3 research outputs found

    İNSANSIZ HAVA SİSTEMLERİ ROTA PLANLAMASI DİNAMİK ÇÖZÜM METOTLARI VE LİTERATÜR ARAŞTIRMASI

    Get PDF
    War tools and materials, which are an indicator of war strategy and development, vary with the technology. Modern Warfares in the information age, where near space and the space being used as a tool, differ from both the agricultural era wars, in which arrows and bows had been used as a tool, and industrial era battles, in which machine guns and tanks were employed. These characteristics influence this area of interest and area of influence in the area of responsibilities, and affect the ability and the necessity of modern armies as well. Being able to perform reconnaissance and surveillance missions in the most effective and efficient way is reliant on not only having the knowledge to create and invent them as well as having them in the inventor but also the ability of planning these systems with a modern scientific approach. Vehicle Routing Problem (VRP), encountered during the assignment of Unmanned Aerial Systems\Vehicles (UAS\V) which is being used at the strategic level, can lead to elevated costs in the defense sector as well as other sectors. For this reason, the efficient solution of route planning is a very important issue to provide major cost savings and to observe the targets timely.This study investigates the literature in “dynamic” route planning “solution” methods and defines the approaches for future “dynamic solution” studies of strategic UAVs which are being recently used in Turkey. Using this approach will increase the efficiency of usage of the UAVs and decrease the operating and project costs of them as well.Savaş stratejisinin bir göstergesi olan muharebe araç ve gereçleri, teknoloji ile birlikte değişiklik göstermektedir. Yakın uzay ve uzayın da bir araç olarak kullanıldığı bilgi çağının savaşları; ok ve yayın kullanıldığı tarım dönemi ile top ve tüfeklerin kullanıldığı sanayi dönemi savaşlarından farklılık göstermektedir. Bu farklılıklar, harekât bölgesinin etki ve ilgi alanını genişlettiği gibi modern orduların kabiliyetlerini ve gereksinimlerini de etkilemektedir. Keşif ve gözetleme görevinin en etkin ve verimli şekilde yapabilmesi, envanterindeki sistemlerin modern olması ile birlikte bu sistemleri bilimsel yaklaşımlarla planlayabilme yeteneğine bağlıdır. Stratejik seviyede kullanılan İnsansız Hava Araçlarının (İHA) görevlendirmeleri esnasında karşılaşılan Araç Rotalama Problemleri (ARP), diğer sektörlerde olduğu gibi savunma sektöründe de oldukça yüksek maliyetlere sebep olabilmektedir. Bu nedenle İHA rota planlamalarının verimli bir şekilde çözümü, büyük tasarruflar sağlayacak olması ve hedeflerin zamanında gözetlenebilmeleri açısından önemlidir. Bu çalışmanın amacı, İnsansız Hava Sistemlerinin (İHS) dinamik rota planlamasına yönelik yapılan çalışmalarının incelenmesi ve ileride yapılabilecek çözüm yaklaşımlarına yön verilmesidir. Bu sayede, Türkiye’de henüz kullanılmaya başlayan stratejik İHS’lerin görev etkinliklerinin artırılması, proje ve kullanım maliyetlerinin düşürülmesi hedeflenmektedir

    Development Of Inertial Navigation System With Applications To Airborne Collision Avoidance

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2016Ülkemizde ve dünyada insansız hava araçlarının kullanımı gün geçtikçe artmaktadır. Sadece insansız hava aracı kullanımı değil, kullanıldığı alanlar da artış göstermektedir. Bu da insansız hava aracı marketini daha cezbedici kılmaktadır. Bu artış sonucu dünyada bir çok insansız hava aracı şirketi kurulmuş ve bazıları bu araçları seri üretim şeklinde üreterek ihtacat yapabilmektedirler. Dünyadaki bu ekonomik büyümenin bir yansıması olarak dünyadaki insansız hava aracının sayısı da gün geçtikçe artmaktadır. Bu talebin büyüklüğüne bakılarak, 20 yıl sonra meydana gelecek insansız hava aracı çarpışmaları ve trafikleri otoriteleri bu konu ile ilgili çalışmaya sevketmiştir. Bununla beraber uygulama alanlarının artması ve daha da detaylanması nedeniyle belirli özellikleri ve otonom uçuşu gerçekleştirebilen insansız hava araçları artık yetersiz kalmaktadır. Günümüzde genel olarak DJI, Pixhawk, ardupilot gibi markaların araçları veya otopilotları kullanılmaktadır. Bazıları açık kaynak kodlu olsalar bile kod içerisinde değişiklik yapmak veya farklı bir donanım entegre etmek oldukça zor. Bunun haricinde piyasada baskın olup market değeri de en yüksek olan DJI firmasının ürünleri tamamiyle kapalı kutu şekilde satılmaktadır. Otonom uçui, rota takibi, havada asılı kalma ve video çekme, canlı yayın yapma gibi temel isterleri yapabilmelerine ragmen, genişleyen sektörde endüstrinin istekleri, artık insansız hava aracının sadece canlı yayın yapması için değil, harici eklenecek donanımlar ile beraber çalışabilirliği veya başka sistemlerle entegre çalışabilirliği gibi problemleri ortaya çıkarmıştır. Bu nedenle piyasada ciddi bir şekilde müşteri isteğine göre configure edilebilen otopilot sistemleri ihtiyacı doğmuştur. Diğer yandan insansız hava aracı trafiğine bile yol açacak kadar büyüyen bu sektör ve sivil havacılığın da benzer bir şekilde büyüdüğü iki sektör ile karşı karşıyayız. Sivil havacılığın artan trafiği ve çarpışma önleme sistemlerinin yetersiz kalması gibi durumlara çözümler aranmaktadır. Yapılan çalışmalar sonucu [1] insansız hava aracı sahası ile sivil havacılık sahasının birleştirilmesi ve bu birleştirmelerin nasıl yapılması gerektiği konusu ortaya çıkmıştır. Bunun üzerine bir çok üniversite, bu konu üzerine çalışmalar yapmış ve yayınlar ortaya çıkmıştır. Genel olarak problem ise elbette eski teknolojinin hüküm sürdüğü sivil havacılıkta kullanılan ürünlerin, insansız hava araçlarına entegrasyonu imkansızdır. Doğal olarak tüm hava araçlarının kontrolü için tek bir iletişim ağı hepsini kapsayacak şekilde kurulması amaçlanmıştır. Tüm bu hava araçlarının gözlemlenmesi aynı anda yapılabilmeli ki tehlike durumlarında gerekli müdahaleler ve tedbirler önceden veya o an alınabilsin. Bu tezde iki farklı problemin çözümü önerilmiştir. Önerilerin ilki bahsedilen müşteri odaklı insansız hava aracının tasarlanmasıdır. İnsansız hava aracı tasarımındaki en önemli modüllerden biri de INS-AHRS sistemidir. İstanbul Teknik Üniversitesi Kontrol ve Aviyonik Laboratuvarında yapılan bu çalışma öncesinde, otopilot kontrolcü tasarımı çalışmaları yapılmış ve system oturtulmuştur. Yapılan uçuşlarda piyasadaki pahalı sistemler kullanılmaktaydı. Fakat sistemden sisteme farklılıklar göstermesi gereken bu ürünler, platform değişikliklerinde sıkıntılara yol açabiliyordu. Buna örnek vermek gerekirse sabit kanatlı insansız hava aracında sıkıntısız uçabilirken, multi-copter platformunda sapma açısında uçuş anında düzensizlikler ortaya çıkıyordu. Bunun nedeni ise alınan üründe sapma açısı sadee GPS verilerinden elde ediliyor olmasıydı. Hareketli platformun her zaman bir sapma açısı olacağından sabit kanatlı sistemlerde çalışması gayet normaldi. Fakat multi-copter platformunda havada asılı kaldığı zamanlarda sapma açısında bir hız vektörü olmadığından GPS hesaplayamıyor ve bu yüzden salınımlara neden oluyordu. Bu gibi problemlerin çözümü ve tamamiyle yerli, dışarıda çalışabilen, istenilen tüm platformlara tasarım değişiklikleriyle entegre edilebilecek bir INS-AHRS tasarımı yapılmaya çalışılmıştır. Bu tasarım yapılırken literatürde yapılan çalışmalar referans alınmış, ve filtreleme tekniklerinden navigasyon koordinat sistemlerine kadar çalışmalar yapılmıştır. Sensor çıkışlarının gürültülerini bastırmak için alçak geçiren filtrelerden geçirildikten sonra gerekli dönüşümler yapılarak filter seviyesine kadar getirilmiştir. Filtre kısmında iki farklı filter testi yapılmıştır. Biri tamamlayıcı filter ve diğeri kalman filtresidir. Bu filtrelerin her bir INS-AHRS üzerinde testleri yapılmış ve nihai olarak AHRS’de tamamlayıcı filter, INS’de ise kalman filtresinin kullanımı kararlaştırılmıştır. Yapılan çalışmalar İstanbul Teknik Üniversitesi Stadyumunda ve İstanbul Teknik Üniversitesi Havacılık Araştırma Merkezinde test edilmiştir. Yapılan testler 6 aydan fazla sürmesine ragmen nihai sonuca ulaşılabilmiştir. Bu süre zarfında tecrübe edilen en önemli nokta ise gerçek hayatta karşılaşılan problemler ile simulasyon ortamının farklı olmasıdır. Gerçek hayatta en küçük problemde bile aracınız yere çakılabilir ve her çakılmada 200-1000 TL zarar alabilirsiniz. Test yaptığımız süre içerisinde bizden kaynaklı olmayan, fakat üretim hatası olan pervanelerin kopması nedeni ile de kırımlar yaşanmıştır. Bu nedenle sistemin argesinin yapılması pahalıya mal olmuştur. Yapılan test sonuçlarının videoları çekilmiş ve sosyal mecralarda paylaşılmıştır. Bir diğer problem ise insansız hava araçlarının sivil hava sahasına entegrasonudur. Bu entegrasyonun yapılması için gereken teknolojik gelişmeler ve algoritmik çalışmalar gerekmektedir. Önerilen sistemde araç bazlı ve uçuş bazlı haberleşme verileri belirlenip, hangi sistemler üzerinden bu haberleşmenin gereçekleşmesi gerektiği gösterilmiştir. Daha sonra tüm bu sistemler hem hava araçlarında, yer istasyonlarında ve hava trafik kontrolcülerinde olacağından tüm haberleşme ortak bir platform için toplanmış oldu. Bu nedenle uçuş kontrollerinin yapılması daha da kolaylaşacaktır. Bununla beraber çarpışma önleme sistemi için günümüzde kullanılan 2B system değil, zamanın da içine dahil olduğu 4B istem önerilmiştir. Bu algoritmaının adı RRT-Star olup, olasılıksal yaklaşarak çarpışmadan kaçmayı hedefler. Bu kaçışı hedeflerken de en optimal yolu bulmaya çalışır ve o yoldan rotasına devam eder. Olasılıksal yaklaşımların savunduğu argüman sonsuz sayıda örnek sayısında bulunacak yol limitte en optimal yola doğru gider. Bu nedenle olasılıksal çözüm bulma, deterministic yöntemlere göre çok daha hızlı olmaktadır. Fakat algoritmada optimale ne kadar yaklaşmak istenirse o kadar örnekleme sayısını arttırmak gerekmektedir. Bu artış daha çok araştırma yapması ve sistemin uzun zaman boyunca rota üretmesi demektir. Buradaki dengeyi iyi tutturarak hem uygun yolu bulmaya ve en uygun kısa sürede bulmayı amaçlanması istenmektedir. Sistemin testi için donanımla benzetim çalışması gerçekleştirilmiştir. Bu tezde donanım benzetimi öncesi otopilot şeması verilmiş, buna bağlı test düzeneklerinin sistemi gösterilmiştir. Simulasyon olarak XPLANE programı kullanılmış ve programdan gelen sensor verilerine göre donanım sistemi uçurmaya çalışmıştır. Daha sonra çarpışma önleme algoritmasının entegrasyonu ile system testleri gerçekeştirilmiş ve sonuçları paylaşılmıştır. Nihai olarak bu tez, insansız hava aracı sektöründeki günümüzde ve gelecekte meydana gelecek problemleri öngörüp bunlara çözüm bulmak amaçlanmıştır. INS-AHRS tasarımları gerçekleştirilip, gerçek ortamda dışarıda testleri gerçekleştirilmiştir. Çarpışma önleme algoritması üzerine çalışmalar yapılarak da bu sistemin entegrasyonu yapılmış ve donanımsal benzetim ile testleri gerçekleştirilmiştir.Last years, the market growth of UAV is increasing day by day. This market growth is not just for some typical applications, but also application areas are increasing, too. This demand also increases the market value of the UAV. For competition in the market, UAV companies try to develop UAVs more efficient, cost effective and adding different capabilities. However, this growth generates some dangerous situations, moreover, because of the growth in application area, common UAVs are become not enough for applications or missions. In this thesis, I present and demostrate INS-AHRS Design and also Flight Management System with Collision Avoidance for UAV. These algorithms and demonstrations are made by the funding of ITU Control and Avionics Laboratory. In Laboratory, we already have autopilot system for multi-copter platforms and fixed-wing platforms. Before development of this INS-AHRS, we used other products from industry. But these products do not let you manage all system. But with the growth on the UAV applications, in the world also even in our laboratory, many projects required to solve specific problems with UAV. Industry products are designed for just one specific platform which may not be work on another platform. That is the main reason of necessity to develop new INS-AHRS, which can be used for multi-copter platforms. To develop INS-AHRS, filtering techniques and other conversation equations are studied. In this study, it is decided to use one IMU and one GPS. But after encounter with different problems, external magnetometer is added to the system. Then, as datasheet recommended, scaling and also alignment and offset shifting is studied. Before developing the all system, for inner loop, controller all need is attitude and attitude rate feed back. So first, with complimentary filter, gyroscope and accelerometer filtering is developed and tried to test at outside. In simulation, decision of coefficient of complimentary filter is easy to find. But these coefficients do not work at the outside. This shows the most important challenge that simulation platform can never be the same with outside real flight. For INS design, inertial frame to NWU frame conversation is developed. Accelerometers gravity vector and Coriolis vector is removed. Gyroscope outputs are also converted to the NWU frame. At least, all sensor outputs become the type of navigation frame. Whenever all datas gathered are become the type of the same frame, kalman filter is designed for INS. AS a result of INS-AHRS design, after 6 months of testing with other industrial INS, final coefficient of both INS and AHRS is decided. After few more development, test videos are recorded. For the growth of the UAV problem, this thesis presents Flight Management System (FMS) with multi-level autonomy modes that meet the requirements of future flight operations for unmanned aerial systems (UAS). It is envisioned that the future of airspace will become highly heterogeneous and integrate non-standardized aerial systems. In that case, only ground systems will be able to predict future trajectories based on performance models (stored in huge parametric databases). Meanwhile, airborne systems are required to share information. The proposed FMS structure integrates new functionalities such as (1) formal intent and information exchange and collaboration in tactical planning utilizing air-to-air and air-to-ground data links and (2) decentralized, short-term collision detection and avoidance. The air-to-ground data link enables intent sharing and allows field operators (i.e., flight operators or air traffic controllers) to interpret, modify, or re-plan UAS flight intent. The onboard FMS persistently monitors the airspace, tracks potential collisions with the other aircraft and the terrain, and requests re-planning when it detects a possible issue. When an immediate response is needed, the onboard FMS generates a 3D evasive maneuver and executes it autonomously. Flight traffic information is obtained from ADS-B/In transponders and air-to-air data links. ADSB-In/Out implementations make the unmanned systems more visible to the systems in 3D. In addition, the air-to-air data links enable intent sharing between airborne systems and are traceable in four dimensions (i.e., space and time). The experimental FMS was deployed in quadrotor UASs and a ground station and GUI was designed to perform demonstrations and field experiments for the issues introduced in the paper.Yüksek LisansM.Sc

    Flight Deck Centered Cost Efficient 4d Trajectory Planning

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2015Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2015Hava trafik yönetimi teknolojilerindeki mevcut sistemlerin dönüşümü göz önüne alındığında, gelecek uçuş operasyonlarının ve kokpit içi sistemlerin yeni aviyonik sistemlere ve operasyonel prosedürlere ihtiyaç duyacağını söylemek mümkündür. Özellikle adaptif algoritmalar ve gelişmiş karar destek sistemleri bu ihtiyaçların temelini oluşturmaktadır. Bu konseptlerin hayata geçirilmesi Hava Trafik Yönetimi kapsamında görevlerin ve sorumlulukların değişmesinde büyük rol oynayacaktır. En iyi karar yeri, en iyi karar zamanı ve en iyi karar veren bu bağlamda temel faktörlerdir. Örneğin; kontrolcüler hava trafiğini yönetmede yüksek derecede rol sahibi olacak ve bireysel rotalara müdahale sayısını azaltacaklardır. Pilotlar uçuş esnasında daha aktif olacak; çevreyi gözlemleme ve yönetme, seçenekleri analiz ete veya gerektiği durumda ayırma manevrası uygulama gibi önemli görevlerde daha çok görev alacaktır. Uçuş ekibinin rolündeki bu değişimler mevcut görevlerin yeniden tanımlanmasına gidilmesinin yanı sıra insan faktörü performansını da etkileyecektir. Geleceğin kokpit içi sistemlerinde uçuş ekibinin bu yeni görevleri başarıyla gerçekleştirmesini sağlayan yeni nesil cihazlar ve algoritmalar gerekecektir.  Bu tez kapsamında yapılan ilk çalışma, yeni nesil sentetik vizyon ve artırılmış gerçeklik tabanlı görselleştirme teknolojileri kullanılarak görsel kokpit içi karar destek araçları ve arayüzleri tasarımıdır. Dizayn edilen bu araçların NextGen ve SESAR 2020+ programlarında tanımlanmış gelecek uçuş operasyonlarının gereksinimlerini karşılaması amaçlanmaktadır. Bu aviyonik sistemler ile pilotların niyet paylaşımı/pazarlığı ile işbirlikçi taktiksel planlama, çözümleri alternatifleri ile birlikte tam olarak anlama/analiz etme/yorumlama ve yeni çözüm önerme gibi uçuş operasyonlarında desteklenmesi vizyonlanmıştır. Ek olarak, gerekli cevabın farkında olma, uygulama veya çarpışma önleyici sisteme otomasyon yetkisi verme gibi görevlerde de karar destek sağlanması hedeflenmiştir. Görsel karar destek sistemleri uçuş ekibinin yeni otonom sistemler ile etkileşimini ve tüm taktiksel veriyi görselleştirerek içinde bulunulan durumu veya gelişmekte olan uçuş operasyonunu anlaşılır olmasını mümkün kılmaktadır. Bu proje kapsamında iki farklı görsel yapı sunulmaktadır. Kokpitin Primary Flight Display bölgesinde yer alan sentetik vizyon ekran çifti pilotların 4D ortamda durum farkındalığı ile düşük ve yüksek seviyede taktiksel görevleri yönetmesini sağlamaktadır. SVD kısmı pilota yapay görsellik sağlamakla beraber gerekli güdüm, uçuş ve kısıtlı seviyede operasyonel bilgileri içermektedir. Tunnel-in-the-sky konsepti ile pilot, odaklanılan veya karar verilen rotayı tüneller aracılığıyla manuel olarak takip edebilir. Bununla beraber standart sentetik vizyon (sanal gerçeklik) ekranı fonksiyonlarını da kullanabilir. İrtifa ve hız bilgileri, radar frekans değerleri, harita ve yükselti bilgisi, hava koşulları gibi temel uçuş operasyonu verisi bu ekranda gösterilmektedir. 4D Operasyonel Ekranı (4DOD) operasyon durumu ile ilgili farkındalığı artırmak ve uçuş niyeti üzerindeki modifikasyonları göstermek üzere yüksek seviyede operasyonel bilgileri sağlamaktadır. Pilot, hem kendi yörüngesini kontrol edebilmekte hem de trafikteki uçaklara ait rotaları izleyebilmektedir. Aynı zamanda ileriye dönük hızlandırılmış simulasyon fonksiyonu da bulunmaktadır. Kokpitin veri bağlantısı üzerinden yer ile rota ve uçuş planı paylaşımı sürecinin yönetilmesi bu ekran aracılığıyla olmaktadır. Haptik arayüzler ile uçuş ekibi gösterilen bilgileri ve görselleri 2D+zaman ve 3D+zaman boyutunda yönetebilmektedir. Sentetik vizyon ve 4DOD ekran çiftine paralel olarak pilotun görüş hizası üzerine inşa edilmiş Head-up Display (HUD)bulunmaktadır. HUD aracılığıyla pilot benzer şekilde temel uçuş durum bilgilerini aşağıya bakma gereği duymadan izleyebilmekte, tunnel-in-the-sky konsepti sayesinde hedef yörüngeyi tüneller arasından uçmaya çalışarak takip edebilmektedir. Bu görsel karar destek sistemleri ve algoritmalarının donanım olarak entegrasyonu, Boeing 737-800 uçuş simulatörü üzerinde gerçekleşmiştir. Sentetik vizyon ve 4DOD ekran çifti Primary Flight Display (PFD) monitörleri üzerinde çizdirilmiştir. Head-up Display (HUD), kaptan pilot ile ön cam arasına yerleştirilmiştir. Özel bir film kullanılarak görüntü arkadan mini-projeksiyon cihazı aracılığıyla yansıtılmıştır. Her bir görsel karar destek sistemi simulatörün ağına bağlanmış olup veri akışını kontrol eden ve yöneten algoritmalar düzenlenmiştir. Uçuş simulatörü, Hava Trafik Kontrolü test ortamı ile birleştirilerek geliştirilen yeni nesil aviyonik konseptlerinin uçuş operasyonları üzerindeki etkileri resmedilmiştir. Hava Trafik Kontrolü test ortamı trafik ve hava durumu tasarlayıcı, Hava Trafik Kontrol ekranları ve kontrolörün davranışının benzetim çalışmalarını yapan modellerden oluşmaktadır. Test ortamı aynı zamanda ALLFT+ tabanlı geçmiş uçuşlara ait gerçek veri kullanarak önceden belirlenmiş veya düzenlenebilen senaryoların oynatılmasını sağlamaktadır. Trafik ve hava durumu tasarlayıcı modül Demand Data Repository veritabanı üzerinden beslenen havaalanı ve hava sahası kapasite bilgilerini ve Aeronautical Information Publication'dan gelen operasyonel bilgileri içermektedir. Benzer şekilde, modifiye edilmiş senaryolar veya geçmiş hava durumu bilgileri METAR verisi üzerinden aktarılmaktadır. Test ortamı günümüz hava trafik kontrol ekranları, ses ile iletişim, otonom veya karar destekli kontrol operasyonlarını ifade eden modeller aracılığı ile hem günümüz operasyonlara hem de geleceğe yönelik çalışmalara ait senaryoları koşabilmektedir.  Projenin ikinci aşaması ve ana amacı ise taktiksel 4D yörünge planlaması ve otomasyon araçları ile donatılmış uçak için "conflict resolution", ya da potansiyel çarpışma önleyici ve bunu otonom olarak yapan sistemler için teorik çerçeve tasarlanmasıdır. Yoğun trafik ortamında veya yeni rota hesaplanması gibi durumlarda yerden bağımsız, uçak üzerinde ve otonom olarak hem gerçeklenebilir, hem de maliyeti düşük rotaların üretilmesi istenmektedir. Önerilen 4D yörünge planlama metodu hem olasılıksal hem de deterministik algoritmaların yeni özelliklerini içermekle beraber iki yöntemin de başarılı taraflarını birleştirmektedir. Uçak performans modeli ise yörünge tayini için gerekli bir bileşen olup BADA 4 üzerinden sağlanmaktadır. Uçağın kinodinamik modellemesinde standart yörünge uygulamalarında kullanılan 3-serbestlik dereceli veya diğer adıyla nokta kütle hareket modeli kullanılmıştır. Bu modelde uçağın hali hazırda kendi içerisinde kararlı ve kontrol edilebilir olduğu kabul edilip, takip ettiği yörünge ile ilgilenilmektedir. Uçağa etkiyen kuvvetlerin veya uçak performansının modellenmesi EUROCONTROL'ün bir ürünü olan Base of Aircraft Data (BADA) aracılığıyla yapılmıştır. Projede son sürüm olan BADA 4 kullanılmıştır. Bu versiyon, öncekilerden farklı olarak uçağa etkiyen kuvvetleri uçağın durumları ve atmosfer koşullarına bağlı olarak parametrik ifade etmektedir. Teknik altyapısını Boeing'in sağladığı bu veritabanı, gelişmiş modellemeleri sayesinde nominal değerlerin üzerine çıkarak parametre öngörmesi ve optimizasyon gibi işlemleri yapılabilir kılmaktadır. Oluşturulan bu performans modeli yüksek-seviye hibrid uçuş kalıpları otomatları ve alçak-seviye manevra otomatlarını kapsamaktadır. Bu modellemedeki amaç, uçak hareketini tırmanma, seyir ve alçalma şeklinde üç farklı kalıp altında toplamaktır. Her bir uçuş kalıbı kendine özel manevra sekansı içermektedir. BADA 4 matematiksel modelleri aracılığıyla her bir uçuş kalıbı için tanımlı manevra sekansını düşük maliyet ile gerçekleştiren parametreler öngörülmüştür. Esasında bu problem, bir uçağın başlangıç ve bitiş olarak verilen iki nokta arasında en düşük maliyetli rotayı takip etmesi problemidir. Uçak denklemlerinin ve kısıtlamaların lineer olarak ifade edilememesi, bu problemin tek bir seferde global olarak çözülmesini zorlaştırmaktadır. Ek olarak bu modülün uçak üzerinde çalışacağı düşünülecek olursa bu hesaplamaların çok kısa zaman aralıklarında gerçekleşmesi beklenmektedir. Çok-modlu yaklaşım sayesinde kompleks olan yörünge planlama problemini global olarak çözmek yerine lokal ve düşük maliyetli yörüngeler tayin edilmektedir. Bu noktadaki dezavantaj ise yaklaşımın verdiği çözümün optimum değerden uzaklaşmasıdır.  Daha üst seviyede ise hesaplanan düşük maliyetli lokal rota parçaları oluşturan ve uzayı tarayan RRT* algoritması kullanılmıştır. RRT*,örnekleme tabanlı bir hareket planlama algoritması olup hava sahasını keşfetmeye çalışarak lokal yörünge segmentleri üzerinden ayırma yapmaktadır. İlk adım olarak uzayda bir konum örnekleyip, ardından uçuş kalıpları ve gelişmiş performans modelini kullanarak uçağı bu noktaya düşük maliyet ile getirmeye çalışmaktadır. Örneklenen konuma, mesafe olarak ağaçta hali hazırda bulunan en yakın konumdan bağlanmaya çalışılır. Bu, arama uzayının hızlı ve ilerleyerek keşfedilmesinin temelidir. Lokal maliyetlerin yanında başlangıç konumundan itibaren harcanan maliyet de hesaba katıldığı için ağaç sürekli olarak toplam maliyeti düşük olan uçuş segmenti sekanslarını üreterek büyür. Önceden belirlenmiş örnekleme sayısına ulaşıldığında algoritma durur. Kullanılan algoritma aynı zamanda belirli koşullar altında asimptotik optimalliği sağlamaktadır. Asimptotik optimallik, örnekleme sayısı sonsuza yaklaştıkça problemin optimal çözüme yakınsama özelliğidir. RRT* aynı zamanda olasılıksal bütünlüğü sağlamaktadır: Örnekleme sayısı sonsuza yaklaştıkça çözüm bulma olasılığı 1'e yakınsamaktadır. Bunlara ek olarak, örnekleme için cross-entropy yöntemi kullanılmıştır. Bu yöntem ile örnekleme problemi stokastik optimizasyon problemine dönüştürülerek hızlı bir şekilde minimum maliyetli yörünge sekansı oluşturulmuştur. Akıllı örnekleme yapılırken halihazırdaki uçuş planları kullanılmış, dolayısıyla örnekleme sayısının düşük tutulabilmesi sağlanmıştır. Standart rastgele örnekler almak yerine daha akıllı örnekleme yapmak, optimum sonuca daha çabuk ulaşılmasını sağlamıştır. Ancak, her adımda oluşturulan küme içinden ağırlıklandırması yüksek olan elit set çekildiği için hesaplama yükü artmıştır.  Proje kapsamında hem Avrupa'nın hem Amerika'nın hava trafik yönetimi konusunda yaptığı kapsamlı araştırmalar incelenmiş ve buradaki trendler takip edilmiştir. Hava trafik yönetiminde kapasiteyi artırmak üzere yer kontrolcülerinin görevlerini daha çok genel akışı yönetmesi vizyonlanmış; pilotların ise daha çok aktif rol aldığı bir dünya çizilmiştir. Pilotlara karar vermelerinde destek olacak görsel sistemler tasarlanmış, yer ile uçağın aynı anda işbirlikçi bir biçimde uçuş operasyonunu yönettiği konseptler eklenmiştir. Bunların yanında çarpışmaları gözleyen ve gerektiği durumda otonom ayırma yapabilen sistemler için algoritma tasarlanmıştır. Geleceğin hava trafik koşullaru vizyonlanarak göz önünde bulundurulmuş, önerilen yöntemin hem bugünün hem de geleceğin hava trafik yönetim sistemine katkı sağlaması amaçlanmıştır.Considering the transformation in roles of existing air traffic management technologies, future flight operations and flight deck systems will need additional avionics and operational procedures that involve adaptive algorithms and advanced decision support tools.  The first part of the thesis presents novel visual flight deck decision support tools and interfaces utilizing next generation synthetic vision and augmented reality based visualisation technologies in order to meet the requirements of the future flight operations defined in NextGen and SESAR 2020+ visions. These avionics are envisioned to aid pilots for conducting their new in-flight tasks such as; collaborative tactical planning with intent negotiation/sharing; fully understanding/analysing/interpreting solution with their alternatives and proposing modification on the solution subject to negotiation; and aware of required response, execute it or allow collision avoidance module to perform its automated response. Visual Decision Support Tools allow the flight crew to interact with new autonomous systems and provide with visual understanding on the evolving flight operation by fusing all tactical level data and visualising them. In this work, two groups of display structure have been proposed. A split head-down \textit{Synthetic Vision} screen pair aims to support the pilots in managing both low level and high level tactical tasks with fully understanding the situation in 4D. Synthetic Vision Display (SVD) side provides the pilots synthetic vision and also incorporates required additional guidance and limited operational information. 4D Operational Display (4DOD) provides higher level operational information giving building enhanced understanding on the states of the operation and results of any modification on processing flight intent. Haptic interfaces allow the flight crew to change demonstrated detail levels in both 2D+time and 3D+time. The other display, which is \textit{Head-Up-Display (HUD)}, provides pilot to efficiently operate flight operation by eliminating the need of looking to head-down screen; and aims to present all essential flight information in the pilot's forward field through augmented reality implementations. For hardware integration and experimental purposes, an integrated testbed including full replica B737-800 Flight Deck Testbed and ATM Testbed has been modified as enabling operational tests and validations of these new tools. The main purpose of this study is to provide a theoretical framework for tactical 4D-trajectory planning and conflict resolution of an aircraft equipped with novel automation tools. The proposed 4D-trajectory-planning method uses recent algorithmic advances in both probabilistic and deterministic methods to fully benefit from both approaches. We have constructed an aircraft performance model based on BADA 4 with high-level hybrid flight template automatons and low-level flight maneuver automatons. This multi-modal flight trajectory approach is utilized to generate cost-efficient local trajectory segments instead of solving complex trajectory-generation problems globally. The proposed sampling-based trajectory planning algorithm spatially explores the airspace and provides proper separation through local trajectory segments and guarantees asymptotic optimality under certain conditions. Moreover, we have integrated the cross-entropy method, which transforms the sampling problem into a stochastic optimization problem, rapidly converges on the minimum cost trajectory sequence by utilizing available flight plans, and reduces the amount of sampling. The integration of the proposed strategies lets us solve challenging, real-time in-tactical 4D-trajectory planning problems within the current and the envisioned future realm of air traffic management systems.Yüksek LisansM.Sc
    corecore