1,058 research outputs found

    Smart Automation System for Office Environment

    Get PDF
    A smart automation system for office environment is being designed in this system. Various controlling systems based on lighting, ventilating, luminance are discussed respectively. Various sensors are used to extract the real time information i.e. temperature, light intensity, humidity, smoke, motion sensor are used. This data is send to ARM 11 Controller. It is then send to PC where data is saved. Through Network switch this data is send to other PC’s. The data collected is stored as database and can be accessed anytime. The data is send to the android or any internet enabled device. This system also provides need based emergency services like Ambulance call, fire alarm. Biometric fingerprint is used for security purpose. Manual mode and automatic mode are two alternative modes designed to promote the usability of smart office system. Control of electric lighting fixtures of different office spaces is done

    A Non-Linear Autoregressive Model for Indoor Air-Temperature Predictions in Smart Buildings

    Get PDF
    In recent years, the contrast against energy waste and pollution has become mandatory and widely endorsed. Among the many actors at stake, the building sector energy management is one of the most critical. Indeed, buildings are responsible for 40% of total energy consumption only in Europe, affecting more than a third of the total pollution produced. Therefore, energy control policies of buildings (for example, forecast-based policies such as Demand Response and Demand Side Management) play a decisive role in reducing energy waste. On these premises, this paper presents an innovative methodology based on Internet-of-Things (IoT) technology for smart building indoor air-temperature forecasting. In detail, our methodology exploits a specialized Non-linear Autoregressive neural network for short- and medium-term predictions, envisioning two different exploitation: (i) on realistic artificial data and (ii) on real data collected by IoT devices deployed in the building. For this purpose, we designed and optimized four neural models, focusing respectively on three characterizing rooms and on the whole building. Experimental results on both a simulated and a real sensors dataset demonstrate the prediction accuracy and robustness of our proposed models

    A non-linear autoregressive model for indoor air-temperature predictions in smart buildings

    Get PDF
    In recent years, the contrast against energy waste and pollution has become mandatory and widely endorsed. Among the many actors at stake, the building sector energy management is one of the most critical. Indeed, buildings are responsible for 40% of total energy consumption only in Europe, affecting more than a third of the total pollution produced. Therefore, energy control policies of buildings (for example, forecast-based policies such as Demand Response and Demand Side Management) play a decisive role in reducing energy waste. On these premises, this paper presents an innovative methodology based on Internet-of-Things (IoT) technology for smart building indoor air-temperature forecasting. In detail, our methodology exploits a specialized Non-linear Autoregressive neural network for short-and medium-term predictions, envisioning two different exploitation: (i) on realistic artificial data and (ii) on real data collected by IoT devices deployed in the building. For this purpose, we designed and optimized four neural models, focusing respectively on three characterizing rooms and on the whole building. Experimental results on both a simulated and a real sensors dataset demonstrate the prediction accuracy and robustness of our proposed models

    No-Sense: Sense with Dormant Sensors

    Full text link
    Wireless sensor networks (WSNs) have enabled continuous monitoring of an area of interest (body, room, region, etc.) while eliminating expensive wired infrastructure. Typically in such applications, wireless sensor nodes report the sensed values to a sink node, where the information is required for the end-user. WSNs also provide the flexibility to the end-user for choosing several parameters for the monitoring application. For example, placement of sensors, frequency of sensing and transmission of those sensed data. Over the years, the advancement in embedded technology has led to increased processing power and memory capacity of these battery powered devices. However, batteries can only supply limited energy, thus limiting the lifetime of the network. In order to prolong the lifetime of the deployment, various efforts have been made to improve the battery technologies and also reduce the energy consumption of the sensor node at various layers in the networking stack. Of all the operations in the network stack, wireless data transmission and reception have found to consume most of the energy. Hence many proposals found in the literature target reducing them through intelligent schemes like power control, reducing retransmissions, etc. In this article we propose a new framework called Virtual Sensing Framework (VSF), which aims to sufficiently satisfy application requirements while conserving energy at the sensor nodes.Comment: Accepted for publication in IEEE Twentieth National Conference on Communications (NCC-2014

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations

    Full text link
    Recently, tremendous interest has been devoted to develop data fusion strategies for energy efficiency in buildings, where various kinds of information can be processed. However, applying the appropriate data fusion strategy to design an efficient energy efficiency system is not straightforward; it requires a priori knowledge of existing fusion strategies, their applications and their properties. To this regard, seeking to provide the energy research community with a better understanding of data fusion strategies in building energy saving systems, their principles, advantages, and potential applications, this paper proposes an extensive survey of existing data fusion mechanisms deployed to reduce excessive consumption and promote sustainability. We investigate their conceptualizations, advantages, challenges and drawbacks, as well as performing a taxonomy of existing data fusion strategies and other contributing factors. Following, a comprehensive comparison of the state-of-the-art data fusion based energy efficiency frameworks is conducted using various parameters, including data fusion level, data fusion techniques, behavioral change influencer, behavioral change incentive, recorded data, platform architecture, IoT technology and application scenario. Moreover, a novel method for electrical appliance identification is proposed based on the fusion of 2D local texture descriptors, where 1D power signals are transformed into 2D space and treated as images. The empirical evaluation, conducted on three real datasets, shows promising performance, in which up to 99.68% accuracy and 99.52% F1 score have been attained. In addition, various open research challenges and future orientations to improve data fusion based energy efficiency ecosystems are explored

    An IoT sensor network to model occupancy profiles for energy usage simulation tools

    Get PDF
    The development of IoT devices has allowed to install large amounts of sensors in different environments. Consequently, monitoring small houses and entire buildings has become possible. In addition, buildings are one of the biggest energy consumers, so the monitoring of the energy waste, and its sources, is gaining attention. Human behaviour has been reported as being the main discrepancy source between energy usage simulations and real usage, thus being able to easily monitor such behaviour will bring greater insight in the building usage. In this paper, an IoT sensor network is proposed to model occupancy profiles at room level. Such measurement of users’ behaviour along with additional information such as temperature or humidity can be used to develop strategies to save energy, especially regarding heating, ventilating and airconditioning (HVAC) systems. The proposed equipment has been gathering data for some months in a workplace containing several meeting rooms. Four of those rooms were monitored and later analysed to test the validity of the proposed approach. The results show that it is possible to obtain occupancy profiles by using simple IoT equipment.Unai Saralegui is grateful to the Tecnalia Research & Innovation Foundation for funding through a PhD fellowship. Olatz Arbelaitz and Javier Muguerza’s research was partially supported by the Department of Education, Universities and Research of the Basque Government under Grant IT980- 16 and by the Ministry of Economy and Competitiveness of the Spanish Government and the European Regional Development fund- ERFD (PhysComp project, TIN2017- 85409-P)

    A Distributed IoT Infrastructure to Test and Deploy Real-Time Demand Response in Smart Grids

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. In this paper, we present a novel distributed framework for real-time management and co-simulation of demand response (DR) in smart grids. Our solution provides a (near-) real-time co-simulation platform to validate new DR-policies exploiting Internet-of-Things approach performing software-in-the-loop. Hence, the behavior of real-world power systems can be emulated in a very realistic way and different DR-policies can be easily deployed and/or replaced in a plug-and-play fashion, without affecting the rest of the framework. In addition, our solution integrates real Internet-connected smart devices deployed at customer premises and along the smart grid to retrieve energy information and send actuation commands. Thus, the framework is also ready to manage DR in a real-world smart grid. This is demonstrated on a realistic smart grid with a test case DR-policy

    A Declarative Goal-oriented Framework for Smart Environments with LPaaS

    Full text link
    Smart environments powered by the Internet of Things aim at improving our daily lives by automatically tuning ambient parameters (e.g. temperature, interior light) and by achieving energy savings through self-managing cyber-physical systems. Commercial solutions, however, only permit setting simple target goals on those parameters and do not consider mediating conflicting goals among different users and/or system administrators, and feature limited compatibility across different IoT verticals. In this article, we propose a declarative framework to represent smart environments, user-set goals and customisable mediation policies to reconcile contrasting goals encompassing multiple IoT systems. An open-source Prolog prototype of the framework is showcased over two lifelike motivating examples
    corecore