958 research outputs found

    On the effect of exploiting gpus for a more Eco-sustainable lease of life

    Get PDF
    It has been estimated that about 2% of global carbon dioxide emissions can be attributed to IT systems. Green (or sustainable) computing refers to supporting business critical computing needs with the least possible amount of power. This phenomenon changes the priorities in the design of new software systems and in the way companies handle existing ones. In this paper, we present the results of a research project aimed to develop a migration strategy to give an existing software system a new and more eco-sustainable lease of life. We applied a strategy for migrating a subject system that performs intensive and massive computation to a target architecture based on a Graphics Processing Unit (GPU). We validated our solution on a system for path finding robot simulations. An analysis on execution time and energy consumption indicated that: (i) the execution time of the migrated system is less than the execution time of the original system; and (ii) the migrated system reduces energy waste, so suggesting that it is more eco-sustainable than its original version. Our findings improve the body of knowledge on the effect of using the GPU in green computing. © 2015 World Scientific Publishing Company

    A Study on the Parallelization of Terrain-Covering Ant Robots Simulations

    Get PDF
    Agent-based simulation is used as a tool for supporting (time-critical) decision making in differentiated contexts. Hence, techniques for speeding up the execution of agent-based models, such as Parallel Discrete Event Simulation (PDES), are of great relevance/benefit. On the other hand, parallelism entails that the final output provided by the simulator should closely match the one provided by a traditional sequential run. This is not obvious given that, for performance and efficiency reasons, parallel simulation engines do not allow the evaluation of global predicates on the simulation model evolution with arbitrary time-granularity along the simulation time-Axis. In this article we present a study on the effects of parallelization of agent-based simulations, focusing on complementary aspects such as performance and reliability of the provided simulation output. We target Terrain Covering Ant Robots (TCAR) simulations, which are useful in rescue scenarios to determine how many agents (i.e., robots) should be used to completely explore a certain terrain for possible victims within a given time. © 2014 Springer-Verlag Berlin Heidelberg

    Crowd simulation and visualization

    Get PDF
    Large-scale simulation and visualization are essential topics in areas as different as sociology, physics, urbanism, training, entertainment among others. This kind of systems requires a vast computational power and memory resources commonly available in High Performance Computing HPC platforms. Currently, the most potent clusters have heterogeneous architectures with hundreds of thousands and even millions of cores. The industry trends inferred that exascale clusters would have thousands of millions. The technical challenges for simulation and visualization process in the exascale era are intertwined with difficulties in other areas of research, including storage, communication, programming models and hardware. For this reason, it is necessary prototyping, testing, and deployment a variety of approaches to address the technical challenges identified and evaluate the advantages and disadvantages of each proposed solution. The focus of this research is interactive large-scale crowd simulation and visualization. To exploit to the maximum the capacity of the current HPC infrastructure and be prepared to take advantage of the next generation. The project develops a new approach to scale crowd simulation and visualization on heterogeneous computing cluster using a task-based technique. Its main characteristic is hardware agnostic. It abstracts the difficulties that imply the use of heterogeneous architectures like memory management, scheduling, communications, and synchronization — facilitating development, maintenance, and scalability. With the goal of flexibility and take advantage of computing resources as best as possible, the project explores different configurations to connect the simulation with the visualization engine. This kind of system has an essential use in emergencies. Therefore, urban scenes were implemented as realistic as possible; in this way, users will be ready to face real events. Path planning for large-scale crowds is a challenge to solve, due to the inherent dynamism in the scenes and vast search space. A new path-finding algorithm was developed. It has a hierarchical approach which offers different advantages: it divides the search space reducing the problem complexity, it can obtain a partial path instead of wait for the complete one, which allows a character to start moving and compute the rest asynchronously. It can reprocess only a part if necessary with different levels of abstraction. A case study is presented for a crowd simulation in urban scenarios. Geolocated data are used, they were produced by mobile devices to predict individual and crowd behavior and detect abnormal situations in the presence of specific events. It was also address the challenge of combining all these individual’s location with a 3D rendering of the urban environment. The data processing and simulation approach are computationally expensive and time-critical, it relies thus on a hybrid Cloud-HPC architecture to produce an efficient solution. Within the project, new models of behavior based on data analytics were developed. It was developed the infrastructure to be able to consult various data sources such as social networks, government agencies or transport companies such as Uber. Every time there is more geolocation data available and better computation resources which allow performing analysis of greater depth, this lays the foundations to improve the simulation models of current crowds. The use of simulations and their visualization allows to observe and organize the crowds in real time. The analysis before, during and after daily mass events can reduce the risks and associated logistics costs.La simulación y visualización a gran escala son temas esenciales en áreas tan diferentes como la sociología, la física, el urbanismo, la capacitación, el entretenimiento, entre otros. Este tipo de sistemas requiere una gran capacidad de cómputo y recursos de memoria comúnmente disponibles en las plataformas de computo de alto rendimiento. Actualmente, los equipos más potentes tienen arquitecturas heterogéneas con cientos de miles e incluso millones de núcleos. Las tendencias de la industria infieren que los equipos en la era exascale tendran miles de millones. Los desafíos técnicos en el proceso de simulación y visualización en la era exascale se entrelazan con dificultades en otras áreas de investigación, incluidos almacenamiento, comunicación, modelos de programación y hardware. Por esta razón, es necesario crear prototipos, probar y desplegar una variedad de enfoques para abordar los desafíos técnicos identificados y evaluar las ventajas y desventajas de cada solución propuesta. El foco de esta investigación es la visualización y simulación interactiva de multitudes a gran escala. Aprovechar al máximo la capacidad de la infraestructura actual y estar preparado para aprovechar la próxima generación. El proyecto desarrolla un nuevo enfoque para escalar la simulación y visualización de multitudes en un clúster de computo heterogéneo utilizando una técnica basada en tareas. Su principal característica es que es hardware agnóstico. Abstrae las dificultades que implican el uso de arquitecturas heterogéneas como la administración de memoria, las comunicaciones y la sincronización, lo que facilita el desarrollo, el mantenimiento y la escalabilidad. Con el objetivo de flexibilizar y aprovechar los recursos informáticos lo mejor posible, el proyecto explora diferentes configuraciones para conectar la simulación con el motor de visualización. Este tipo de sistemas tienen un uso esencial en emergencias. Por lo tanto, se implementaron escenas urbanas lo más realistas posible, de esta manera los usuarios estarán listos para enfrentar eventos reales. La planificación de caminos para multitudes a gran escala es un desafío a resolver, debido al dinamismo inherente en las escenas y el vasto espacio de búsqueda. Se desarrolló un nuevo algoritmo de búsqueda de caminos. Tiene un enfoque jerárquico que ofrece diferentes ventajas: divide el espacio de búsqueda reduciendo la complejidad del problema, puede obtener una ruta parcial en lugar de esperar a la completa, lo que permite que un personaje comience a moverse y calcule el resto de forma asíncrona, puede reprocesar solo una parte si es necesario con diferentes niveles de abstracción. Se presenta un caso de estudio para una simulación de multitud en escenarios urbanos. Se utilizan datos geolocalizados producidos por dispositivos móviles para predecir el comportamiento individual y público y detectar situaciones anormales en presencia de eventos específicos. También se aborda el desafío de combinar la ubicación de todos estos individuos con una representación 3D del entorno urbano. Dentro del proyecto, se desarrollaron nuevos modelos de comportamiento basados ¿¿en el análisis de datos. Se creo la infraestructura para poder consultar varias fuentes de datos como redes sociales, agencias gubernamentales o empresas de transporte como Uber. Cada vez hay más datos de geolocalización disponibles y mejores recursos de cómputo que permiten realizar un análisis de mayor profundidad, esto sienta las bases para mejorar los modelos de simulación de las multitudes actuales. El uso de simulaciones y su visualización permite observar y organizar las multitudes en tiempo real. El análisis antes, durante y después de eventos multitudinarios diarios puede reducir los riesgos y los costos logísticos asociadosPostprint (published version

    Applications of parallel computing in robotics problems

    Get PDF
    "December 2013.""A Thesis presented to the Faculty of the Graduate School University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Science."Thesis advisor: Dr. Guilherme N. DeSouza.Many typical robotics problems involve search in high-dimensional spaces, where real-time execution is hard to be achieved. This thesis presents two case studies of parallel computation in such robotics problems. More specifically, two problems of motion planning-the Inverse Kinematics of robotic manipulators and Path Planning for mobile robots-are investigated and the contributions of parallel algorithms are highlighted. For the Inverse Kinematics problem, a novel and fast solution is proposed for general serial manipulators. This new approach relies on the computation of multiple (parallel) numerical estimations of the inverse Jacobian while it selects the current best path to the desire con- figuration of the end-effector. Unlike other iterative methods, our method converges very quickly, achieving sub-millimeter accuracy in 20.48ms in average. We demonstrate such high accuracy and the real-time performance of our method by testing it with six different robots, at both non-singular and singular configurations, including a 7-DoF redundant robot. The algorithm is implemented in C/C++ using a configurable number of POSIX threads, and it can be easily expanded to use many-core GPUs. For the Path Planning problem, a solution to the problem of smooth path planning for mobile robots in dynamic and unknown environments is presented. A novel concept of Time-Warped Grids is introduced to predict the pose of obstacles on a grid-based map and avoid collisions. The algorithm is implemented using C/C++ and the CUDA programming environment, and combines stochastic estimation (Kalman filter), Harmonic Potential Fields and a Rubber Band model, and it translates naturally into the parallel paradigm of GPU programing. The proposed method was tested using several simulation scenarios for the Pioneer P3- DX robot, which demonstrated the robustness of the algorithm by finding the optimum path in terms of smoothness, distance, and collision-free either in static or dynamic environments, even with a very large number of obstacles.Includes bibliographical references (pages 70-78)

    RMP: A Random Mask Pretrain Framework for Motion Prediction

    Full text link
    As the pretraining technique is growing in popularity, little work has been done on pretrained learning-based motion prediction methods in autonomous driving. In this paper, we propose a framework to formalize the pretraining task for trajectory prediction of traffic participants. Within our framework, inspired by the random masked model in natural language processing (NLP) and computer vision (CV), objects' positions at random timesteps are masked and then filled in by the learned neural network (NN). By changing the mask profile, our framework can easily switch among a range of motion-related tasks. We show that our proposed pretraining framework is able to deal with noisy inputs and improves the motion prediction accuracy and miss rate, especially for objects occluded over time by evaluating it on Argoverse and NuScenes datasets.Comment: IEEE International Conference on Intelligent Transportation Systems (ITSC 2023

    Robot Navigation in Human Environments

    Get PDF
    For the near future, we envision service robots that will help us with everyday chores in home, office, and urban environments. These robots need to work in environments that were designed for humans and they have to collaborate with humans to fulfill their tasks. In this thesis, we propose new methods for communicating, transferring knowledge, and collaborating between humans and robots in four different navigation tasks. In the first application, we investigate how automated services for giving wayfinding directions can be improved to better address the needs of the human recipients. We propose a novel method based on inverse reinforcement learning that learns from a corpus of human-written route descriptions what amount and type of information a route description should contain. By imitating the human teachers' description style, our algorithm produces new route descriptions that sound similarly natural and convey similar information content, as we show in a user study. In the second application, we investigate how robots can leverage background information provided by humans for exploring an unknown environment more efficiently. We propose an algorithm for exploiting user-provided information such as sketches or floor plans by combining a global exploration strategy based on the solution of a traveling salesman problem with a local nearest-frontier-first exploration scheme. Our experiments show that the exploration tours are significantly shorter and that our system allows the user to effectively select the areas that the robot should explore. In the second part of this thesis, we focus on humanoid robots in home and office environments. The human-like body plan allows humanoid robots to navigate in environments and operate tools that were designed for humans, making humanoid robots suitable for a wide range of applications. As localization and mapping are prerequisites for all navigation tasks, we first introduce a novel feature descriptor for RGB-D sensor data and integrate this building block into an appearance-based simultaneous localization and mapping system that we adapt and optimize for the usage on humanoid robots. Our optimized system is able to track a real Nao humanoid robot more accurately and more robustly than existing approaches. As the third application, we investigate how humanoid robots can cover known environments efficiently with their camera, for example for inspection or search tasks. We extend an existing next-best-view approach by integrating inverse reachability maps, allowing us to efficiently sample and check collision-free full-body poses. Our approach enables the robot to inspect as much of the environment as possible. In our fourth application, we extend the coverage scenario to environments that also include articulated objects that the robot has to actively manipulate to uncover obstructed regions. We introduce algorithms for navigation subtasks that run highly parallelized on graphics processing units for embedded devices. Together with a novel heuristic for estimating utility maps, our system allows to find high-utility camera poses for efficiently covering environments with articulated objects. All techniques presented in this thesis were implemented in software and thoroughly evaluated in user studies, simulations, and experiments in both artificial and real-world environments. Our approaches advance the state of the art towards universally usable robots in everyday environments.Roboternavigation in menschlichen Umgebungen In naher Zukunft erwarten wir Serviceroboter, die uns im Haushalt, im Büro und in der Stadt alltägliche Arbeiten abnehmen. Diese Roboter müssen in für Menschen gebauten Umgebungen zurechtkommen und sie müssen mit Menschen zusammenarbeiten um ihre Aufgaben zu erledigen. In dieser Arbeit schlagen wir neue Methoden für die Kommunikation, Wissenstransfer und Zusammenarbeit zwischen Menschen und Robotern bei Navigationsaufgaben in vier Anwendungen vor. In der ersten Anwendung untersuchen wir, wie automatisierte Dienste zur Generierung von Wegbeschreibungen verbessert werden können, um die Beschreibungen besser an die Bedürfnisse der Empfänger anzupassen. Wir schlagen eine neue Methode vor, die inverses bestärkendes Lernen nutzt, um aus einem Korpus von von Menschen geschriebenen Wegbeschreibungen zu lernen, wie viel und welche Art von Information eine Wegbeschreibung enthalten sollte. Indem unser Algorithmus den Stil der Wegbeschreibungen der menschlichen Lehrer imitiert, kann der Algorithmus neue Wegbeschreibungen erzeugen, die sich ähnlich natürlich anhören und einen ähnlichen Informationsgehalt vermitteln, was wir in einer Benutzerstudie zeigen. In der zweiten Anwendung untersuchen wir, wie Roboter von Menschen bereitgestellte Hintergrundinformationen nutzen können, um eine bisher unbekannte Umgebung schneller zu erkunden. Wir schlagen einen Algorithmus vor, der Hintergrundinformationen wie Gebäudegrundrisse oder Skizzen nutzt, indem er eine globale Explorationsstrategie basierend auf der Lösung eines Problems des Handlungsreisenden kombiniert mit einer lokalen Explorationsstrategie. Unsere Experimente zeigen, dass die Erkundungstouren signifikant kürzer werden und dass der Benutzer mit unserem System effektiv die zu erkundenden Regionen spezifizieren kann. Der zweite Teil dieser Arbeit konzentriert sich auf humanoide Roboter in Umgebungen zu Hause und im Büro. Der menschenähnliche Körperbau ermöglicht es humanoiden Robotern, in Umgebungen zu navigieren und Werkzeuge zu benutzen, die für Menschen gebaut wurden, wodurch humanoide Roboter für vielfältige Aufgaben einsetzbar sind. Da Lokalisierung und Kartierung Grundvoraussetzungen für alle Navigationsaufgaben sind, führen wir zunächst einen neuen Merkmalsdeskriptor für RGB-D-Sensordaten ein und integrieren diesen Baustein in ein erscheinungsbasiertes simultanes Lokalisierungs- und Kartierungsverfahren, das wir an die Besonderheiten von humanoiden Robotern anpassen und optimieren. Unser System kann die Position eines realen humanoiden Roboters genauer und robuster verfolgen, als es mit existierenden Ansätzen möglich ist. Als dritte Anwendung untersuchen wir, wie humanoide Roboter bekannte Umgebungen effizient mit ihrer Kamera abdecken können, beispielsweise zu Inspektionszwecken oder zum Suchen eines Gegenstands. Wir erweitern ein bestehendes Verfahren, das die nächstbeste Beobachtungsposition berechnet, durch inverse Erreichbarkeitskarten, wodurch wir kollisionsfreie Ganzkörperposen effizient generieren und prüfen können. Unser Ansatz ermöglicht es dem Roboter, so viel wie möglich von der Umgebung zu untersuchen. In unserer vierten Anwendung erweitern wir dieses Szenario um Umgebungen, die auch bewegbare Gegenstände enthalten, die der Roboter aktiv bewegen muss um verdeckte Regionen zu sehen. Wir führen Algorithmen für Teilprobleme ein, die hoch parallelisiert auf Grafikkarten von eingebetteten Systemen ausgeführt werden. Zusammen mit einer neuen Heuristik zur Schätzung von Nutzenkarten ermöglicht dies unserem System Beobachtungspunkte mit hohem Nutzen zu finden, um Umgebungen mit bewegbaren Objekten effizient zu inspizieren. Alle vorgestellten Techniken wurden in Software implementiert und sorgfältig evaluiert in Benutzerstudien, Simulationen und Experimenten in künstlichen und realen Umgebungen. Unsere Verfahren bringen den Stand der Forschung voran in Richtung universell einsetzbarer Roboter in alltäglichen Umgebungen

    LOPR: Latent Occupancy PRediction using Generative Models

    Full text link
    Environment prediction frameworks are essential for autonomous vehicles to facilitate safe maneuvers in a dynamic environment. Previous approaches have used occupancy grid maps as a bird's eye-view representation of the scene and optimized the prediction architectures directly in pixel space. Although these methods have had some success in spatiotemporal prediction, they are, at times, hindered by unrealistic and incorrect predictions. We postulate that the quality and realism of the forecasted occupancy grids can be improved with the use of generative models. We propose a framework that decomposes occupancy grid prediction into task-independent low-dimensional representation learning and task-dependent prediction in the latent space. We demonstrate that our approach achieves state-of-the-art performance on the real-world autonomous driving dataset, NuScenes

    Pathfinding Algorithm Optimization Via Evolution

    Get PDF
    Pathfinding is a popular computer science problem in both academic research and industrial development. The objective of pathfinding is to search for a path, often the shortest path, from one location to another on a graph. Many real world applications can be considered as pathfinding problems, including motion planning, video games, logistics, and decision making. Computer scientists have proposed different algorithms to efficiently search for the shortest path. A* search algorithm is the de facto pathfinding algorithm that uses a heuristic function to determine the best action to take based on the given information. It is the most popular pathfinding algorithm due to its simplicity and efficiency. The performance of A* is heavily dependent on the quality of the heuristic function. The heuristic function determines the search speed, accuracy, and memory consumption. Hence, designing good heuristic functions for specific domains becomes the primary research focus on pathfinding algorithm optimization. In this dissertation, we address and solve several commonly known challenges in pathfinding problems and A* algorithm. First, designing new heuristic functions is a difficult and time-consuming task, especially when they are used to solve complex problems. The task requires the user to have expert knowledge of the problem. Moreover, a single heuristic function might not be enough to digest all the provided information and return the best guidance during the search. Previous works suggest that multiple heuristics for complex problems can dramatically speed up the search. However, choosing the appropriate combination of heuristic functions is tricky. Current optimization approaches rely on hand-tuning the parameters via trial and error by engineers over many iterations. There is a need to reduce the difficulty of designing heuristic functions for search performance maximization. Our first contribution is to propose an improved A* with a self-evolving heuristic function named Evolutionary Heuristic A* (EHA*) that reduces engineering effort to design the heuristic function for A* and maximize the search performance. Our experiment results show that EHA* (i) preserves path optimality; (ii) is not limited to a particular application; (iii) speeds up the path searching process; and (iv) most importantly, dramatically reduces the difficulty for software engineers to design heuristic functions for A* search. Moreover, our work can be applied to other existing works on the performance improvement of A* search. Search, A* search suffers from poor performance on large search spaces. Although EHA* improves the quality of heuristic functions, large search space still leads to many unnecessary searches. Our second contribution is Regions Discovery Algorithm (RDA), a map clustering technique to partition a grid based map into different categories to reduce search spaces and increase search speed. Our approach reduces the size of search spaces by partitioning a graph into many segments and identifying the segments by their characteristics. By identifying segments in different categories, we can easily eliminate search space, such as rooms, that are not possible (better use needed?) to be part of the optimal solution. Unlike the existing approaches that might result in non-optimal solutions, our experiment results show that RDA guarantees optimal solutions. Our third contribution, the Hierarchical Evolutionary Heuristic A* (HEHA*), further improves the search ability of handling complex pathfinding problems and boosting the search performance, by reducing search spaces and exploiting parallelism techniques. HEHA* combines the strength of EHA* and RDA to reduce search spaces and improve search speed. HEHA* shows that it provides better search performance with less memory consumption. In the pre-processing phase, first HEHA* partitions a graph into different segments and then applies different optimized heuristic functions for each segment to maximize the search performance. During the online process, HEHA* searches on the abstract level first to reduce search area, and exploits parallelism to speed up the search. Fourth, we improve and apply HEHA* to Multi-Agent Pathfinding (MAPF) problems. MAPF is the fundamental problem of many robotic and logistic applications, where the main constraint is that all agents can find the shortest paths while not colliding with each other. While the current trend favors the central controlled system, our approach is to develop a distributed version of HEHA* that can efficiently plan the optimal path for each agent. Such a system requires data sharing and exchanging among the agents, so that each agent can make its own decision without a supervising system. Our experiment results show that the Multi-Agent version of HEHA* maintains a high success rate when the number of agents increases. While EHA* and HEHA* provide a novel approach for heuristic function design, the pre-processing times are not trivial. To boost the performance of the preprocessing steps in EHA* and HEHA*, we propose a FPGA-based reconfigurable hardware accelerator that is not bound to any specific applications as our fifth contribution. Since GA requires many independent processes, it is suitable to implement it in a hardware accelerator to gain maximum performance. We apply the following techniques to enhance performance: deep pipelining, reconfigurable computing, massive parallel processing, and degree of parallelism maximization. Our results show that the FPGA accelerator for EHA* improves the scalability, throughput, and latency
    corecore