
Deep Bayesian Quadrature Policy Optimization

Akella Ravi Tej1, Kamyar Azizzadenesheli2, Mohammad Ghavamzadeh3,
Anima Anandkumar4, Yisong Yue4

1 Indian Institute of Technology Roorkee,
2 Purdue University, 3 Google Research,4 Caltech

ravitej.akella@gmail.com, kamyar@purdue.edu, ghavamza@google.com
{yyue,anima}@caltech.edu

Abstract

We study the problem of obtaining accurate policy gradient estimates using a finite number
of samples. Monte-Carlo methods have been the default choice for policy gradient estimation,
despite suffering from high variance in the gradient estimates. On the other hand, more sam-
ple efficient alternatives like Bayesian quadrature methods are less scalable due to their high
computational complexity. In this work, we propose deep Bayesian quadrature policy gradient
(DBQPG), a computationally efficient high-dimensional generalization of Bayesian quadrature,
for policy gradient estimation. We show that DBQPG can substitute Monte-Carlo estimation in
policy gradient methods, and demonstrate its effectiveness on a set of continuous control bench-
marks. In comparison to Monte-Carlo estimation, DBQPG provides (i) more accurate gradient
estimates with a significantly lower variance, (ii) a consistent improvement in the sample com-
plexity and average return for several deep policy gradient algorithms, and, (iii) the uncertainty
in gradient estimation that can be incorporated to further improve the performance.

1 Introduction

Policy gradient (PG) is a reinforcement learning (RL) approach that directly optimizes the agent’s
policies by operating on the gradient of their expected return (Sutton et al., 2000; Baxter & Bartlett,
2000). The use of deep neural networks for the policy class has recently demonstrated a series of
success for PG methods (Lillicrap et al., 2015; Schulman et al., 2015) on high-dimensional contin-
uous control benchmarks, such as MuJoCo (Todorov et al., 2012). However, the derivation and
analysis of the aforementioned methods mainly rely on access to the expected return and its true
gradient. In general, RL agents do not have access to the true gradient of the expected return, i.e.,
the gradient of integration over returns; instead, they have access to its empirical estimate from
sampled trajectories. Monte-Carlo (MC) sampling (Metropolis & Ulam, 1949) is a widely used point
estimation method for approximating this integration (Williams, 1992). However, MC estimation
returns high variance gradient estimates that are undesirably inaccurate, imposing a high sample
complexity requirement for PG methods (Rubinstein, 1969; Ilyas et al., 2018).

An alternate approach to approximate integrals in probabilistic numerics is Bayesian Quadrature
(BQ) (O’Hagan, 1991). Under mild regularity assumptions, BQ offers impressive empirical advances
and strictly faster convergence rates (Kanagawa et al., 2016). Typically, the integrand in BQ is
modeled using a Gaussian process (GP), such that the linearity of the integral operator provides

1

ar
X

iv
:2

00
6.

15
63

7v
2

 [
cs

.L
G

]
 8

 O
ct

 2
02

0

a Gaussian posterior over the integral. Thus, in addition to a point estimate of the integral, these
methods also quantify the uncertainty in their estimation, a missing piece in MC methods.

In RL, the BQ machinery can be used to obtain a Gaussian approximation of the PG integral,
by placing a GP prior over the action-value function. However, estimating the moments of this
Gaussian approximation, i.e., the PG mean and covariance, requires the integration of GP’s kernel
function, which, in general, does not have an analytical solution. Interestingly, Ghavamzadeh & En-
gel (2007) showed that the PG integral can be solved analytically when the GP kernel is an additive
combination of an arbitrary state kernel and a fixed Fisher kernel. While the authors demonstrate
a superior performance of BQ over MC using a small policy network on simple environments, their
approach does not scale to high-dimensional settings.

Contribution 1: We propose deep Bayesian quadrature policy gradient (DBQPG), a BQ-
based PG framework that extends Ghavamzadeh & Engel (2007) to high-dimensional settings, thus
placing it in the context of contemporary deep PG algorithms. The proposed framework uses a GP
to implicitly model the action-value function, and without explicitly constructing the action-value
function, returns a Gaussian approximation of the policy gradient, represented by a mean vector
(gradient estimate) and covariance (gradient uncertainty). Consequently, this framework can be
used with an explicit critic network (different from implicit GP critic) to leverage the orthogonal
benefits of actor-critic frameworks (Schulman et al., 2016).

The statistical efficiency of BQ, relative to MC estimation, depends on the compatibility be-
tween the GP kernel and the MDP’s action-value function. To make DBQPG robust to a diverse
range of target MDPs, we choose a base kernel capable of universal approximation (e.g. RBF
kernel), and augment its expressive power using deep kernel learning (Wilson et al., 2016). Empir-
ically, DBQPG estimates gradients that are both much closer to the true gradient, and with much
lower variance, when compared to MC estimation. Moreover, DBQPG is a linear-time program
that leverages the recent advances in structured kernel interpolation (Wilson & Nickisch, 2015)
for computational efficiency and GPU acceleration for fast kernel learning (Gardner et al., 2018).
Therefore, DBQPG can favorably substitute MC estimation subroutine in a variety of PG algo-
rithms. Specifically, we show that replacing the MC estimation subroutine with DBQPG provides
a significant improvement in the sample complexity and average return for vanilla PG (Sutton et al.,
2000), natural policy gradient (NPG) (Kakade, 2001) and trust region policy optimization (TRPO)
(Schulman et al., 2015) algorithms, across 7 diverse MuJoCo environments.

Contribution 2: We propose uncertainty aware PG (UAPG), a novel policy gradient method
that utilizes the uncertainty in the gradient estimation for computing reliable policy updates. A
majority of PG algorithms (Kakade, 2001; Schulman et al., 2015) are derived assuming access
to true gradients and therefore do not account the stochasticity in gradient estimation due to
finite sample size. However, one can obtain more reliable policy updates by lowering the step-
size along the directions of high gradient uncertainty and vice versa. UAPG captures this in-
tuition by utilizing DBQPG’s uncertainty to bring different components of a stochastic gradi-
ent estimate to the same scale. UAPG does this by normalizing the step-size of the gradi-
ent components by their respective uncertainties, returning a new gradient estimate with uni-
form uncertainty, i.e., with new gradient covariance as the identity matrix. In comparison to
DBQPG, UAPG uses slightly more computation to provide superior sample complexity and av-
erage return. Our implementation of DBQPG and UAPG methods is available online: https:
//github.com/Akella17/Deep-Bayesian-Quadrature-Policy-Optimization.

2

https://github.com/Akella17/Deep-Bayesian-Quadrature-Policy-Optimization
https://github.com/Akella17/Deep-Bayesian-Quadrature-Policy-Optimization

2 Preliminaries

Consider a Markov decision process (MDP) 〈S,A, P, r, ρ0, γ〉, where S is the state-space, A is the
action-space, P : S × A → ∆S is the transition kernel that maps each state-action pair to a
distribution over the states ∆S , r : S × A → R is the reward kernel, ρ0 : S → ∆S is the initial
state distribution, and γ ∈ [0, 1) is the discount factor. We denote by πθ : S → ∆A a stochastic
parameterized policy with parameters θ ∈ Θ. The MDP controlled by the policy πθ induces a
Markov chain over state-action pairs z = (s, a) ∈ Z = S × A, with an initial density ρπθ0 (z0) =
πθ(a0|s0)ρ0(s0) and a transition probability distribution P πθ(zt|zt−1) = πθ(at|st)P (st|zt−1). We
use the standard definitions for action-value function Qπθ and expected return J(θ) under πθ:

Qπθ(zt) = E
[∑∞

τ=0
γτr(zt+τ)

∣∣∣ zt+τ+1 ∼ P πθ(.|zt+τ)
]
, J(θ) = Ez∼ρπθ0 [Qπθ(z)] . (1)

However, the gradient of J(θ) with respect to policy parameters θ cannot be directly computed
from this formulation. The policy gradient theorem (Sutton et al., 2000; Konda & Tsitsiklis, 2000)
provides an analytical expression for the gradient of the expected return J(θ), as:

∇θJ(θ) =

∫
Z
dzρπθ(z)u(z)Qπθ(z) = Ez∼ρπθ

[
u(z)Qπθ(z)

]
, (2)

where u(z) = ∇θ log πθ(a|s) is the score function and ρπθ is the discounted state-action visitation
frequency defined as:

P πθt (zt) =

∫
Zt
dz0...dzt−1P

πθ
0 (z0)

t∏
τ=1

P πθ(zτ |zτ−1), ρπθ(z) =

∞∑
t=0

γtP πθt (z). (3)

3 Policy Gradient Evaluation

The exact evaluation of the PG integral in Eq. 2 is often intractable for MDPs with a large (or
continuous) state or action space. We discuss two prominent approaches to approximate this integral
using a finite set of samples {zi}ni=1 ∼ ρπθ : (i) Monte-Carlo method and (ii) Bayesian Quadrature.

Monte-Carlo (MC) method approximates the integral in Eq. 2 by the finite sum:

LMC
θ =

1

n

n∑
i=1

Qπθ(zi)u(zi) =
1

n
UQ, (4)

where u(z) is a |Θ| dimensional vector (|Θ| is the number of policy parameters), U = [u(z1), ...,u(zn)]
is a |Θ| × n dimensional matrix, and Q = [Qπθ(z1), ..., Qπθ(zn)]1 is an n dimensional vector. MC
method returns the gradient mean evaluated at sample locations, which, according to the central
limit theorem (CLT), is an unbiased estimate of the true gradient. However, CLT also suggests
that the MC estimates suffer from a slow convergence rate (n−1/2) and high variance, necessitating
a large sample size n for reliable PG estimation (Ilyas et al., 2018). Yet, MC methods are more
computationally efficient than their sample-efficient alternatives (e.g. BQ), making them ubiquitous
in PG algorithms.

1Qπθ (z) is estimated from MC rollouts or an explicit critic network (different from implicit GP critic).

3

Bayesian quadrature (BQ) (O’Hagan, 1991) is an approach from probabilistic numerics (Hen-
nig et al., 2015) that converts numerical integration into a Bayesian inference problem. The first
step in BQ is to formulate a prior stochastic model over the integrand. This is done by placing
a Gaussian process (GP) prior on the Qπθ function, i.e., a mean zero GP E [Qπθ(z)] = 0, with a
covariance function k(zp, zq) = Cov[Qπθ(zp), Qπθ(zq)], and observation noise σ. Next, the GP prior
on Qπθ is conditioned (Bayes rule) on the sampled data D = {zi}ni=1 to obtain the posterior mo-
ments E [Qπθ(z)|D] and Cov [Qπθ(z1), Qπθ(z2)|D]. Since the transformation from Qπθ(z) to ∇θJ(θ)
happens through a linear integral operator (in Eq. 2), ∇θJ(θ) also follows a Gaussian distribution:

LBQθ = E [∇θJ(θ)|D] =

∫
Z
dzρπθ(z)u(z)E [Qπθ(z)|D] (5)

CBQ
θ = Cov[∇θJ(θ)|D] =

∫
Z2

dz1dz2ρ
πθ(z1)ρ

πθ(z2)u(z1)Cov[Qπθ(z1), Qπθ(z2)|D]u(z2)
>,

where the mean vectorLBQθ is the PG estimate and the covarianceCBQ
θ is its uncertainty estimation.

While the integrals in Eq. 5 are still intractable for an arbitrary GP kernel k, they have closed-form
solutions when k is the additive composition of a state kernel ks (arbitrary) and the Fisher kernel
kf (indispensable) (Ghavamzadeh & Engel, 2007):

k(z1, z2) = c1ks(s1, s2) + c2kf (z1, z2), with kf (z1, z2) = u(z1)
>G−1u(z2), (6)

where c1, c2 are hyperparameters2 andG is the Fisher information matrix of πθ. Using the matrices,

Kf = U>G−1U , K = c1Ks + c2Kf , G = Ez∼ρπθ [u(z)u(z)>] ≈ 1

n
UU>, (7)

the PG mean LBQθ and covariance CBQ
θ can be computed analytically (derivation in Appendix B),

LBQθ = c2U(K + σ2I)−1Q, CBQ
θ = c2G− c22U

(
K + σ2I

)−1
U>. (8)

Here, Q is same as in the MC method. Note that removing the Fisher kernel kf (setting c2 = 0 in
Eq. 8) causes LBQθ = 0 and CBQ

θ = 0. Further, Ghavamzadeh & Engel (2007) showed that BQ-PG
LBQθ reduces to MC-PG LMC

θ when the state kernel ks is removed (c1 = 0).
To summarize, (i) the presence of Fisher kernel (c2 6= 0) is essential for obtaining an analytical
solution for BQ-PG, and (ii) with the Fisher kernel fixed, the choice of state kernel alone determines
the convergence rate of BQ-PG relative to the MC baseline (equivalently BQ-PG with c1 = 0).

4 Deep Bayesian Quadrature Policy Gradient

Here, we introduce the steps needed for obtaining a practical BQ-PG method, that (i) is more
sample-efficient than MC baseline, and (ii) easily scales to high-dimensional settings.

Kernel Selection: In the previous section, it was highlighted that the flexibility of kernel
selection is limited to the choice of the state kernel ks. To understand the role of ks, we first
highlight the implication of the kernel composition proposed in Ghavamzadeh & Engel (2007).
Specifically, the additive composition of the state kernel ks and the Fisher kernel kf implicitly

2c1, c2 are redundant hyperparameters that are simply introduced to offer a better explanation of BQ-PG.

4

divides the Qπθ function into state-value function and advantage function, separately modeled by
ks and kf respectively (see Appendix C.1). Thus, removing the Fisher kernel kf (c2 = 0) results
in a non-existent advantage function, which explains LBQθ = 0 and CBQ

θ = 0. More interestingly,
removing the state kernel ks (c1 = 0) results in a non-existent state-value function, which also
reduces LBQθ to LMC

θ . In other words, MC-PG is a limiting case of BQ-PG where the state-value
function is suppressed to 0 (more details in Appendix C.2).

Thus, BQ-PG can offer more accurate gradient estimates than MC-PG, along with well-
calibrated uncertainty estimates, when the state kernel ks is a better prior that the trivial ks = 0, for
the MDP’s state-value function. To make the choice of ks robust to a diverse range of target MDPs,
we suggest (i) a base kernel capable of universal approximation (e.g. RBF kernel), followed by (ii)
increasing the base kernel’s expressive power by using a deep neural network (DNN) to transform
its inputs (Wilson et al., 2016). Deep kernels combine the non-parametric flexibility of GPs with
the structural properties of NNs to obtain more expressive kernel functions when compared to their
base kernels. The kernel parameters φ (DNN parameters + base kernel hyperparameters) are tuned
using the gradient of GP’s negative log marginal likelihood JGP (Rasmussen & Williams, 2005),

JGP (φ|D) ∝ log |K| −Q>K−1Q, ∇φJGP = Q>K−1(∇φK)K−1Q+ Tr(K−1∇φK). (9)

Scaling BQ to large sample sizes n: The complexity of estimating LBQθ (Eq. 8) is largely
influenced by the matrix-inversion operation (K+σ2I)−1, whose exact computation scales with an
O(n3) time andO(n2) space complexity. Our first step is to shift the focus from an expensive matrix-
inversion operation to an approximate inverse matrix-vector multiplication (i-MVM). In particular,
we use the conjugate gradient (CG) method to compute the i-MVM (K + σ2I)−1v within machine
precision using p� n iterations of MVM operations Kv′ = c1Ksv

′ + c2Kfv
′.

While the CG method nearly reduces the time complexity by an order of n, the MVM oper-
ation with a dense matrix still incurs a prohibitive O(n2) computational cost. Fortunately, the
matrix factorization ofKf (Eq. 7) allows for computing the Fisher kernel MVMKfv in linear-time
through automatic differentiation, without the explicit creation or storage of the Kf matrix (see
Appendix D.1). On the other hand, since the choice of ks is arbitrary, we deploy structured kernel
interpolation (SKI) (Wilson & Nickisch, 2015), a general kernel sparsification strategy to efficiently
compute the state kernel MVM Ksv. SKI uses a set of m ≤ n “inducing points” {ŝi}mi=1 to approxi-
mateKs with a rank m matrix K̂s = WKm

s W
>, whereKm

s is an m×m Gram matrix with entries
Km
s (p,q) = ks(ŝp, ŝq), andW is an n×m interpolation matrix whose entries depend on the relative

placement of sample points {si}ni=1 and inducing points {ŝi}mi=1. In practice, a sparseW matrix that
follows local cubic interpolation (only 4 non-zero entries per row) provides a good approximation
K̂s, and more importantly, offers K̂sv MVM in O(n+m2) time and storage complexity.

Further, the SKI framework also provides the flexibility to select the inducing point locations for
exploiting the structure of specialized GP kernels. For instance, one-dimensional stationary kernels,
i.e., ks(x, y) = ks(x − y), can additionally leverage the Toeplitz method (Turner, 2010) by picking
evenly-spaced inducing points. Since these matrices are constant along the diagonal, i.e. Ks(x,y) =
Ks(x+1,y+1), the Toeplitz method utilizes fast Fourier transform to attain anO(n+m logm) time and
O(n+m) storage for the MVM operation. Further, Toeplitz methods can be extended to multiple
dimensions by assuming that the kernel decomposes as a sum of one-dimensional stationary kernels
along each of the input dimensions. Compared to conventional inducing point methods that operate
withm� n inducing points, choosing a base kernel that conforms with the Toeplitz method enables
the realization of larger m values, thereby providing a more accurate approximation of Ks.

5

Practical DBQPG Algorithm: The DBQPG algorithm is designed to compute the gradient
from a batch of samples (parallelly) leveraging the automatic differentiation framework and fast
kernel computation methods, thus placing BQ-PG in the context of contemporary PG algorithms
(see Fig. 1(left)). In contrast, the original BQ-PG method (Ghavamzadeh & Engel, 2007) was
designed to process the samples sequentially (slow). Other major improvements in DBQPG include
(i) replacing a traditional inducing points method (O(m2n + m3) time and O(mn + m2) storage)
with SKI, a more efficient alternative (O(n + m2) time and storage), and (ii) replacing a fixed
base kernel for ks with the more expressive deep kernel, followed by kernel learning its parameters
(Eq. 9). The performance gains from deep kernel learning and SKI are documented in Appendix G.

For DBQPG, our default choice for the prior state covariance function ks is a deep RBF kernel
which comprises of an RBF base kernel on top of a DNN feature extractor. Our choice of RBF as
the base kernel is based on: (i) its compelling theoretical properties such as infinite basis expansion
and universal function approximation (Micchelli et al., 2006) and (ii) its compatibility with the
Toeplitz method. Thus, the overall computational complexity of estimating LBQθ (Eq. 8) is O(p(n+
Y m logm)) time and O(n+Y m) storage (Y : state dimensionality; p: CG iterations; m: number of
inducing points in SKI+Toeplitz for deep RBF kernel; automatic differentiation for Fisher kernel).

Note that we intentionally left out kernel learning from the complexity analysis since a naive
implementation of the gradient-based optimization step (Eq. 9) incurs a cubic time complexity in
sample size. Our implementation relies on the black-box matrix-matrix multiplication (BBMM)
feature (a batched version of CG algorithm that effectively uses GPU hardware) offered by the
GPyTorch library (Gardner et al., 2018), coupled with a SKI approximation over Ks. This combi-
nation offers a linear-time routine for kernel learning. In other words, DBQPG with kernel learning
is a linear-time program that leverages GPU acceleration to efficiently estimate the gradient of a
large policy network, with a few thousands of parameters, on high-dimensional continuous domains.

Figure 1: (Left) Overview of DBQPG, (Right) Illustration of DBQPG and UAPG updates along
the first two principal components (PCs) of the gradient covariance matrix.

5 Uncertainty Aware Policy Gradient

We propose UAPG, a novel uncertainty aware PG method that utilizes the gradient uncertainty
CBQ

θ from DBQPG to provide more reliable policy updates. Most classical PG methods consider
stochastic gradient estimates as the true gradient, without accounting the uncertainty in their
gradient components, thus, occasionally taking large steps along the directions of high uncertainty.
UAPG uses CBQ

θ to normalize the components of LBQθ with their respective uncertainties, bringing

6

them all to the same scale. In other words, UAPG provides more reliable policy updates by lowering
the stepsize along the directions with high uncertainty and vice versa. Thus, the estimates returned
by UAPG have uniform uncertainty, i.e. their gradient covariance is the identity matrix. See Fig. 1
(right). In theory, the UAPG update can be formulated as

(
CBQ

θ

)− 1
2LBQθ .

Algorithm 1 BQ-PG Estimator Subroutine (DBQPG and UAPG)
1: BQ-PG(θ, n)

• θ: policy parameters
• n: sample size for PG estimation

2: Collect n state-action pairs (samples) from running the policy πθ in the environment.
3: Compute the MC action-value estimate Q for the n state-action pairs.
4: Update kernel parameters using GP MLL (Eq. 9) and explicit critic’s parameters using TD

error.
5: Policy gradient estimation (DBQPG):

Lθ =

{
LBQθ = c2U(c1Ks + c2Kf + σ2I)−1Q (Vanilla PG)
G−1LBQθ = c2G

−1U(c1Ks + c2Kf + σ2I)−1Q (Natural PG)
6: (Optional) Uncertainty-based adjustment (UAPG):

Compute {hi, νi}δi=1 using fast SVD of CBQ
θ (Eq. 8, vanilla PG) or CNBQ

θ

−1
(Eq. 11, NPG).

Lθ =


ν
− 1

2

δ

(
I +

δ∑
i=1

hi

(√
νδ
νi
− I

)
h>i

)
Lθ (Vanilla PG)

ν
1
2

δ

(
I +

δ∑
i=1

hi

(
min

(√
νi
νδ
, ε
)
− I

)
h>i

)
Lθ (Natural PG)

7: return Lθ

Practical UAPG Algorithm: Empirical CBQ
θ estimates are often ill-conditioned matrices

(spectrum decays quickly) with a numerically unstable inversion. Since CBQ
θ only provides a good

estimate of the top few directions of uncertainty, the UAPG update is computed from a rank-δ
singular value decomposition (SVD) approximation of CBQ

θ ≈ νδI +
∑δ

i=1 hi(νi− νδ)h>i as follows:

LUAPGθ = ν
− 1

2
δ

(
I +

∑δ

i=1
hi
(√

νδ/νi − I
)
h>i
)
LBQθ . (10)

The principal components (PCs) {hi}δi=1 denote the top δ directions of uncertainty and the singular
values {νi}δi=1 denote their corresponding magnitude of uncertainty. The rank-δ decomposition of
CBQ

θ can be computed in linear-time using the randomized SVD algorithm (Halko et al., 2011). The
UAPG update in Eq. 10 dampens the stepsize of the top δ directions of uncertainty, relative to the
stepsize of remaining gradient components. Thus, in comparison to DBQPG, UAPG lowers the
risk of taking large steps along the directions of high uncertainty, providing reliable policy updates.

For natural gradient LNBQθ = G−1LBQθ , the gradient uncertainty can be computed as follows:

CNBQ
θ = G−1CBQ

θ G−1 = c2(G
−1 − c2G−1U

(
c1Ks + c2Kf + σ2I

)−1
U>G−1)

= c2(G+ c2U
(
c1Ks + σ2I

)−1
U>)−1.

(11)

Since CNBQ
θ is the inverse of an ill-conditioned matrix, we instead apply the low-rank approximation

7

on CNBQ
θ

−1
≈ νδI +

∑δ
i=1 hi(νi − νδ)h>i to obtain the UAPG update of NPG:

LUAPGθ = ν
1
2
δ

(
I +

∑δ

i=1
hi
(

min
(√

νi/νδ, ε
)
− I

)
h>i

)
G−1LBQθ , ε > 1 (12)

where, {hi, νi}δi=1 correspond to the top δ PCs of CNBQ
θ

−1
(equivalently the bottom δ PCs of

CNBQ
θ), and ε > 1 is a hyperparameter. We replace

√
νi/νδ with min(

√
νi/νδ, ε) to avoid taking

large steps along these directions, solely on the basis of their uncertainty estimates. UAPG over
the NPG estimate increases the step size for the most confident directions (i.e., the top δ PCs
of CNBQ

θ

−1
), as opposed to lowering the stepsize for the most uncertain directions in the case of

UAPG over Vanilla PG estimates. For c2 � 1, it is interesting to note that (i) CBQ
θ ≈ c2G

and CNBQ
θ ≈ c2G

−1, which implies that the most uncertain gradient directions for vanilla PG
approximately correspond to the most confident directions for NPG, and (ii) the ideal UAPG
update for both vanilla PG and NPG converges along the G−

1
2LBQθ direction. A more rigorous

discussion on the relations between Vanilla PG, NPG and their UAPG updates can be found in
Appendix E.1.

6 Experiments

We study the behaviour of BQ-PG methods (Algorithm 1) on MuJoCo environments, using the
mujoco-py library of OpenAI Gym (Brockman et al., 2016). In our experiments, we replace Q with
generalized advantage estimates (Schulman et al., 2016), computed using an explicit state-value
critic network (a linear layer on top of φ(s) in Fig. 1(left)).

102 103 104 105

state-action pairs

0.25

0.50

0.75

C
o

si
n

e
 s

im
ila

ri
ty

Iteration: 0

102 103 104 105

state-action pairs

0.0

0.2

0.4

Iteration: 150

102 103 104 105

state-action pairs

0.0

0.2

0.4 # Iteration: 300

102 103 104 105

state-action pairs

0.0

0.1

0.2

Iteration: 450
MC

DBQPG

102 103 104 105

state-action pairs

0

10

20

V
a
ri
a

n
ce

Iteration: 0

102 103 104 105

state-action pairs

0

20

40
Iteration: 150

102 103 104 105

state-action pairs

0

20

40

Iteration: 300

102 103 104 105

state-action pairs

10

20

30

Iteration: 450

MC

DBQPG

Figure 2: An empirical analysis of the quality of policy gradient estimates as a function of the
state-action sample size. The experiments are conducted for 0th, 150th, 300th, and 450th iteration
along the training phase of DBQPG (vanilla PG) algorithm in MuJoCo Swimmer-v2 environment.
All the results have been averaged over 25 repeated gradient measurements across 100 random runs.
(a) The accuracy plot results are obtained w.r.t the “true gradient”, which is computed using MC
estimates of 106 state-action pairs. (b) The normalized variance is computed using the ratio of
trace of empirical gradient covariance matrix (like Zhao et al. (2011)) and squared norm of gradient
mean.

Quality of Gradient Estimation: Inspired from the experimental setup of Ilyas et al. (2018),
we evaluate the quality of PG estimates obtained via DBQPG and MC estimation using two

8

metrics: (i) gradient accuracy or the average cosine similarity of the obtained gradient estimates
with respect to the true gradient estimates (estimated from 106 state-action pairs) and (ii) variance
in the gradient estimates (normalized by the norm of the mean gradient for scale invariance). See
Fig. 2. We observe that DBQPG provides more accurate gradient estimates with a considerably
lower variance. Interestingly, DBQPG and MC estimates offer nearly the same quality gradients
at the start of training. However, as the training progresses, and DBQPG learns kernel bases, we
observe that DBQPG returns superior quality gradient estimates. Moreover, as training progress
from 0 to 150 iterations, the gradient norms of both DBQPG and MC estimates drop by a factor of
3, while the “unnormalized” gradient variances increase by 5 folds. The drop in the signal-to-noise
ratio for gradient estimation explains the fall in gradient accuracy over training time. Further,
DBQPG and UAPG have a negligible computational overhead relative to MC-PG (shown in
Appendix Fig. 6). These results motivate substituting MC with BQ-based gradient estimates in
deep PG algorithms.

Compatibility with Deep PG Algorithms: We examine the compatibility of BQ-based
methods with the following on-policy deep policy gradient algorithms: (i) Vanilla policy gradient,
(ii) natural policy gradient (NPG), and (iii) trust region policy optimization (TRPO), as shown
in Fig. 3. In these experiments, only the MC estimation subroutine is replaced with BQ-based
methods, keeping the rest of the algorithm unchanged. Note that for TRPO, we use the UAPG
update of NPG to compute the step direction. We observe that DBQPG consistently outperforms
MC estimation, both in final performance and sample complexity across all the deep PG algorithms.
This observation resonates with our previous finding of the superior gradient quality of DBQPG
estimates, and strongly advocates the use of DBQPG over MC for PG estimation.

For UAPG, we observe a similar trend as DBQPG. The advantage of UAPG estimates is more
pronounced in the vanilla PG, and NPG experiments since the performance on these algorithms
is highly sensitive to the choice of learning rates. UAPG adjusts the stepsize of each gradient
component based on its uncertainty, resulting in a robust update in the face of uncertainty, a better
sample complexity, and average return. We observe that UAPG performs at least as good as, if not
considerably better than, DBQPG on most experiments. Since TRPO updates are less sensitive
to the learning rate, UAPG adjustment does not provide a significant improvement over DBQPG.

7 Related Work

The high sample complexity of MC methods has been a long-standing problem in the PG literature
(Rubinstein, 1969). Previous approaches that address this issue broadly focus on two aspects: (i)
improving the quality of PG estimation using a value function approximation (Konda & Tsitsiklis,
2003), or (ii) attaining faster convergence by robustly taking larger steps in the right direction.
The former class of approaches trade a tolerable level of bias for designing a lower variance PG
estimator (Schulman et al., 2016; Reisinger et al., 2008). Following the latter research direction,
Kakade (2001) and Kakade & Langford (2002) suggest replacing the vanilla PG with natural pol-
icy gradient (NPG), the steepest descent direction in the policy distribution space. While NPG
improves over vanilla PG methods in terms of sample complexity (Peters & Schaal, 2008; Agarwal
et al., 2019), it is just as vulnerable to catastrophic policy updates. Trust region policy optimization
(TRPO) (Schulman et al., 2015) extends the NPG algorithm with a robust stepsize selection mech-
anism that guarantees monotonic improvements for expected (true) policy updates. However, the
practical TRPO algorithm loses its improvement guarantees for stochastic PG estimates, thereby

9

Vanilla PG

NPG

TRPO

Figure 3: Comparison of BQ-based methods and MC estimation in vanilla PG, NPG, and TRPO
frameworks across 7 MuJoCo environments. The agent’s performance is averaged over 10 runs.

necessitating a large sample size for computing reliable policy updates. The advantages of these
approaches, in terms of sample efficiency, are orthogonal to the benefits of DBQPG and UAPG
methods.

Another line of research focuses on using Gaussian processes (GP) to directly approximate the
PG integral (Ghavamzadeh & Engel, 2006). This work was followed by the Bayesian Actor-Critic
(BAC) algorithm (Ghavamzadeh & Engel, 2007), which exploits the MDP framework for improving

10

the statistical efficiency of PG estimation. Like DBQPG, BAC is a BQ-based PG method that
uses a GP to approximate the action-value function. However, BAC is an online algorithm that uses
Gaussian process temporal difference (GPTD) (Engel et al., 2005), a sequential kernel sparsification
method, for learning the value function. BAC’s sequential nature and a prohibitive O(m2n+m3)
time and O(mn + m2) storage complexity (m is the dictionary size, i.e., the number of inducing
points) prevents if from scaling to large non-linear policies and high-dimensional continuous domains.
Further, a recent extension of BAC (Ghavamzadeh et al., 2016) uses the uncertainty to adjust the
learning rate of policy parameters, (I − 1

νC
BQ
θ)LBQθ (ν is an upper bound for CBQ

θ), much like the
UAPG method. While this update reduces the step-size of more uncertain directions, it does not
provide gradient estimates with uniform uncertainty, making it less robust to bad policy updates
relative to UAPG. Moreover, this method would not work for NPG and TRPO algorithms as
their covariance is the inverse of an ill-conditioned matrix. Refer Appendix G for a more detailed
comparison of DBQPG and UAPG with prior BQ-PG works.

8 Discussion

We study the problem of estimating accurate policy gradient (PG) estimates from a finite number
of samples. This problem becomes relevant in numerous RL applications where an agent needs to
estimate the PG using samples gathered through interaction with the environment. Monte-Carlo
(MC) methods are widely used for PG estimation despite offering high-variance gradient estimates
and a slow convergence rate. We propose DBQPG, a high-dimensional generalization of Bayesian
quadrature that, like MC method, estimates PG in linear-time. We empirically study DBQPG and
demonstrate its effectiveness over MC methods. We show that DBQPG provides more accurate
gradient estimates, along with a significantly smaller variance in the gradient estimation. Next, we
show that replacing the MC method with DBQPG in the gradient estimation subroutine of three
deep PG algorithms, viz., Vanilla PG, NPG, and TRPO, consistently offers significant gains in
the agent’s sample complexity and average return.

To obtain reliable policy updates from stochastic gradient estimates, one needs to estimate the
uncertainty in gradient estimation, in addition to the gradient estimation itself. The proposed
DBQPG method additionally provides this uncertainty along with the PG estimate. We propose
UAPG, a PG method that uses DBQPG’s uncertainty to normalize the gradient components by
their uncertainties, returning a uniformly uncertain gradient estimate. Such a normalization will
lower the step size of gradient components with high uncertainties and vice versa, resulting in reliable
updates with robust step sizes. We show that UAPG further improves the sample complexity over
DBQPG on Vanilla PG, NPG, and TRPO algorithms. Overall, our study shows that it is possible
to scale Bayesian quadrature to high-dimensional settings, while its better gradient estimation and
well-calibrated gradient uncertainty can significantly boost the performance of deep PG algorithms.

Broader Impact

When deploying deep policy gradient (PG) algorithms for learning control policies in physical
systems, sample efficiency becomes an important design criteria. In the past, numerous works
have focused on improving the sample efficiency of PG estimation through variance reduction,
robust stepsize selection, etc. In this paper, we propose deep Bayesian quadrature policy gradient

11

(DBQPG), a statistically efficient policy gradient estimator that offers orthogonal benefits for
improving the sample efficiency. In comparison to Monte-Carlo estimation, the default choice for PG
estimation, DBQPG returns more accurate gradient estimates with much lower empirical variance.
Since DBQPG is a general gradient estimation subroutine, it can directly replace Monte-Carlo
estimation in most policy gradient algorithms, as already demonstrated in our paper. Therefore, we
think that the DBQPG method directly benefits most policy gradient algorithms and is indirectly
beneficial for several downstream reinforcement learning applications.

We also propose uncertainty aware policy gradient (UAPG), a principled approach for incorpo-
rating the uncertainty in gradient estimation (also quantified by the DBQPG method) to obtain
reliable PG estimates. UAPG lowers the risk of catastrophic performance degradation with stochas-
tic policy updates, and empirically performs at least as good as, if not better than, the DBQPG
method. Hence, we believe that the UAPG method is more relevant to reinforcement learning
applications with safety considerations, such as robotics.

Acknowledgements

K. Azizzadenesheli is supported in part by Raytheon and Amazon Web Service. A. Anandkumar is
supported in part by Bren endowed chair, DARPA PAIHR00111890035 and LwLL grants, Raytheon,
Microsoft, Google, and Adobe faculty fellowships.

References

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. Optimality and approximation with policy
gradient methods in markov decision processes. arXiv preprint arXiv:1908.00261, 2019.

Bach, F. On the equivalence between kernel quadrature rules and random feature expansions.
Journal of Machine Learning Research, 18(21):1–38, 2017. URL http://jmlr.org/papers/v18/
15-178.html.

Baxter, J. and Bartlett, P. L. Direct gradient-based reinforcement learning. In 2000 IEEE In-
ternational Symposium on Circuits and Systems. Emerging Technologies for the 21st Century.
Proceedings (IEEE Cat No. 00CH36353), volume 3, pp. 271–274. IEEE, 2000.

Briol, F.-X., Oates, C., Girolami, M., and Osborne, M. A. Frank-wolfe bayesian quadrature: Prob-
abilistic integration with theoretical guarantees. In Advances in Neural Information Processing
Systems, pp. 1162–1170, 2015.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
Openai gym, 2016.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. Benchmarking deep reinforcement
learning for continuous control. In Proceedings of the 33rd International Conference on Interna-
tional Conference on Machine Learning - Volume 48, ICML’16, pp. 1329–1338. JMLR.org, 2016.
URL http://dl.acm.org/citation.cfm?id=3045390.3045531.

12

http://jmlr.org/papers/v18/15-178.html
http://jmlr.org/papers/v18/15-178.html
http://dl.acm.org/citation.cfm?id=3045390.3045531

Engel, Y., Mannor, S., and Meir, R. Bayes meets bellman: The gaussian process approach to
temporal difference learning. In Proceedings of the Twentieth International Conference on In-
ternational Conference on Machine Learning, ICML’03, pp. 154–161. AAAI Press, 2003. ISBN
1-57735-189-4. URL http://dl.acm.org/citation.cfm?id=3041838.3041858.

Engel, Y., Mannor, S., and Meir, R. Reinforcement learning with gaussian processes. In Proceedings
of the 22Nd International Conference on Machine Learning, ICML ’05, pp. 201–208, New York,
NY, USA, 2005. ACM. ISBN 1-59593-180-5. doi: 10.1145/1102351.1102377. URL http://doi.
acm.org/10.1145/1102351.1102377.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and Wilson, A. G. Gpytorch: Blackbox
matrix-matrix gaussian process inference with gpu acceleration. In Proceedings of the 32Nd Inter-
national Conference on Neural Information Processing Systems, NIPS’18, pp. 7587–7597, USA,
2018. Curran Associates Inc. URL http://dl.acm.org/citation.cfm?id=3327757.3327857.

Ghavamzadeh, M. and Engel, Y. Bayesian policy gradient algorithms. In Proceedings of the 19th
International Conference on Neural Information Processing Systems, NIPS’06, pp. 457–464, Cam-
bridge, MA, USA, 2006. MIT Press.

Ghavamzadeh, M. and Engel, Y. Bayesian actor-critic algorithms. In Proceedings of the 24th
International Conference on Machine Learning, ICML ’07, pp. 297–304, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-793-3. doi: 10.1145/1273496.1273534. URL http://doi.acm.
org/10.1145/1273496.1273534.

Ghavamzadeh, M., Engel, Y., and Valko, M. Bayesian policy gradient and actor-critic algorithms.
Journal of Machine Learning Research, 17(66):1–53, 2016. URL http://jmlr.org/papers/v17/
10-245.html.

Halko, N., Martinsson, P.-G., and Tropp, J. A. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288,
2011.

Hennig, P., Osborne, M. A., and Girolami, M. Probabilistic numerics and uncertainty in compu-
tations. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 471(2179), 2015.

Ilyas, A., Engstrom, L., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., and Madry, A. Are
deep policy gradient algorithms truly policy gradient algorithms? ArXiv, abs/1811.02553, 2018.

Kakade, S. A natural policy gradient. In Proceedings of the 14th International Conference on Neural
Information Processing Systems: Natural and Synthetic, NIPS’01, pp. 1531–1538, Cambridge,
MA, USA, 2001. MIT Press. URL http://dl.acm.org/citation.cfm?id=2980539.2980738.

Kakade, S. and Langford, J. Approximately optimal approximate reinforcement learning. In ICML,
volume 2, pp. 267–274, 2002.

Kanagawa, M., Sriperumbudur, B. K., and Fukumizu, K. Convergence guarantees for kernel-based
quadrature rules in misspecified settings. In Advances in Neural Information Processing Systems,
pp. 3288–3296, 2016.

13

http://dl.acm.org/citation.cfm?id=3041838.3041858
http://doi.acm.org/10.1145/1102351.1102377
http://doi.acm.org/10.1145/1102351.1102377
http://dl.acm.org/citation.cfm?id=3327757.3327857
http://doi.acm.org/10.1145/1273496.1273534
http://doi.acm.org/10.1145/1273496.1273534
http://jmlr.org/papers/v17/10-245.html
http://jmlr.org/papers/v17/10-245.html
http://dl.acm.org/citation.cfm?id=2980539.2980738

Kanagawa, M., Sriperumbudur, B. K., and Fukumizu, K. Convergence analysis of deterministic
kernel-based quadrature rules in misspecified settings. Foundations of Computational Mathemat-
ics, 20(1):155–194, 2020.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms. In Solla, S. A., Leen, T. K., and Müller,
K. (eds.), Advances in Neural Information Processing Systems 12, pp. 1008–1014. MIT Press,
2000. URL http://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf.

Konda, V. R. and Tsitsiklis, J. N. On actor-critic algorithms. SIAM J. Control Optim., 42(4):
1143–1166, April 2003. ISSN 0363-0129. doi: 10.1137/S0363012901385691. URL https://doi.
org/10.1137/S0363012901385691.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

Metropolis, N. and Ulam, S. The monte carlo method. Journal of the American statistical associa-
tion, 44(247):335–341, 1949.

Micchelli, C. A., Xu, Y., and Zhang, H. Universal kernels. J. Mach. Learn. Res., 7:2651–2667,
December 2006. ISSN 1532-4435.

O’Hagan, A. Bayes-hermite quadrature. Journal of Statistical Planning and Inference,
29(3):245–260, November 1991. URL http://www.sciencedirect.com/science/article/
B6V0M-45F5GDM-53/1/6e05220bfd4a6174e890f60bb391107c.

Peters, J. and Schaal, S. Reinforcement learning of motor skills with policy gradients. Neural
Networks, 21(4):682–697, May 2008.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2005. ISBN 026218253X.

Reisinger, J., Stone, P., and Miikkulainen, R. Online kernel selection for bayesian reinforcement
learning. In Proceedings of the 25th International Conference on Machine Learning, ICML ’08, pp.
816–823, New York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605582054.
doi: 10.1145/1390156.1390259. URL https://doi.org/10.1145/1390156.1390259.

Rubinstein, R. Y. Some problems in monte carlo optimization. Ph.D. thesis, 1969.

Saatci, Y. Scalable Inference for Structured Gaussian Process Models. University of Cambridge,
2012. URL https://books.google.co.in/books?id=9pC3oQEACAAJ.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. Trust region policy optimization.
In Proceedings of the 32nd International Conference on Machine Learning (ICML), 2015.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. High-dimensional continuous
control using generalized advantage estimation. In Proceedings of the International Conference
on Learning Representations (ICLR), 2016.

Silverman, B. W. Some aspects of the spline smoothing approach to non-parametric regression curve
fitting. Journal of the Royal Statistical Society. Series B (Methodological), 47(1):1–52, 1985. ISSN
00359246. URL http://www.jstor.org/stable/2345542.

14

http://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf
https://doi.org/10.1137/S0363012901385691
https://doi.org/10.1137/S0363012901385691
http://www.sciencedirect.com/science/article/B6V0M-45F5GDM-53/1/6e05220bfd4a6174e890f60bb391107c
http://www.sciencedirect.com/science/article/B6V0M-45F5GDM-53/1/6e05220bfd4a6174e890f60bb391107c
https://doi.org/10.1145/1390156.1390259
https://books.google.co.in/books?id=9pC3oQEACAAJ
http://www.jstor.org/stable/2345542

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. Policy gradient methods for reinforcement
learning with function approximation. In Proceedings of the 12th International Conference on
Neural Information Processing Systems, NIPS’99, pp. 1057–1063, Cambridge, MA, USA, 2000.
MIT Press. URL http://dl.acm.org/citation.cfm?id=3009657.3009806.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE,
2012.

Townsend, J. A new trick for calculating jacobian vector products, 2017. URL https://j-towns.
github.io/2017/06/12/A-new-trick.html.

Turner, R. E. Statistical Models for Natural Sounds. PhD thesis, Gatsby Computational Neuro-
science Unit, UCL, 2010.

Williams, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Mach. Learn., 8(3-4):229–256, May 1992. ISSN 0885-6125. doi: 10.1007/BF00992696.
URL https://doi.org/10.1007/BF00992696.

Wilson, A. G. and Nickisch, H. Kernel interpolation for scalable structured gaussian processes
(kiss-gp). In Proceedings of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, pp. 1775–1784. JMLR.org, 2015. URL http://dl.
acm.org/citation.cfm?id=3045118.3045307.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. Deep kernel learning. In Gretton, A. and
Robert, C. C. (eds.), Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, volume 51 of Proceedings of Machine Learning Research, pp. 370–378, Cadiz, Spain,
09–11 May 2016. PMLR. URL http://proceedings.mlr.press/v51/wilson16.html.

Woodbury, M. A. Inverting modified matrices. Memorandum report, 42(106):336, 1950.

Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. Analysis and improvement of policy gradient
estimation. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F., and Weinberger, K. Q.
(eds.), Advances in Neural Information Processing Systems 24, pp. 262–270. Curran Associates,
Inc., 2011.

15

http://dl.acm.org/citation.cfm?id=3009657.3009806
https://j-towns.github.io/2017/06/12/A-new-trick.html
https://j-towns.github.io/2017/06/12/A-new-trick.html
https://doi.org/10.1007/BF00992696
http://dl.acm.org/citation.cfm?id=3045118.3045307
http://dl.acm.org/citation.cfm?id=3045118.3045307
http://proceedings.mlr.press/v51/wilson16.html

A Useful Identities

Expectation of the score vector u(z) = ∇θ log πθ(a|s) under the policy distribution πθ(a|s) is 0:

Ea∼πθ(.|s) [u(z)] = Ea∼πθ(.|s) [∇θ log πθ(a|s)] =

∫
πθ(a|s)∇θ log πθ(a|s)da

=

∫
πθ(a|s)∇θπθ(a|s)

πθ(a|s)
da =

∫
∇θπθ(a|s)da

= ∇θ

(∫
πθ(a|s)da

)
= ∇θ(1) = 0

(13)

From Eq. 13, the expectation of the Fisher kernel kf under the policy distribution πθ(a|s) is also 0:

Ea∼πθ(.|s)
[
kf (z, z′)

]
= Ea∼πθ(.|s)

[
u(z)>G−1u(z′)

]
= Ea∼πθ(.|s)

[
u(z)>

]
G−1u(z′) = 0 (14)

B Bayesian Quadrature for Estimating Policy Gradient Integral

Bayesian quadrature (BQ) (O’Hagan, 1991) provides the required machinery for estimating the
numerical integration in PG (Eq. 2), by using a Gaussian process (GP) function approximation for
the action-value function Qπθ . More specifically, we choose a zero mean GP, i.e., E [Qπθ(z)] = 0,
with a prior covariance function k(zp, zq) = Cov[Qπθ(zp), Qπθ(zq)] and an additive Gaussian noise
with variance σ2. One benefit of this prior is that the joint distribution over any finite number of
action-values (indexed by the state-action inputs, z ∈ Z) is also Gaussian:

Qπθ = [Qπθ(z1), ..., Qπθ(zn)] ∼ N (0,K), (15)

where K is the Gram matrix with entries Kp,q = k(zp, zq). This GP prior is conditioned on the
observed samples D = {zi}ni=1 drawn from ρπθ to obtain the posterior moments of Qπθ :

E [Qπθ(z)|D] = k(z)>(K + σ2I)−1Q,

Cov [Qπθ(z1), Qπθ(z2)|D] = k(z1, z2)− k(z1)
>(K + σ2I)−1k(z2),

where k(z) = [k(z1, z), ..., k(zn, z)], K = [k(z1), ...,k(zn)].

(16)

Since the transformation from Qπθ(z) to ∇θJ(θ) happens through a linear integral operator (Eq. 2),
the posterior moments of Qπθ can be used to compute a Gaussian approximation of ∇θJ(θ):

LBQθ = E [∇θJ(θ)|D] =

∫
ρπθ(z)u(z)E [Qπθ(z)|D] dz

=

(∫
ρπθ(z)u(z)k(z)>dz

)
(K + σ2I)−1Q (17)

CBQ
θ = Cov[∇θJ(θ)|D] =

∫
ρπθ(z1)ρ

πθ(z2)u(z1)Cov[Qπθ(z1), Qπθ(z2)|D]u(z2)
>dz1dz2,

=

∫
ρπθ(z1)ρ

πθ(z2)u(z1)
(
k(z1, z2)− k(z1)

>(K + σ2I)−1k(z2)
)
u(z2)

>dz1dz2,

where the posterior mean LBQθ can be interpreted as the PG estimate and the posterior covariance
CBQ

θ quantifies the uncertainty in the PG estimate. However, the integrals in Eq. 17 cannot be

16

solved analytically for an arbitrary GP prior covariance function k(z1, z2). Ghavamzadeh & Engel
(2007) showed that these integrals have analytical solutions when the GP kernel k is the additive
composition of an arbitrary state kernel ks and the (indispensable) Fisher kernel kf :

k(z1, z2) = c1ks(s1, s2) + c2kf (z1, z2), kf (z1, z2) = u(z1)
>G−1u(z2), (18)

where c1, c2 are hyperparameters and G is the Fisher information matrix of the policy πθ. Using
the following definitions,

kf (z) = U>G−1u(z), Kf = U>G−1U , K = c1Ks + c2Kf , G = Ez∼ρπθ [u(z)u(z)>] ≈ 1

n
UU>, (19)

the closed-form expressions for PG estimate LBQθ and its uncertainty CBQ
θ are obtained as follows,

LBQθ = E [∇θJ(θ)|D] =

∫
ρπθ(z)u(z)E [Qπθ(z)|D] dz

= Ez∼ρπθ [u(z)E[Qπθ(z)|D]] = Ez∼ρπθ
[
u(z)k(z)>

]
(K + σ2I)−1Q

=
(
c1Ez∼ρπθ

[
u(z)ks(s)

>
]

+ c2Ez∼ρπθ
[
u(z)kf (z)>

])
(K + σ2I)−1Q

▻ ks term disappears since the integral of u(z) over action-dims is 0 from Eq. 13

= c2Ez∼ρπθ
[
u(z)kf (z)>

]
(K + σ2I)−1Q

= c2Ez∼ρπθ
[
u(z)u(z)>

]
G−1U(K + σ2I)−1Q ▻ from kf definition in Eq. 19

= c2GG
−1U(c1Ks + c2Kf + σ2I)−1Q ▻ from G definition in Eq. 19

= c2U(c1Ks + c2Kf + σ2I)−1Q

(20)

CBQ
θ = Cov [∇θJ(θ)|D] =

∫
dz1dz2ρ

πθ(z1)ρ
πθ(z2)u(z1)Cov [Qπθ(z1), Qπθ(z2)|D]u(z2)

>

= Ez1,z2∼ρπθ
[
u(z1)Cov [Qπθ(z1), Qπθ(z2)|D]u(z2)

>
]

= Ez1,z2∼ρπθ
[
u(z1)

(
k(z1, z2)− k(z1)

>(K + σ2I)−1k(z2)
)
u(z2)

>
]

▻ ks terms disappear since the integral of u(z) over action-dims is 0 (Eq. 13)

= Ez1,z2∼ρπθ
[
u(z1)

(
c2kf (z1, z2)− c22kf (z1)

>(K + σ2I)−1kf (z2)
)
u(z2)

>
]

▻ from the definitions of kf (z1, z2) (Eq. 18) and kf (z) (Eq. 19)

= Ez1,z2∼ρπθ
[
u(z1)u(z1)

>
(
c2G

−1 − c22G−1U(K + σ2I)−1U>G−1
)
u(z2)u(z2)

>
]

= Ez1∼ρπθ [u(z1)u(z1)
>]
(
c2G

−1 − c22G−1U(K + σ2I)−1U>G−1
)
Ez2∼ρπθ [u(z2)u(z2)

>]

= G
(
c2G

−1 − c22G−1U(K + σ2I)−1U>G−1
)
G

= c2G− c22U(c1Ks + c2Kf + σ2I)−1U>

(21)
2In Eq. 20 and 21, the following state kernel ks terms vanish, as an extension to the identity in Eq. 13:

Ea1∼πθ(.|s1) [ks(s1, s2)u(z1)] = 0 and Ea1∼πθ(.|s1)
[
u(z1)k

>
s (s1)

]
= 0.

17

Further, the inverse of CBQ
θ can also be found analytically using the Woodbury (1950) identity:(

CBQ
θ

)−1
=
(
c2G− c22U(c1Ks + c2Kf + σ2I)−1U>

)−1
=

1

c2
G−1 +G−1U

(
c1Ks + c2Kf + σ2I − c2U>G−1U

)−1
U>G−1

=
1

c2
G−1 +G−1U

(
c1Ks + σ2I

)−1
U>G−1

(22)

Thus, by choosing the overall kernel as a additive composition of the Fisher kernel kf and an
arbitrary state kernel ks, the BQ approach3 has a closed-form expression for the gradient mean
LBQθ and its uncertainty CBQ

θ (gradient covariance).

C More Intuition Behind the GP Kernel Choice

In this section, we analyze the implications of the specified GP kernel choice that provides an
analytical solution to the PG integral (shown in the previous section). Particularly, we study the
affect of the additive composition of a state kernel ks and the Fisher kernel kf on (i) modeling the
Qπθ function, and consequently (ii) the policy gradient.

C.1 Posterior Moments of the Value Functions

Here, we split Qπθ function as the sum of a state-value function Vπθ and advantage function Aπθ :

Qπθ(zt) = Vπθ(st) +Aπθ(zt), Vπθ(st) = Eat∼πθ(·|st)
[
Qπθ(zt)

]
, (23)

where Vπθ is the expected return under πθ from the initial state s, and Aπθ denotes the advantage
(or disadvantage) of picking a particular initial action a relative to the policy’s prediction a ∼ πθ.
The specified GP kernel choice for modeling the Qπθ function approximates Vπθ and Aπθ as follows:

E [Vπθ(s)|D] = Ea∼πθ(.|s) [E [Qπθ(z)|D]] = Ea∼πθ(.|s)
[
k(z)>

]
(K + σ2I)−1Q

= Ea∼πθ(.|s)
[
(c1ks(s) + c2kf (z))>

]
(K + σ2I)−1Q

=
(
c1ks(s) + c2Ea∼πθ(.|s) [kf (z)]

)>
(K + σ2I)−1Q

= c1ks(s)
>(c1Ks + c2Kf + σ2I)−1Q

(24)

E [Aπθ(z)|D] = E [(Qπθ(z)− Vπθ(s)) |D] = E [Qπθ(z)|D]− E [Vπθ(s)|D]

= (k(z)− c1ks(s))> (c1Ks + c2Kf + σ2I)−1Q

= c2kf (z)>(c1Ks + c2Kf + σ2I)−1Q

(25)

3Different from the proof provided in Ghavamzadeh & Engel (2007), our derivation of BQ-PG substitutes the
sequential computation of GP posterior (Engel et al., 2003) with parallel computation over a batch of samples. This
puts BQ-PG in the context of contemporary deep PG algorithms.

18

Cov [Vπθ(s1), Qπθ(z2)|D] = Ea1∼πθ(.|s1) [Cov [Qπθ(z1), Qπθ(z2)|D]] ,

= Ea1∼πθ(.|s1)
[
k(z1, z2)− k(z1)

>(K + σ2I)−1k(z2)
]

= c1ks(s1, s2)− c1ks(s1)>(c1Ks + c2Kf + σ2I)−1k(z2)

(26)

Cov [Vπθ(s1), Vπθ(s2)|D] = Ea2∼πθ(.|s2) [Cov [Vπθ(s1), Qπθ(z2)|D]]

= c1ks(s1, s2)− c1ks(s1)>(K + σ2I)−1Ea2∼πθ(.|s2) [k(z2)]

= c1ks(s1, s2)− c21ks(s1)>(c1Ks + c2Kf + σ2I)−1ks(s2)

(27)

Cov [Aπθ(z1), Qπθ(z2)|D] = Cov [Qπθ(z1)− Vπθ(s1), Qπθ(z2)|D]

= c2kf (z1, z2)− c2kf (z1)
>(c1Ks + c2Kf + σ2I)−1k(z2)

(28)

Cov [Aπθ(z1), Aπθ(z2)|D] = Cov [Aπθ(z1), Qπθ(z2)|D]− Ea2∼πθ(.|s2) [Cov [Aπθ(z1), Qπθ(z2)|D]]

= c2kf (z1, z2)− c22kf (z1)
>(c1Ks + c2Kf + σ2I)−1kf (z2).

(29)

Note that the posterior moments of both Vπθ and Aπθ are dependent on the state ks and Fisher kf
kernels. However, only the posterior moments of Vπθ vanish upon removing the state kernel ks (set
c1 = 0 in Eq. 24, 27), while removing the Fisher kernel kf causes the posterior moments of Aπθ to
vanish (set c2 = 0 in Eq. 25, 29). Thus, choosing the overall kernel as the additive composition of a
state kernel ks and the Fisher kernel kf implicitly divides the Qπθ function into state-value function
Vπθ and advantage function Aπθ , separately modeled by ks and kf respectively.

C.2 MC Estimation as a Degenerate Case of BQ

The closed-form BQ-PG expression LBQθ and the MC-PG expression LMC
θ (Eq. 4 in the main

paper) are surprisingly similar, except for subtle differences that arise from the GP kernel k choice.
This observation calls for a comparative analysis of BQ-PG with respect to the MC-PG baseline.

Removing Fisher kernel (c2 = 0 in Eq. 20) suppresses the advantage function, making PG
moments LBQθ = 0 and CBQ

θ = 0. Further, removing the state kernel (c1 = 0 in Eq. 20), reduces
the BQ-PG LBQθ to MC-PG LMC

θ :

LBQθ

∣∣
c1=0

= c2U(c2Kf + σ2I)−1Q

= c2U(c2U
>G−1U + σ2I)−1Q ▻ using the Kf definition from Eq. 19

= c2

(
1

σ2
U − c2

σ4
UU>

(
G+

c2
σ2
UU>

)−1
U

)
Q

▻ applying the Woodbury (1950) matrix (inversion) identity

=
c2
σ2

(
U − c2n

σ2
G
(
G+

c2n

σ2
G
)−1

U

)
Q ▻ using the G definition from Eq. 19

=
c2
σ2

(
U − c2n

(σ2 + c2n)
U

)
Q

=
c2

σ2 + c2n
UQ

(30)

19

Thus, MC estimation is a limiting case of BQ when the state kernel ks vanishes, i.e., the pos-
terior distributions over the state-value function Vπθ becomes non-existent (for c1 = 0 in Eq. 24,
27).Looking at this observation backwards, BQ-PG with a prior state kernel ks = 0 (or equivalently
MC-PG) is incapable of modeling the state-value function, which vastly limits the GP’s expressive
power for approximating the Qπθ function, and consequently the PG estimation. Alternatively,
BQ-PG can offer more accurate gradient estimates than MC-PG when the state kernel ks captures
a meaningful prior with respect to the MDP’s state-value function. Moreover, this observation is
consistent with previous works (Briol et al., 2015; Kanagawa et al., 2016, 2020; Bach, 2017) that
prove a strictly faster convergence rate of BQ over MC methods, under mild regularity assumptions.
Further, the posterior covariance CBQ

θ becomes a scalar multiple of the prior covariance c2G (or
the F.I.M G):

CBQ
θ

∣∣
c1=0

= c2G− c22U
(
c2Kf + σ2I

)−1
U>

= c2G− c22U
(
c2U

>G−1U + σ2I
)−1

U>

= c2G−
c22
σ2

(
U − c2n

(σ2 + c2n)
U

)
U>

▻ applying the Woodbury (1950) identity, similar to LBQθ proof

= c2G−
c22n

(σ2 + c2n)
G ▻ using the G definition from Eq. 19

=
σ2c2

σ2 + c2n
G

(31)

D Scaling BQ to High-Dimensional Settings

In comparison to MC methods, BQ approaches have several appealing properties, such as a strictly
faster convergence rate (Briol et al., 2015; Kanagawa et al., 2016, 2020; Bach, 2017) and a logical
propagation of numerical uncertainty from the action-valueQπθ function space to the policy gradient
estimation. However, the complexity of estimating BQ’s posterior moments, LBQθ and CBQ

θ , is
largely influenced by the expensive matrix-inversion operation (K + σ2I)−1, that scales with an
O(n3) time and O(n2) storage complexity (n is the sample size). In the following, we provide a
detailed description of the DBQPG method (Sec. 4 in the main paper) that allows us to scale BQ
to high-dimensional settings, while retaining the superior statistical efficiency over MC methods.

While it is expensive to compute the exact matrix inversion, all we need is to compute (K +
σ2I)−1Q, an inverse matrix-vector multiplication (i-MVM) operation, that can be efficiently im-
plemented using the conjugate gradient (CG) algorithm. Using the CG algorithm, the i-MVM
operation can be computed implicitly, i.e., without the explicit storage or inversion of a full-sized
matrix, by simply following iterative routines of efficient MVMs. The computational complexity of
solving (K+σ2I)−1Q with p iterations of CG is O(pM), whereM is the computational complexity
associated with the MVM computationKQ. One of the appealing properties of the CG algorithm is
that it often converges within machine precision after p� n iterations. However, naively computing
KQ = c1KsQ + c2KfQ still has a prohibitive O(n2) time and storage complexity. We propose
separate strategies for efficiently computing KsQ and KfQ MVMs.

20

D.1 Efficient MVM Computation with Fisher Covariance Matrix

The Fisher covariance matrix Kf of a policy πθ can be factorized as the product of three matrices,
U>G−1U , which leads to two distinct ways of efficiently implementing KfQ.

Approach 1: Observe that the U matrix is the Jacobian (transposed) of the log-probabilities
and G matrix is the hessian of the KL divergence, with respect to policy parameters θ. As a result,
KfQ can be directly computed sequentially using three MVM routines: (i) a vector-Jacobian
product (vJp) involving the U matrix, followed by (ii) an inverse-Hessian-vector product (i-Hvp)
involving the G matrix, and finally (iii) a Jacobian-vector product (Jvp) involving the U matrix.

KfQ =
(
U>
(
G−1(UQ)

))
=

(
∂L
∂θ

(
G−1

((
∂L
∂θ

)>
Q

)))
,

where L = [log πθ(a1|s1), ..., log πθ(an|sn)], (si, ai) ∼ ρπθ ∀i ∈ [1, n].

(32)

Most standard automatic differentiation (AD) and neural network packages support vJp and Hvp.
CG algorithm can be used to compute the i-Hvp from Hvp (Schulman et al., 2015). A Jvp can be
computed using a single forward-mode AD operation or two reverse-mode AD operations (Townsend,
2017). While KfQ has a linear complexity in sample size n, the numerous AD calls makes this
procedure slightly slower.

Approach 2 (faster): Observe that the n×n dimensional matrix Kf = U>G−1U has a rank
|Θ| < n (since U has the dimensions |Θ|×n). To efficiently computeKfQ, it helps to first visualize
the U matrix in terms of its singular value decomposition (SVD), U = PΛR>, where P and R
are orthogonal matrices with dimensions |Θ| × |Θ| and n × |Θ| respectively, and Λ is an |Θ| × |Θ|
diagonal matrix of singular values. Accordingly, G and Kf expressions can be simplified as:

G =
1

n
UU> =

1

n
PΛ2P>, Kf = U>G−1U = nRΛP>

(
PΛ−2P>

)
PΛR> = nRR>. (33)

In practice, we avoid the computational overhead of a full-rank SVD by using randomized truncated
SVD (Halko et al., 2011) to compute the rank δ � |Θ| approximations for P , Λ and R, i.e. |Θ|× δ,
δ × δ and n × δ dimensional matrices respectively. Further, the fast SVD of the U matrix can
be computed using an iterative routine of implicit MVM computations, thus, avoiding the explicit
formation and storage of the U matrix at any point of time. Interestingly, it can be seen that the
rank δ approximation of the Kf matrix is equivalent to a linear kernel of dimensions δ, with inputs
being the rows in

√
nR matrix. The implicit low-rank nature of the linear kernel allows for efficient

MVM computation for Kf in O(nδ) time and space complexity.

D.2 Efficient MVM Computation with State Covariance Matrix

Unlike the fixed Fisher kernel, the choice of the state kernel ks is arbitrary, and thus, requires
a general method for fast KsQ computation. We rely on structured kernel interpolation (SKI)
(Wilson & Nickisch, 2015), a general inducing point framework for linear-time MVM computation
with arbitrary kernels. Using m inducing points {ŝi}mi=1, SKI replaces the Ks matrix with a rank
m approximation K̂s = WKm

s W
>, where Km

s is an m×m Gram matrix with entries Km
s (p,q) =

ks(ŝp, ŝq), and W is an n×m interpolation matrix whose entries depend on the relative placement
of sample points {si}ni=1 and inducing points {ŝi}mi=1. Thus, K̂sQ can be computed using three
successive MVMs: (i) an MVM with W>, followed by (ii) an MVM with Km

s , and finally (iii) an

21

MVM with W . To compute the MVM with W matrix in linear time, Wilson & Nickisch (2015)
suggests a sparse W matrix derived from local cubic interpolation (only 4 non-zero entries per
row). Thus, even a naive O(m2) implementation of an MVM with Km

s substantially reduces the
complexity of K̂sQ to O(n+m2) time and storage. Additionally, the SKI framework offers flexibility
with the choice of inducing point locations to further exploit the structure in GP’s kernel functions,
e.g., (i) using the Kronecker method (Saatci, 2012) with a product kernel offers an O(n+Y m1+1/Y)
time and O(n + Y m2/Y) storage complexity, or (ii) the Topelitz method (Turner, 2010) with a
stationary kernel offers an O(n + Y m logm) time and O(n + Y m) storage complexity (Y is input
dimensionality).

D.3 Practical DBQPG Algorithm

DBQPG brings together the above-mentioned fast kernel methods under one practical algorithm,
summarized in Fig. 4. The first step is to compute the action-value estimates Q, an n dimensional
vector, either from MC rollouts/TD(1) estimates or using an explicit critic network. The Q vector,
along with the efficient MVM strategies forKs (Appendix D.2) andKf (Appendix D.1) are provided
to the CG algorithm, which computes α = (c1Ks + c2Kf + σ2I)−1Q in linear-time. Finally,
LBQθ = Uα can be computed using a vJp involving the U matrix. For natural gradient algorithms
(e.g. NPG and TRPO), we precondition the PG estimate with the G−1 matrix, which is an i-Hvp
operation involving the KL divergence (similar to TRPO (Schulman et al., 2015)).

Figure 4: An summary of fast kernel computation methods used in the practical DBQPG algorithm.

D.4 Monte-Carlo Estimation of the Fisher Information Matrix

The analytical solution for LBQθ is obtained by assuming that the Fisher information matrix G
is estimated exactly. However, the practical DBQPG method estimates G (in the Fisher kernel
kf) from samples using the Monte-Carlo method (Eq. 19). Here, we investigate the affect of MC
approximation ofG on the BQ-PG performance, by estimatingG using 3× more samples than BQ-
PG sample size. It can be seen from Fig. 5 that increasing the sample-size of MC approximation
of G does not appreciably improve the performance. As a result, while it is possible to replace the
MC approximation of G matrix with a more efficient numerical integration method (like BQ), we
do not expect to see significant improvements over the MC estimation baseline for the G matrix.

22

Figure 5: Vanilla PG experiment with DBQPG estimator and 15000 sample size, while estimating
the F.I.M G using (i) 15000 and (ii) 45000 samples.

E UAPG: From Theory to Practice

PG estimation from samples offers stochastic gradient estimates with a non-uniform gradient uncer-
tainty, i.e., the PG estimator is more uncertain about the gradient’s step size along some directions
over others. Due to this inherent disparity in the uncertainty of different gradient components,
using a constant learning rate occasionally results in large policy updates along directions of high
uncertainty, and consequently a catastrophic performance degradation. Thus, PG algorithms that
use MC-PG or DBQPG estimation treat stochastic gradient estimates as the true gradient, mak-
ing them vulnerable to bad policy updates. UAPG uses DBQPG’s gradient uncertainty CBQ

θ to
normalize the different components of a DBQPG estimate based on their respective uncertainties,
bring all the gradient components to the same scale. In other words, UAPG offers gradient es-
timates with uniform uncertainty, i.e. gradient covariance is the identity matrix. In theory, the
UAPG update is defined as follows:

LUAPGθ =
(
CBQ

θ

)− 1
2LBQθ , such that (34)

CUAPG
θ =

(
CBQ

θ

)− 1
2CBQ

θ

(
CBQ

θ

)− 1
2 = I.

However, the empirical CBQ
θ estimates are often ill-conditioned matrices (spectrum decays

quickly) with a numerically unstable inversion. Since CBQ
θ only provides a good estimate of the

top few directions of uncertainty, the UAPG update is computed from a rank-δ singular value
decomposition (SVD) approximation of CBQ

θ ≈ νδI +
∑δ

i=1 hi(νi − νδ)h>i as,

LUAPGθ = ν
− 1

2
δ

(
I +

∑δ

i=1
hi
(√

νδ/νi − I
)
h>i
)
LBQθ . (35)

Further, this equation can be efficiently computed through randomized SVD (Halko et al., 2011)
in linear-time. Moreover, for the natural policy gradient update LNBQθ = G−1LBQθ , the gradient
uncertainty CNBQ

θ is,

23

CNBQ
θ = G−1CBQ

θ G−1

= c2(G
−1 − c2G−1U

(
c1Ks + c2Kf + σ2I

)−1
U>G−1)

= c2(G+ c2U
(
c1Ks + σ2I

)−1
U>)−1, (36)

and the ideal UAPG update isLUAPGθ =
(
CNBQ

θ

)− 1
2
G−1LBQθ . However, sinceCNBQ

θ is the inverse
of an ill-conditioned matrix, the singular values corresponding to the high-uncertainty directions of
CNBQ

θ show very little variation in uncertainty. Thus, we instead apply a low-rank approximation

on CNBQ
θ

−1
≈ νδI +

∑δ
i=1 hi(νi − νδ)h>i for the UAPG update of NPG:

LUAPGθ = ν
1
2
δ

(
I +

∑δ

i=1
hi
(

min
(√

νi/νδ, ε
)
− I

)
h>i

)
G−1LBQθ , ε > 1 (37)

Note that CNBQ
θ

−1
is an ill-conditioned matrix whose top δ PCs denote the least uncertain/most

confident directions of natural gradient estimation (equivalent to the bottom δ PCs of CNBQ
θ).

Further, we replace
√
νi/νδ with min(

√
νi/νδ, ε) in Eq. 37 to avoid taking large steps along these

directions, solely on the basis of their uncertainty.

E.1 Relation between the Gradient Uncertainties of Vanilla PG and NPG

Empirically, we found that the optimal value of c2 � 1, at which point, the gradient uncertainty of
Vanilla PG and Natural PG algorithms approximate to:

CBQ
θ = c2G− c22U(c1Ks + c2Kf + σ2I)−1U> ≈ c2G, (38)

CNBQ
θ = c2(G+ c2U

(
c1Ks + σ2I

)−1
U>)−1 ≈ c2G−1. (39)

This observation is particularly interesting because for c2 � 1, most uncertain gradient directions
for vanilla PG approximately correspond to the most confident (least uncertain) directions for NPG.
Crudely speaking, the natural gradient takes the step size along each direction and divides it by
the estimated variance (from the gradient covariance matrix), which results in an inversion of the
uncertainty. In contrast, UAPG divides the stepsize along each direction by the estimated standard
deviation, which results in uniform uncertainty along all the directions. Moreover, for c2 � 1, the
ideal UAPG update for both vanilla PG and NPG converges along the G−

1
2LBQθ direction.

F Wall-Clock Performance of DBQPG and UAPG

The wall-clock time for PG estimation using MC, DBQPG and UAPG, on “HumanoidStandup-
v2” environment (376-d state and 17-d action space) is reported in Fig. 6. Clearly, DBQPG and
UAPG methods have a negligible computational overhead over MC-PG, while being significantly
more sample efficient (Fig. 3). Further, it is also clear from the plot that the wall-clock time of MC,
DBQPG and UAPG methods increases linearly in sample size n, which agrees with our complexity
analysis in Sec. 4 (main paper).

24

Figure 6: Wall-Clock time for PG estimation using MC, DBQPG and UAPG methods on
HumanoidStandup-v2 environment.

G Comparison with Prior BQ-PG works

The DBQPG algorithm is an extension of the (sequential) Bayesian Actor-Critic (BAC) algorithm
(Ghavamzadeh & Engel, 2007) that leverages the automatic differentiation framework and fast
kernel computation methods for PG estimation from a batch of samples (parallel), thus placing
the BQ-PG framework in the context of contemporary PG algorithms. Aside from this, DBQPG
also replaces the traditional inducing points framework (Silverman, 1985) (O(m2n+m3) time and
O(mn + m2) storage complexity) used in BAC, with a more computationally-efficient alternative,
SKI (O(n+m2) time and storage). Moreover, DBQPG boosts the expressive power of base (state)
kernel with a deep neural network, followed by kernel learning its parameters (Eq. 9, main paper).

Switching from deep kernel back to a base kernel (DBQPG (w/o DKL)) corresponds to a notice-
able drop in performance as shown in Fig. 7 (left). Moreover, replacing the SKI approximation with
a traditional inducing points method (DBQPG (w/o DKL & SKI)) further lowers the performance.
Here, “DBQPG (w/o DKL & SKI)” can be thought of as the reimplementation of BAC in batch
settings (parallel computation). Interestingly, BAC (ours), i.e. DBQPG (w/o DKL & SKI), still
manages to outperform the MC-PG baseline. Further, Fig. 7 (middle) suggests that most popular
base kernels, when coupled with a DNN feature extractor, provide nearly similar performance, while
easily outperforming the MC-PG baseline. This observation suggests that a deep (state) kernel with
any of the popular base kernel choices is often a better prior that the trivial state kernel ks = 0,
which corresponds to MC-PG.

Further, Ghavamzadeh et al. (2016) introduces an extension of BAC that uses the gradient
covariance CBQ

θ for adjusting the learning rate of policy parameters:

LUBACθ = (I − 1

ν0
CBQ

θ)LBQθ , (40)

where ν0 is the largest singular value4 of CBQ
θ . This gradient preconditioning is one of the many

possible solutions to lower the step-size of gradient components with high uncertainties, with another
solution being UAPG. However, UAPG update satisfies a more stricter condition of providing policy

4The original uncertainty-based update was proposed for Bayesian Policy Gradient algorithm (Ghavamzadeh &
Engel, 2006), which we adapt to DBQPG.

25

Figure 7: (left) Ablation study to investigate the role of different components of DBQPG, and
(right) Comparison between common state kernel ks choices.

updates with uniform uncertainty. Since, LUBACθ does not provide PG estimates with uniform
uncertainty, it is more vulnerable to bad policy updates than UAPG. This is also demonstrated in
practice, where LUAPGθ outperforms LUBACθ , while both the uncertainty-based methods outperform
DBQPG (see Fig. G). Moreover, LUBACθ update would not work for NPG and TRPO algorithms
as their covariance is the inverse of an ill-conditioned matrix.

Figure 8: UAPG versus the uncertainty-based policy update proposed in Ghavamzadeh et al.
(2016).

H Implementation Details

We follow the architecture from Fig. 1 (left; main paper), where the policy πθ comprises of a deep
neural network that takes the observed state as input and estimates a normal distribution in the
output action-space, characterized by the mean and standard deviation. We use the standard policy
network architecture (Schulman et al., 2015; Duan et al., 2016) that comprises of a 2-layered fully-
connected MLP with 64 hidden units and a tanh non-linearity in each layer. Our state feature
extractor φ(s) is another MLP with hidden dimensions 64, 48, and 10, and tanh non-linearity. The

26

explicit critic network is simply a linear layer with 1 output unit, on top of the 10-d output of
φ(s). The explicit critic models the state-value function Vπθ and its parameters are optimized for
TD error. The n dimensional vector Q is formed from generalized advantage estimates (Schulman
et al., 2016), which are computed using MC estimates of return and the state-value predictions
offered by the explicit critic network.

The implicit GP critic implicitly models the generalized advantage function using the samples
Q, a fisher kernel (no additional hyperparameters; derived directly from the policy parameters)
and a deep RBF state kernel (lengthscale + φ(s) parameters). For structured kernel interpolation
(Wilson & Nickisch, 2015), we use a grid size of 128 and impose an additive structure (i.e. the
overall kernel is the sum of individual RBF kernels along each input dimension) on the deep RBF
kernel. Additive structure allows us to take advantage of the Toeplitz method (Turner, 2010) for fast
and scalable MVM computation. The GP’s noise variance σ2 is set to 10−4. In all the experiments
of BQ-based methods, we fixed the hyperparameters c1 = 1 and c2 = 5 × 10−5 (tuned values).
The parameters of deep RBF kernel are optimized for GP-MLL objective (Eq. 9). Since φ(s) is
shared between the implicit critic (deep RBF kernel) and explicit critic, its parameters are updated
for both GP-MLL and TD error objectives. Our implementation is based on GPyTorch (Gardner
et al., 2018), a software package for scalable GP inference with GPU acceleration support.

In the UAPG experiments, increasing the SVD rank δ pushes the practical UAPG estimate
closer to the ideal UAPG estimate, while, also increases the GPU memory requirement. We balance
this trade-off for each environment by choosing a δ that closely approximates the initial spectrum
of gradient uncertainty CBQ

θ and also has a favorable GPU memory consumption. Lastly, we set
ε = 3 for UAPG’s natural gradient update. Our implementation of DBQPG and UAPG methods
is made publicly available:
https://github.com/Akella17/Deep-Bayesian-Quadrature-Policy-Optimization.

Parameter Value
Batch size 15000

Discount factor γ 0.995
GAE coefficient τ 0.97

Trust region constraint / step size 0.01

Conjugate Gradient
Max. CG iterations 50

Residue (i.e., CG Threshold) 10−10

Damping (stability) factor 0.1

Table 1: Common hyperparameter setting across all the experiments.

27

https://github.com/Akella17/Deep-Bayesian-Quadrature-Policy-Optimization

	1 Introduction
	2 Preliminaries
	3 Policy Gradient Evaluation
	4 Deep Bayesian Quadrature Policy Gradient
	5 Uncertainty Aware Policy Gradient
	6 Experiments
	7 Related Work
	8 Discussion
	A Useful Identities
	B Bayesian Quadrature for Estimating Policy Gradient Integral
	C More Intuition Behind the GP Kernel Choice
	C.1 Posterior Moments of the Value Functions
	C.2 MC Estimation as a Degenerate Case of BQ

	D Scaling BQ to High-Dimensional Settings
	D.1 Efficient MVM Computation with Fisher Covariance Matrix
	D.2 Efficient MVM Computation with State Covariance Matrix
	D.3 Practical DBQPG Algorithm
	D.4 Monte-Carlo Estimation of the Fisher Information Matrix

	E UAPG: From Theory to Practice
	E.1 Relation between the Gradient Uncertainties of Vanilla PG and NPG

	F Wall-Clock Performance of DBQPG and UAPG
	G Comparison with Prior BQ-PG works
	H Implementation Details

