341 research outputs found

    An adjoint for likelihood maximization

    No full text
    The process of likelihood maximization can be found in many different areas of computational modelling. However, the construction of such models via likelihood maximization requires the solution of a difficult multi-modal optimization problem involving an expensive O(n3) factorization. The optimization techniques used to solve this problem may require many such factorizations and can result in a significant bottle-neck. This article derives an adjoint formulation of the likelihood employed in the construction of a kriging model via reverse algorithmic differentiation. This adjoint is found to calculate the likelihood and all of its derivatives more efficiently than the standard analytical method and can therefore be utilised within a simple local search or within a hybrid global optimization to accelerate convergence and therefore reduce the cost of the likelihood optimization

    Second-order optimisation strategies for neural network quantum states

    Full text link
    The Variational Monte Carlo method has recently seen important advances through the use of neural network quantum states. While more and more sophisticated ans\"atze have been designed to tackle a wide variety of quantum many-body problems, modest progress has been made on the associated optimisation algorithms. In this work, we revisit the Kronecker Factored Approximate Curvature, an optimiser that has been used extensively in a variety of simulations. We suggest improvements on the scaling and the direction of this optimiser, and find that they substantially increase its performance at a negligible additional cost. We also reformulate the Variational Monte Carlo approach in a game theory framework, to propose a novel optimiser based on decision geometry. We find that, on a practical test case for continuous systems, this new optimiser consistently outperforms any of the KFAC improvements in terms of stability, accuracy and speed of convergence. Beyond Variational Monte Carlo, the versatility of this approach suggests that decision geometry could provide a solid foundation for accelerating a broad class of machine learning algorithms.Comment: 32 pages, 9 figures, 4 tables. Submitted to PRS

    Sensitivity Prewarping for Local Surrogate Modeling

    Full text link
    In the continual effort to improve product quality and decrease operations costs, computational modeling is increasingly being deployed to determine feasibility of product designs or configurations. Surrogate modeling of these computer experiments via local models, which induce sparsity by only considering short range interactions, can tackle huge analyses of complicated input-output relationships. However, narrowing focus to local scale means that global trends must be re-learned over and over again. In this article, we propose a framework for incorporating information from a global sensitivity analysis into the surrogate model as an input rotation and rescaling preprocessing step. We discuss the relationship between several sensitivity analysis methods based on kernel regression before describing how they give rise to a transformation of the input variables. Specifically, we perform an input warping such that the "warped simulator" is equally sensitive to all input directions, freeing local models to focus on local dynamics. Numerical experiments on observational data and benchmark test functions, including a high-dimensional computer simulator from the automotive industry, provide empirical validation

    Deep Bayesian Quadrature Policy Optimization

    Get PDF
    We study the problem of obtaining accurate policy gradient estimates using a finite number of samples. Monte-Carlo methods have been the default choice for policy gradient estimation, despite suffering from high variance in the gradient estimates. On the other hand, more sample efficient alternatives like Bayesian quadrature methods have received little attention due to their high computational complexity. In this work, we propose deep Bayesian quadrature policy gradient (DBQPG), a computationally efficient high-dimensional generalization of Bayesian quadrature, for policy gradient estimation. We show that DBQPG can substitute Monte-Carlo estimation in policy gradient methods, and demonstrate its effectiveness on a set of continuous control benchmarks. In comparison to Monte-Carlo estimation, DBQPG provides (i) more accurate gradient estimates with a significantly lower variance, (ii) a consistent improvement in the sample complexity and average return for several deep policy gradient algorithms, and, (iii) the uncertainty in gradient estimation that can be incorporated to further improve the performance.Comment: Conference paper: AAAI-21. Code available at https://github.com/Akella17/Deep-Bayesian-Quadrature-Policy-Optimizatio

    Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with Random Bases

    Full text link
    For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov Chain Monte Carlo (MCMC) methods, namely, Hamiltonian Monte Carlo (HMC). The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the art methods

    Deep Bayesian Quadrature Policy Optimization

    Get PDF
    We study the problem of obtaining accurate policy gradient estimates using a finite number of samples. Monte-Carlo methods have been the default choice for policy gradient estimation, despite suffering from high variance in the gradient estimates. On the other hand, more sample efficient alternatives like Bayesian quadrature methods are less scalable due to their high computational complexity. In this work, we propose deep Bayesian quadrature policy gradient (DBQPG), a computationally efficient high-dimensional generalization of Bayesian quadrature, for policy gradient estimation. We show that DBQPG can substitute Monte-Carlo estimation in policy gradient methods, and demonstrate its effectiveness on a set of continuous control benchmarks. In comparison to Monte-Carlo estimation, DBQPG provides (i) more accurate gradient estimates with a significantly lower variance, (ii) a consistent improvement in the sample complexity and average return for several deep policy gradient algorithms, and, (iii) the uncertainty in gradient estimation that can be incorporated to further improve the performance
    corecore