) and P2 = (y = b),

where x is the top of P1 ∧ P2, then applying

the ITE algorithm ITE(x = a ∧ y = b,Q,H)

results,

x is the top variable, S = {a} and a = ϕ then

entering the first loop will result

ITE(x = a,Qx = a,Hx = a), and again y is

the top variable, S = {b} and a = ϕ then enter-

ing the second loop will result

ITE(T, (Qx = a)y = b, (Hx = a)y = b).

Then its easy to extract a DF from the above

MDG as shown below:

R = [(x = a) ∧ (y = b) ∧Qx = a] ∨

[¬(x = a) ∧H] ∨

[(x = a) ∧ ¬(y = b) ∧Hx = a]

This formula is the same one resulted from

applying the ite-operator and hence they are

equivalent. An MDG sketch is shown in Fig-

ure 2.
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x

y

  a

H

Hx=aQx=a

¬b   b

Figure 2: ITE((P1 ∧ P2), Q,H)

4.2 Relational Product (RelP)

The Relational Product combines conjunc-

tion and existential quantification in one step.

We provide an algorithm that extends the

ROBDD relational product. It takes the con-

junction of two MDGs having disjoint sets of ab-

stract primary variables and existentially quan-

tifies with respect to some abstract or concrete

variables that have primary occurrence in at

least one of the MDGs. The primary occur-

rence of an abstract variable in one MDG can

be a secondary occurrence in the other MDG.

For this reason, we have introduced a substi-

tution that includes those variables during the

construction (i.e., the secondary variables are

implicitly quantified). The substitution is ap-

plied in the reverse order of the expansion phase

on the edges labeled with secondary occurrence

variables and cross-operators arguments. How-

ever, while the ordering of variables cannot be

preserved in case of cross-operators, there may

exist redundant or contradictory MDG result

during intermediate steps.

For example, let x < m < M be an order-

ing of variables and let P be leq(x,m) = 1 ∧

leq(x,M) = 0 where x, m and M are secondary

abstract variables that having primary occur-

rences in another MDG, say, Q, and σ = {x 7→

x#3,m 7→ x#2,M 7→ x#1}, then the resulting

MDG leq(x#3, x#2) = 1 ∧ leq(x#3, x#1)) = 0

does not preserve the order the variable x#i

serves as a symbolic value of x at the ith step

and i < j ⇒ x#i < x#j. Therefore, we will

distinguish the case of the cross-operator and

provide a special construction for it.

Let E be the set of quantified variables,

our algorithm takes two MDGs P , Q of type

Ui → Vi for i = 1..2 and a substitution

σ with Dom(σ) = E and returns an MDG

R = RelP(P,Q,E, σ) of type (
∪

1≤i≤2 Ui \∪
1≤i≤2 Vi) → (

∪
1≤i≤2 Vi \

∪
1≤i≤2 Ui) such that

|= R ⇔ ∃E(P ∧Q).
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RelP(P,Q,E, σ)

1. if (terminal case) then

2. return (R = trivial result);

3. else

4. if (computed table has entry {(P,Q,E, σ), R}) then

5. return R from computed table ;

6. else

7. x = top variable of P , Q

8. S = enum(x, P,Q);

9. a = arg(x);

10. l,m = ∅;

11. for (each s s.t. s ∈ S) do

12. R = RelP(Px=s,a, Qx=s,a, E, Extend(σ, x, s, E));

13. if (R ̸= F) then

14. append(l,s); append(m,R);

15. endif

16. endfor

17. if(l = ∅) then (R = F);

18. else

19. if(x ∈ E) then

20. R = Or(m)

21. else

22. if(a = ∅) then

23. R = find or add unique(x, a, σ(l),m);

24. else

25. R = F

26. for (each li ∈ l and mi ∈ m )

27. R = Or(R,And(Eq(x, σ(a), li),mi))

28. endfor

29. endif

30. endif

31. endif
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32. insert (P,Q,E, σ,R) in the computed table

33. return R

34. endif

35. endif

Like ROBDD Relational Product algo-

rithm, RelP uses a result cache. If the entry

(P,Q,E, σ) is in the cache, then it means that

a previous call to RelP(P,Q,E, σ) returned R as

result. Lines 7 to 16 apply recursively the Re-

lational Product with respect to a top symbol

x where Extend(σ, x, s, E) returns σ ⊕ {s/x}

if x ∈ E otherwise it returns σ. Lines 19 to

31 apply either quantification or conjunction

depending whether the variable x occurs in E

or not. As explained above, we distinguish the

cross-operators case (lines 25 to 28), where we

construct a new MDG that respects the order-

ing of variables, thus avoiding any contradic-

tions.

Theorem 4.2. The RelP algorithm is cor-

rect and terminates

PROOF SKETCH: By induction on P. The

MDG resulted from the RelP algorithm is

feeded to the FormulaMDG to get its corre-

sponding DF and then compared with the re-

sult of ∃E(P ∧Q). The correctness criteria for

the proof of RelP algorithm is shown in the

following:

if R = RelP (P,Q,E, σ) then FormulaMDG(R) ≡

∃E(P ∧Q)

ASSUME: 1. P and Q are finite MDGs and rep-

resent a well-formed DF.

PROVE:True

< 1 > 1. CASE: Induction on P:

PROOF:

1. The Base case:

• When P represents a terminal node

which may be labeled as T or F, the

result R of the RelP algorithm will

be either ∃E(Q) or F, respectively.

• When the entry of the call memory

function for the RelP of P and Q in

the computed table is computed in

the hash table so the function return

the value of R from the computed ta-

ble (follow the uniqueness condition)

and terminate.

The FormulaMDG will return the corre-

sponding formula for the MDG R. This

result is equivalent to the one resulted

from the ∃E(P ∧Q) (trivial case).

2. The Induction case: P could be one of the

seven cases mentioned in the proof of The-

orem 4.1. Then, we construct a DF for
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the result obtained from the RelP algo-

rithm using the FormulaMDG and com-

pare it with the result from the formula

∃E(P ∧Q) and hence they are equivalent.

< 1 > 2. Q. E. D.

PROOF: Step < 1 > 1 and assumption 1.

For the case when P = (x = t), where

x ∈ Xabs is the top variable of P . P and Q

must have the same set of abstract variables.

Applying the RelP algorithm on P , Q and E

results:

x is the top variable, S = {t} and a = ϕ then

entering the first loop will result RelP (x =

t, Q,E, σ), then entering the second loop will

result after applying the substitution and exis-

tentially quantifies over the variables E

RelP (T,Qx=t,ϕ, E, {σ ⊕ {s/x}}) = Qx=t,ϕ.

Then its easy to construct a DF from the

above MDG using the FormulaMDG as: R =

((x = t) ∧ Qx=t,ϕ)). This formula is the same

obtained from ∃E(P ∧Q).

4.3 Pruning by Subsumption (PbyS)

The Pruning by Subsumption algorithm ap-

proximates the difference of sets represented by

MDGs (i.e. DFs). We propose a new algorithm

which uses restricted operators and builds an

MDG in a similar manner as GITE does. The

proposed algorithm improves the original one in

many ways. First, the expansion is done only on

the first argument i.e., P rather than on P and

Q. Indeed, we can view each disjunct of DF as

a state description. Without loss of generality,

we can assume that P and Q contain only one

disjunct. Then, we can say that P is subsumed

by Q if and only if there exists a substitution σ

such that the state description of Qσ is a subset

of the state description of P . Therefore the size

of P should be at least equal to the size of Q.

Next, when the top variable of Q is less than the

top variable of P , it is obvious that the state de-

scription of Q is not a subset of P . Hence, the

cofactor of Q should be F, which improves dras-

tically the original algorithm. Finally, when P

and Q have the same top symbol cross-operator

but there is a mismatch either on the edges or

on the arguments, the cofactor of Q is Q itself

and we discard the substitution if any resulting

from the unification of their arguments. These

observations lead to a new restricted operator

defined as follows.

Given an MDG Q, the restriction of Q with

respect to a variable x, an edge l, a set of cross-

operator arguments arg(x) and a substitution σ,

written Q|x=l,arg(x),σ, returns a pair of MDG-

substitution ⟨m,σ′⟩ as:
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Q|x=l,arg(x),σ =



⟨Q, σ⟩ if x < top(Q)

⟨F , σ⟩ if top(Q) < x

⟨mi, σ
′⟩ if (∃i)(l = liσ

′) ∧ arg(Q) = arg(x) = ∅

⟨Q, σ⟩ if (¬∃i)(l = liσ
′) ∧ arg(Q) = arg(x) = ∅

⟨mi, σ
′′⟩ if ∃i(l = liσ

′′) ∧ (arg(Q)σ′′ = arg(x))

⟨Q, σ⟩ if ¬∃i(l = liσ
′′) ∨ (arg(Q)σ′′ ̸= arg(x))

⟨F , σ⟩ otherwise

where σ′ = σ⊕{li 7→ l} and σ′′ = σ⊕{arg(Q) 7→

arg(x)}.

Our PbyS algorithm takes two MDGs P and

Q of type U → V1 and U → V2 and a substi-

tution σ initially equal to the identity and pro-

duces an MDG P ′ of type U → V1 such that P ′

is derivable from P by pruning some paths such

that |= P ∨ (∃U)Q ≡ P ′ ∨ (∃U)Q. The paths

that are removed from P are subsumed by Q,

hence the name of the algorithm. If P ′ = F

then, we can view P ′ as a logical difference of

P and (∃U)Q i.e. |= P ⇒ (∃U)Q. The detailed

algorithm is given below:

PbyS(P,Q, σ)

1. if (terminal case) then return (P ′ = trivial result);

2. else if (PbyS table has entry {(P,Q, σ), P ′}) then

3. return P ′ from PbyS table ;

4. else

5. x = top(P ); l,m = ∅; a = arg(P );

6. for (each s ∈ edges(P )) do

7. P ′ = Px=s,a;

8. stack = Q|x=s,a,σ;

9. while stack is not empty;

10. ⟨m′, σ′⟩= pop stack;

11. P ′ = PbyS(P ′,m′, σ′);

12. if (P ′ = F) break;

13. endwhile;

14. if(P ′ ̸= F) then

15. append(l,s); append(m,P’);

16. endif
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17. endfor;

18. if(l = ∅) then (P ′ = F);

19. else P ′ = find or add unique(x, a, l,m);

20. update PbyS table ({(P,Q, σ), P ′}) ;

21. return P ′;

22. endif

The result MDG is constructed by recur-

sively performing the restricted operators in-

troduced on P and Q until a terminal node is

reached (line 1) or when it is found in the PbyS

table (line 2). Line 5 determines the top vari-

able of P and the cross-operator arguments (if

possible) and initializes the new edges and chil-

dren to be constructed. Then from each edge

issuing from the node x (line 6), we extract

the cofactors of P and Q where the cofactors

of Q are pairs of MDG-substitution stored in a

stack. Lines 9 to 13 check whether the cofactors

of P , written P ′, is subsumed by one of the Q

paths. If so (line 12) then there is no need to

try the other cofactors of Q and therefore we

continue with the remaining cofactors of P and

we discard P ′. Otherwise, the edge and this

cofactor are added to the corresponding table

(lines 14-16). When we have processed all the

cofactors of P (line 18) either all the paths of P

are subsumed by P and thus the result MDG is

F, or the reduction step and uniqueness of the

resulting MDG are performed (line 20) with all

or some paths of P that not subsumed.

Theorem 4.3. The PbyS algorithm is cor-

rect and terminates

PROOF SKETCH: By induction on P. The

MDG resulted from the PbyS algorithm is

feeded to the FormulaMDG to get its corre-

sponding DF and then compared with the result

of P ∨ (∃U)Q ≡ P ′ ∨ (∃U)Q. The correctness

criteria for the proof of PbyS algorithm is shown

in the following:

if P ′ = PbyS(P,Q, σ) then FormulaMDG(P ′) ≡

P ∨ (∃U)Q ≡ P ′ ∨ (∃U)Q

ASSUME: 1. P and Q are finite MDGs and rep-

resent a well-formed DF

PROVE:True

< 1 > 1. CASE: Induction on P:

PROOF:

1. The Base case:

• When P represents a terminal node

which may be labeled as T or F, the

result P ′ of the PbyS algorithm will

be either T or F, respectively.

• When the entry of the call memory

function for the PbyS of P and Q in
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the computed table is computed in

the hash table so the function return

the value of P ′ from the computed

table (follow the uniqueness condi-

tion) and terminate.

The FormulaMDG will return the corre-

sponding formula for the MDG P ′. This

result is equivalent to the one resulted

from the P ∨(∃U)Q ≡ P ′∨(∃U)Q (trivial

case).

2. The Induction case: P could be one of the

seven cases mentioned in the proof of The-

orem 4.1. Then, we construct a DF for

the result obtained from the PbyS algo-

rithm using the FormulaMDG and com-

pare it with the result from the formula

P ′ ∨ (∃U)Q and hence |= P ∨ (∃U)Q ≡

P ′∨(∃U)Q and hence they are equivalent.

< 1 > 2. Q. E. D.

PROOF: Step < 1 > 1 and assumption 1.

For example, take the case when P = (x =

t), where x ∈ Xabs is the top variable of P . P

and Q must have the same set of abstract vari-

ables. Applying the RelP algorithm on P and

Q results:

x is the top variable, S = {t}, σ = {} and

a = ϕ then entering the first loop will result

PbyS(x = t, Q, σ), then entering the second

loop will result PbyS(T,Qx=t,ϕ, σ) = Qx=t,ϕ.

Then its easy to construct a DF from the

above MDG using the FormulaMDG as: P ′ =

Qx=t,ϕ. This formula is the same obtained

from P ∨ (∃U)Q and hence |= P ∨ (∃U)Q ≡

P ′ ∨ (∃U)Q.

5 NuMDG Tool

5.1 Overview

A high level description of NuMDG is given

in Figure 3. In the future, we will provide

an open source tool with many functionali-

ties independent of the model checking engine

used. Like NuSMV [9], the tool will be able

to process files written in an extension of the

SMV language with abstract sort and unin-

terpreted functions. In this language, finite

state machines are described by using instanti-

ation mechanism of modules and processes, cor-

responding to synchronous and asynchronous

composition respectively. The requirements are

written in CTL, LTL or in a first-order subset

of temporal logic.

An (extended) SMV file is processed in sev-

eral phases. The first phase analyzes the in-

put file with different layers in order to con-

struct an internal representation of the model.

The construction starts from modular descrip-

tion of a model M and of a set of properties

P1, . . . Pn. The flattening step consists of elimi-

nating modules and processes and producing a



Sa’ed Abed et al.: NuMDG: A New Tool for MDGs Construction 23

FLATTENING & DFs

P1,.......,Pn                         M

Pf1,.......,Pfn                         Mf

Mf (Pfi)

MDG PACKAGE

MDG BASED MODEL

CONSTRUCTION

REWRITING ENGINE

MDG VERIFICATION

CTL, LTL, BMC Model Checking

Subset FO-LTL Model Checking

CONE OF INFLUENCE

Figure 3: Internal structure of NuMDG

synchronous flat model, where each variable is

given an absolute name. The second step, called

DF, maps each expression in the flat model to

a directed formula, thus obtaining the corre-

sponding flattened directed model Mf . Com-

pared to SMV-based tools, there is no boolean

encoding. Hence, some interpreted predicates

and arithmetic functions are not supported in a

straightforward manner. The same reduction is

applied to the properties Pi, thus obtaining the

corresponding flattened directed formula Pfi.

By cone of influence, we restrict the analysis of

each property to the relevant parts of the model

Mf (Pfi).

After the preprocessing phase, the user can

choose the model checking engine to be used for

verification. The choice is restricted by the na-

ture of the model being described i.e. whether it

supports abstract sorts and uninterpreted func-

tions or not. In the absence of the latter,

NuMDG is acting like NuSMV and should pro-

vide the same facilities including MDG-based,

SAT-based model checking and different parti-

tioning methods. For the time being, MDG-

based verification includes reachability analysis

and fair CTL model checking.

The rewriting engine is used during the

MDG-verification if necessary when the reach-

ability analysis does not terminate due to the

presence of abstract sort and uninterpreted

functions. In this case we can interpret par-

tially some functions or predicates in order to

cope with this non termination [3]. The input

language supports a rewriting layer which is ex-

tracted and feeded to the rewriting engine.

5.2 Experimental results

We consider some cases from the SMV

benchmark suites as benchmarks in order to

measure the performance of our tool. Our ob-

jective is to build a robust and flexible symbolic

model checker that accepts SMV input and pro-

viding at the same time a better mechanism for

abstraction through abstract sorts and uninter-
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preted functions. We have already implemented

a prototype and presented below some experi-

mental results based on some SMV benchmarks.

The first set consists of comparing NuMDG

against SMV and NuSMV in respect to the

number of BDD/MDG nodes allocated and to

the number of BDD/MDG nodes representing

the transition relation as shown in Table 1.

The table shows that the size of the MDG

transition relation is much smaller. This is

due to the absence of boolean encoding, i.e.

we don’t encode the values of model variables.

However, the number of MDG allocated nodes

tends to be greater. Consequently, these small

(intermediate) MDGs have a negative impact on

computation time and memory as illustrated by

Table 2 (”-” means did not terminate).

Table 1: No. of BDD/MDG nodes comparison

SMV NuSMV NuMDG

Example #Alloc. # Trans. #Alloc. #Trans. #Alloc. #Trans.

Semaphore 233 69 854 67 418 53

Mutex (sync) 179 31 350 29 178 21

Mutex (async) 259 56 1625 54 701 37

Gigamax 11178 1246 81563 1242 19084 975

abp4 13884 1611 27805 1609 25507 1320

Table 2: CPU and memory comparison

SMV NuMDG

Example CPU (s) Memory (MB) CPU(s) Memory (MB)

Semaphore 0.01 1.19 0.02 1.37

Mutex (async) 0.02 1.25 0.05 1.68

Gigamax 0.17 1.25 0.64 2.66

abp4 0.2 1.25 1.123 4.04

abstract abp - - 0.07 1.49
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Compared with SMV, our NuMDG con-

sumes more resources for the verification of the

first four benchmarks. This is due to the neg-

ative impact of the intermediate MDGs during

the course of computation. Including the com-

puted cache and garbage collector frequency

will absolutely help to avoid these negative im-

pacts and hence improve the performance.

On the other hand, in the last row, we have

used an abstract version of an alternating bit

protocol where the bus of 16 bits is replaced by

an abstract sort. The result obtained improves

drastically the previous one. As a future work,

we need to study the performances of computed

cache and garbage collector frequency to avoid

the negative impact of the intermediate MDGs

during the course of computation.

6 Conclusion and Future work

We have described the basic MDG algo-

rithms that incorporated many optimizations

that will yield further improvements in the per-

formance of MDG package. The efficiency is

achieved through the use of the generalization

of the If-Then-Else (ITE) operator defined in

the BDD package. Consequently, we have rede-

fined the main algorithms on which the MDG

verification techniques are based, i.e, Relational

Product and Pruning by Subsumption. These

new algorithms descriptions are based mainly

on the ROBDD ones and lifted to the realm

of abstract sorts and uninterpreted functions.

We have also provided the correctness proof

for those algorithms the internal architecture of

NuMDG.

Moreover, we have presented the internal ar-

chitecture of the NuMDG tool and some experi-

mental results based on some SMV benchmarks.

From these experiments, we have identified a

number of open issues and future work direc-

tions. For example, we have confirmed that

NuMDG can be used to check SMV specifica-

tions. Combined with abstract sorts and un-

interpreted functions, NuMDG will provide at

least the same performances. However, we be-

lieve that there are many optimizations that will

yield further improvements in the performance

of NuMDG tool such as the effect of cache and

the garbage collection should be characterized

according to a rigorous evaluation methodol-

ogy. We also need to perform more performance

analysis through the verification of several case

studies.

Challenges and Limitations

One limitation of MDG based approach is

that the reachability analysis algorithm may

not terminate [11] under certain circumstances

due to the abstract representation of data and

the “uninterpreted” nature of function symbols.

This can be a severe limitation on the use of

MDGs as a verification tool. For example,
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consider an abstract description of a conven-

tional (non-pipelined) micro-processor where a

state variable pc of abstract sort represents

the program counter, a generic constant zero

of the same abstract sort denotes the initial

value of pc, and an abstract function symbol

inc describes how the program counter is in-

cremented by a non-branch instruction. The

MDG representing the set of reachable states

of the micro-processor would contain states of

the form (pc, inc(. . . , inc(zero), . . .)). Conse-

quently, there is no finite MDG representing the

set of reachable states, and hence the reachabil-

ity algorithm will not terminate.

The non-termination problem was first ad-

dressed in [30], where a method based on the

generalization of the state variable that causes

divergence. This technique is applicable only to

processor− likeloop circuit and if the entrance

of the loop does not start in the initial state then

this generalization approach may not work.

In [2], Ait-Mohamed et al. presented an

approach to dealing with the non-termination

problem based on retiming and circuit transfor-

mations. Yet this technique can only be applied

to specific circuit structures and can not provide

a general solution to the non-termination prob-

lem. An alternative way to overcome this prob-

lem is to introduce the bounded model checking

technique.

Later in [3] Ait-Mohamed et al. proposed

a novel approach based on the schematization

using ρ-term [8] to solving the non-termination

problem when the generated set of states, even

infinite, represents a structured domain where

states share certain repetitive patterns. In gen-

eral, it is not always possible to find the ρ-term

which will be used in this generalization.

We are currently exploring and applying the

above techniques that can mitigate this problem

and that they are particularly useful in reacha-

bility analysis. Future work will also include the

study of the applicability of these techniques to

the reachability analysis in real designs.
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