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FLIGHT DECK CENTERED COST EFFICIENT 4D TRAJECTORY PLANNING

SUMMARY

Considering the transformation in roles of existing air traffic management
technologies, future flight operations and flight deck systems will need additional
avionics and operational procedures that involve adaptive algorithms and advanced
decision support tools.

The first part of the thesis presents novel visual flight deck decision support
tools and interfaces utilizing next generation synthetic vision and augmented
reality based visualisation technologies in order to meet the requirements of the
future flight operations defined in NextGen and SESAR 2020+ visions. These
avionics are envisioned to aid pilots for conducting their new in-flight tasks
such as; collaborative tactical planning with intent negotiation/sharing; fully
understanding/analysing/interpreting solution with their alternatives and proposing
modification on the solution subject to negotiation; and aware of required response,
execute it or allow collision avoidance module to perform its automated response.
Visual Decision Support Tools allow the flight crew to interact with new autonomous
systems and provide with visual understanding on the evolving flight operation by
fusing all tactical level data and visualising them. In this work, two groups of display
structure have been proposed. A split head-down Synthetic Vision screen pair aims
to support the pilots in managing both low level and high level tactical tasks with
fully understanding the situation in 4D. Synthetic Vision Display (SVD) side provides
the pilots synthetic vision and also incorporates required additional guidance and
limited operational information. 4D Operational Display (4DOD) provides higher
level operational information giving building enhanced understanding on the states
of the operation and results of any modification on processing flight intent. Haptic
interfaces allow the flight crew to change demonstrated detail levels in both 2D+time
and 3D+time. The other display, which is Head-Up-Display (HUD), provides pilot to
efficiently operate flight operation by eliminating the need of looking to head-down
screen; and aims to present all essential flight information in the pilot’s forward
field through augmented reality implementations. For hardware integration and
experimental purposes, an integrated testbed including full replica B737-800 Flight
Deck Testbed and ATM Testbed has been modified as enabling operational tests and
validations of these new tools.

The main purpose of this study is to provide a theoretical framework for
tactical 4D-trajectory planning and conflict resolution of an aircraft equipped with
novel automation tools. The proposed 4D-trajectory-planning method uses recent
algorithmic advances in both probabilistic and deterministic methods to fully benefit
from both approaches. We have constructed an aircraft performance model based

xix



on BADA 4 with high-level hybrid flight template automatons and low-level flight
maneuver automatons. This multi-modal flight trajectory approach is utilized
to generate cost-efficient local trajectory segments instead of solving complex
trajectory-generation problems globally. The proposed sampling-based trajectory
planning algorithm spatially explores the airspace and provides proper separation
through local trajectory segments and guarantees asymptotic optimality under certain
conditions. Moreover, we have integrated the cross-entropy method, which transforms
the sampling problem into a stochastic optimization problem, rapidly converges on
the minimum cost trajectory sequence by utilizing available flight plans, and reduces
the amount of sampling. The integration of the proposed strategies lets us solve
challenging, real-time in-tactical 4D-trajectory planning problems within the current
and the envisioned future realm of air traffic management systems.
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KOKPİT OTOMASYONU TABANLI 4D ROTA PLANLAMASI

ÖZET

Hava trafik yönetimi teknolojilerindeki mevcut sistemlerin dönüşümü göz önüne
alındığında, gelecek uçuş operasyonlarının ve kokpit içi sistemlerin yeni aviyonik
sistemlere ve operasyonel prosedürlere ihtiyaç duyacağını söylemek mümkündür.
Özellikle adaptif algoritmalar ve gelişmiş karar destek sistemleri bu ihtiyaçların
temelini oluşturmaktadır. Bu konseptlerin hayata geçirilmesi Hava Trafik Yönetimi
kapsamında görevlerin ve sorumlulukların değişmesinde büyük rol oynayacaktır. En
iyi karar yeri, en iyi karar zamanı ve en iyi karar veren bu bağlamda temel faktörlerdir.
Örneğin; kontrolcüler hava trafiğini yönetmede yüksek derecede rol sahibi olacak
ve bireysel rotalara müdahale sayısını azaltacaklardır. Pilotlar uçuş esnasında daha
aktif olacak; çevreyi gözlemleme ve yönetme, seçenekleri analiz ete veya gerektiği
durumda ayırma manevrası uygulama gibi önemli görevlerde daha çok görev alacaktır.
Uçuş ekibinin rolündeki bu değişimler mevcut görevlerin yeniden tanımlanmasına
gidilmesinin yanı sıra insan faktörü performansını da etkileyecektir. Geleceğin kokpit
içi sistemlerinde uçuş ekibinin bu yeni görevleri başarıyla gerçekleştirmesini sağlayan
yeni nesil cihazlar ve algoritmalar gerekecektir.

Bu tez kapsamında yapılan ilk çalışma, yeni nesil sentetik vizyon ve artırılmış
gerçeklik tabanlı görselleştirme teknolojileri kullanılarak görsel kokpit içi karar
destek araçları ve arayüzleri tasarımıdır. Dizayn edilen bu araçların NextGen
ve SESAR 2020+ programlarında tanımlanmış gelecek uçuş operasyonlarının
gereksinimlerini karşılaması amaçlanmaktadır. Bu aviyonik sistemler ile pilotların
niyet paylaşımı/pazarlığı ile işbirlikçi taktiksel planlama, çözümleri alternatifleri
ile birlikte tam olarak anlama/analiz etme/yorumlama ve yeni çözüm önerme gibi
uçuş operasyonlarında desteklenmesi vizyonlanmıştır. Ek olarak, gerekli cevabın
farkında olma, uygulama veya çarpışma önleyici sisteme otomasyon yetkisi verme
gibi görevlerde de karar destek sağlanması hedeflenmiştir. Görsel karar destek
sistemleri uçuş ekibinin yeni otonom sistemler ile etkileşimini ve tüm taktiksel veriyi
görselleştirerek içinde bulunulan durumu veya gelişmekte olan uçuş operasyonunu
anlaşılır olmasını mümkün kılmaktadır. Bu proje kapsamında iki farklı görsel
yapı sunulmaktadır. Kokpitin Primary Flight Display bölgesinde yer alan sentetik
vizyon ekran çifti pilotların 4D ortamda durum farkındalığı ile düşük ve yüksek
seviyede taktiksel görevleri yönetmesini sağlamaktadır. SVD kısmı pilota yapay
görsellik sağlamakla beraber gerekli güdüm, uçuş ve kısıtlı seviyede operasyonel
bilgileri içermektedir. Tunnel-in-the-sky konsepti ile pilot, odaklanılan veya karar
verilen rotayı tüneller aracılığıyla manuel olarak takip edebilir. Bununla beraber
standart sentetik vizyon (sanal gerçeklik) ekranı fonksiyonlarını da kullanabilir. İrtifa
ve hız bilgileri, radar frekans değerleri, harita ve yükselti bilgisi, hava koşulları
gibi temel uçuş operasyonu verisi bu ekranda gösterilmektedir. 4D Operasyonel
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Ekranı (4DOD) operasyon durumu ile ilgili farkındalığı artırmak ve uçuş niyeti
üzerindeki modifikasyonları göstermek üzere yüksek seviyede operasyonel bilgileri
sağlamaktadır. Pilot, hem kendi yörüngesini kontrol edebilmekte hem de trafikteki
uçaklara ait rotaları izleyebilmektedir. Aynı zamanda ileriye dönük hızlandırılmış
simulasyon fonksiyonu da bulunmaktadır. Kokpitin veri bağlantısı üzerinden
yer ile rota ve uçuş planı paylaşımı sürecinin yönetilmesi bu ekran aracılığıyla
olmaktadır. Haptik arayüzler ile uçuş ekibi gösterilen bilgileri ve görselleri 2D+zaman
ve 3D+zaman boyutunda yönetebilmektedir. Sentetik vizyon ve 4DOD ekran
çiftine paralel olarak pilotun görüş hizası üzerine inşa edilmiş Head-up Display
(HUD)bulunmaktadır. HUD aracılığıyla pilot benzer şekilde temel uçuş durum
bilgilerini aşağıya bakma gereği duymadan izleyebilmekte, tunnel-in-the-sky konsepti
sayesinde hedef yörüngeyi tüneller arasından uçmaya çalışarak takip edebilmektedir.
Bu görsel karar destek sistemleri ve algoritmalarının donanım olarak entegrasyonu,
Boeing 737-800 uçuş simulatörü üzerinde gerçekleşmiştir. Sentetik vizyon ve
4DOD ekran çifti Primary Flight Display (PFD) monitörleri üzerinde çizdirilmiştir.
Head-up Display (HUD), kaptan pilot ile ön cam arasına yerleştirilmiştir. Özel bir
film kullanılarak görüntü arkadan mini-projeksiyon cihazı aracılığıyla yansıtılmıştır.
Her bir görsel karar destek sistemi simulatörün ağına bağlanmış olup veri akışını
kontrol eden ve yöneten algoritmalar düzenlenmiştir. Uçuş simulatörü, Hava Trafik
Kontrolü test ortamı ile birleştirilerek geliştirilen yeni nesil aviyonik konseptlerinin
uçuş operasyonları üzerindeki etkileri resmedilmiştir. Hava Trafik Kontrolü test
ortamı trafik ve hava durumu tasarlayıcı, Hava Trafik Kontrol ekranları ve kontrolörün
davranışının benzetim çalışmalarını yapan modellerden oluşmaktadır. Test ortamı
aynı zamanda ALLFT+ tabanlı geçmiş uçuşlara ait gerçek veri kullanarak önceden
belirlenmiş veya düzenlenebilen senaryoların oynatılmasını sağlamaktadır. Trafik
ve hava durumu tasarlayıcı modül Demand Data Repository veritabanı üzerinden
beslenen havaalanı ve hava sahası kapasite bilgilerini ve Aeronautical Information
Publication’dan gelen operasyonel bilgileri içermektedir. Benzer şekilde, modifiye
edilmiş senaryolar veya geçmiş hava durumu bilgileri METAR verisi üzerinden
aktarılmaktadır. Test ortamı günümüz hava trafik kontrol ekranları, ses ile iletişim,
otonom veya karar destekli kontrol operasyonlarını ifade eden modeller aracılığı ile
hem günümüz operasyonlara hem de geleceğe yönelik çalışmalara ait senaryoları
koşabilmektedir.

Projenin ikinci aşaması ve ana amacı ise taktiksel 4D yörünge planlaması ve
otomasyon araçları ile donatılmış uçak için "conflict resolution", ya da potansiyel
çarpışma önleyici ve bunu otonom olarak yapan sistemler için teorik çerçeve
tasarlanmasıdır. Yoğun trafik ortamında veya yeni rota hesaplanması gibi durumlarda
yerden bağımsız, uçak üzerinde ve otonom olarak hem gerçeklenebilir, hem de
maliyeti düşük rotaların üretilmesi istenmektedir. Önerilen 4D yörünge planlama
metodu hem olasılıksal hem de deterministik algoritmaların yeni özelliklerini
içermekle beraber iki yöntemin de başarılı taraflarını birleştirmektedir. Uçak
performans modeli ise yörünge tayini için gerekli bir bileşen olup BADA 4
üzerinden sağlanmaktadır. Uçağın kinodinamik modellemesinde standart yörünge
uygulamalarında kullanılan 3-serbestlik dereceli veya diğer adıyla nokta kütle hareket
modeli kullanılmıştır. Bu modelde uçağın hali hazırda kendi içerisinde kararlı ve
kontrol edilebilir olduğu kabul edilip, takip ettiği yörünge ile ilgilenilmektedir. Uçağa
etkiyen kuvvetlerin veya uçak performansının modellenmesi EUROCONTROL’ün
bir ürünü olan Base of Aircraft Data (BADA) aracılığıyla yapılmıştır. Projede son
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sürüm olan BADA 4 kullanılmıştır. Bu versiyon, öncekilerden farklı olarak uçağa
etkiyen kuvvetleri uçağın durumları ve atmosfer koşullarına bağlı olarak parametrik
ifade etmektedir. Teknik altyapısını Boeing’in sağladığı bu veritabanı, gelişmiş
modellemeleri sayesinde nominal değerlerin üzerine çıkarak parametre öngörmesi ve
optimizasyon gibi işlemleri yapılabilir kılmaktadır. Oluşturulan bu performans modeli
yüksek-seviye hibrid uçuş kalıpları otomatları ve alçak-seviye manevra otomatlarını
kapsamaktadır. Bu modellemedeki amaç, uçak hareketini tırmanma, seyir ve alçalma
şeklinde üç farklı kalıp altında toplamaktır. Her bir uçuş kalıbı kendine özel
manevra sekansı içermektedir. BADA 4 matematiksel modelleri aracılığıyla her
bir uçuş kalıbı için tanımlı manevra sekansını düşük maliyet ile gerçekleştiren
parametreler öngörülmüştür. Esasında bu problem, bir uçağın başlangıç ve bitiş
olarak verilen iki nokta arasında en düşük maliyetli rotayı takip etmesi problemidir.
Uçak denklemlerinin ve kısıtlamaların lineer olarak ifade edilememesi, bu problemin
tek bir seferde global olarak çözülmesini zorlaştırmaktadır. Ek olarak bu modülün
uçak üzerinde çalışacağı düşünülecek olursa bu hesaplamaların çok kısa zaman
aralıklarında gerçekleşmesi beklenmektedir. Çok-modlu yaklaşım sayesinde kompleks
olan yörünge planlama problemini global olarak çözmek yerine lokal ve düşük
maliyetli yörüngeler tayin edilmektedir. Bu noktadaki dezavantaj ise yaklaşımın
verdiği çözümün optimum değerden uzaklaşmasıdır.

Daha üst seviyede ise hesaplanan düşük maliyetli lokal rota parçaları oluşturan
ve uzayı tarayan RRT* algoritması kullanılmıştır. RRT*,örnekleme tabanlı bir
hareket planlama algoritması olup hava sahasını keşfetmeye çalışarak lokal yörünge
segmentleri üzerinden ayırma yapmaktadır. İlk adım olarak uzayda bir konum
örnekleyip, ardından uçuş kalıpları ve gelişmiş performans modelini kullanarak uçağı
bu noktaya düşük maliyet ile getirmeye çalışmaktadır. Örneklenen konuma, mesafe
olarak ağaçta hali hazırda bulunan en yakın konumdan bağlanmaya çalışılır. Bu,
arama uzayının hızlı ve ilerleyerek keşfedilmesinin temelidir. Lokal maliyetlerin
yanında başlangıç konumundan itibaren harcanan maliyet de hesaba katıldığı için
ağaç sürekli olarak toplam maliyeti düşük olan uçuş segmenti sekanslarını üreterek
büyür. Önceden belirlenmiş örnekleme sayısına ulaşıldığında algoritma durur.
Kullanılan algoritma aynı zamanda belirli koşullar altında asimptotik optimalliği
sağlamaktadır. Asimptotik optimallik, örnekleme sayısı sonsuza yaklaştıkça
problemin optimal çözüme yakınsama özelliğidir. RRT* aynı zamanda olasılıksal
bütünlüğü sağlamaktadır: Örnekleme sayısı sonsuza yaklaştıkça çözüm bulma olasılığı
1’e yakınsamaktadır. Bunlara ek olarak, örnekleme için cross-entropy yöntemi
kullanılmıştır. Bu yöntem ile örnekleme problemi stokastik optimizasyon problemine
dönüştürülerek hızlı bir şekilde minimum maliyetli yörünge sekansı oluşturulmuştur.
Akıllı örnekleme yapılırken halihazırdaki uçuş planları kullanılmış, dolayısıyla
örnekleme sayısının düşük tutulabilmesi sağlanmıştır. Standart rastgele örnekler
almak yerine daha akıllı örnekleme yapmak, optimum sonuca daha çabuk ulaşılmasını
sağlamıştır. Ancak, her adımda oluşturulan küme içinden ağırlıklandırması yüksek
olan elit set çekildiği için hesaplama yükü artmıştır.

Proje kapsamında hem Avrupa’nın hem Amerika’nın hava trafik yönetimi konusunda
yaptığı kapsamlı araştırmalar incelenmiş ve buradaki trendler takip edilmiştir. Hava
trafik yönetiminde kapasiteyi artırmak üzere yer kontrolcülerinin görevlerini daha
çok genel akışı yönetmesi vizyonlanmış; pilotların ise daha çok aktif rol aldığı
bir dünya çizilmiştir. Pilotlara karar vermelerinde destek olacak görsel sistemler
tasarlanmış, yer ile uçağın aynı anda işbirlikçi bir biçimde uçuş operasyonunu yönettiği
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konseptler eklenmiştir. Bunların yanında çarpışmaları gözleyen ve gerektiği durumda
otonom ayırma yapabilen sistemler için algoritma tasarlanmıştır. Geleceğin hava trafik
koşullaru vizyonlanarak göz önünde bulundurulmuş, önerilen yöntemin hem bugünün
hem de geleceğin hava trafik yönetim sistemine katkı sağlaması amaçlanmıştır.
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1. INTRODUCTION

A central theme in both NextGen and SESAR visions is paradigm shift from a purely

centralized tactical intervention model toward more efficient strategic planning and

more proactive tactical operations [1, 2]. The implementation of these concepts will

significantly change the roles and responsibilities in the Air Traffic Management

(ATM) system. For instance, air traffic controllers will have a high-level tactical

role in managing traffic flow and no longer intervene in individual trajectories. Thus,

pilots supported with automation systems will become more active during the flight

in order to monitor the environment, generate a separation maneuver, if needed, and

check alternate plans. This transformation will not only redefine the existing roles

of the flight crew but also create further responsibilities that inherently affect human

performance requirements. Therefore, the future flight deck will require additional

avionics, operational procedures with adaptive algorithms, and automation systems

with advanced decision-support tools that can enable pilots to handle the entire tactical

operation. To meet the requirements of future flight operations, we envision integrating

novel automation modules into the current structure of flight deck systems andbuild

a B737-800 flight deck testbed to integrate these concepts and test the developed

algorithms (Figure 1.1).

Tactical 4D-trajectory planning is the process that provides persistent conflict check

and proper resolution when required. The conflict detection (CD) process guarantees

appropriate separation between aircraft during flight. CD algorithms compare the

spatial distance between any two aircraft with the mandated separation minimum. In

current operational practice, aircraft are kept 3–5 nmi apart horizontally or 1000 ft

vertically to provide a sufficient safety margin. The conflict resolution (CR) process

generates an appropriate action that suitably solves potential conflicts detected by the

CD. By considering the time horizon, tactical conflict detection and resolution typically

involves challenging issues such as estimating aircrafts’ future positions, predicting

potential conflict, and issuing the proper conflict alert. The main difficulty in predicting
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Figure 1.1 : B737 – 800 Flight Deck test platform with experimental visual decision
support tools for future ATM realm: Head up Display (HUD), Synthetic

Vision Display (SVD) and 4D Operational Display

the aircraft future position comes from disturbances influencing the flight path such as

wind or uncertain actions of other aircraft.

As the realm of ATM evolves, the way of managing flight operations and handling

the tactical requirements will change. Fully-tactical operation capability will enable

the airline to dynamically redefine preferred needs according to evolving conditions.

Currently, neither ground-based nor on-board systems account for the own aircraft’s

intended flight plan (e.g. providing recovery to the original plan) or the preferences of

the flight operator. In addition to safety, cost effectiveness in tactical planning will also

be a sensitive issue in the future. For example, dynamic cost index management [3]

might enable airlines to dynamically regulate how phases of the flight are directed

(e.g. fly faster or save fuel). This approach allows operators to redirect the aircraft

according to needs of passengers or their financial strategies. Moreover, [4] shows that

small modifications to the cruise phase such as cruise altitude or speed can achieve

significant cost reductions in cruise fuel burns.

1.1 Description of the Work and Motivation

In this work, our objective is to provide a theoretically sound and practically

efficient framework for solving tactical 4D-trajectory problems. The proposed

method involves a sophisticated aircraft performance model based on BADA 4 and

recent algorithmic advances in stochastic approaches to motion planning. Such

probabilistic algorithms embed stochastic behavior, which are inherent in air traffic.

The proposed method also utilizes operational cost objectives in the calculation

of cost-efficient trajectory segments through predefined flight-template automatons.
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Figure 1.2 : The envisioned data exchange and trajectory occurrence procedures for
the future airspace needs

These flight templates employ their own approximate trajectory optimization and

involve lower-level maneuver mode automatons that effectively utilize advanced

performance definitions in BADA 4. Specifically, the maneuver mode automatons

provide low-level control input sequences, which are compatible with the current

flight management systems (FMS). The formal description of a control sequence is

a potential candidate to be a communication frame of the controller-pilot data link

(CPDL) or to be transformed into any other data link standard.

The sampling-based trajectory planner algorithm presented here spatially explores

the airspace and provides proper separation with local trajectory segments. The

algorithm also guarantees asymptotic optimality under certain conditions. Moreover,

we have integrated the cross-entropy method, which transforms sampling problems

into stochastic optimization problems, which enables more efficient sampling.

The initialization of the problem exploits the last-available flight plan that was

compromised due to uncertain conditions such as wind speed change. The idea behind

importance sampling with cross entropy is that the new plan is most likely to be

spatially similar to the original flight plan. This practice is also inherent to ATM,

where the strategic flight plan (i.e. Reference Business Trajectory) already reflects
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many objectives of the stakeholders (e.g. airlines, air traffic flow managers) subject

to comprehensive optimization that is run in ground systems. In the hypothetical

worst-case scenario, where the new flight plan is far from the previous optimum, the

importance sampling iteratively converges on a low-discrepancy sampling, which is

purely quasi-random sampling. Otherwise, and mostly, the cross-entropy sampling

rapidly converges on a delta function, in the other words, the minimum cost trajectory.

The integration of the proposed strategies let us resolve conflicts in challenging,

real-time in-tactical situations.

The proposed algorithms needs advanced integration into the flight deck structure and

additional human interaction channels, so we describe the whole picture in order to

provide a clear understanding of the problem within the scope of ATM systems. In

order to meet the requirements of future flight operations, we envision integrating

novel automation modules into the current structure of flight deck systems and build

a B737-800 flight deck testbed to integrate these concepts and test the new algorithms

(Figure 1.1). This integrated structure uses two-level autonomy in a different kind of

time horizons such as Collaborative 4D Trajectory Planning and Short Term Collision

Avoidance, both of which involve distinctive tools, procedures, data handling, and

algorithms. The Visual Decision Support Systems, integrated with these modules, allow

the flight crew to monitor the processes and interact with them at a manageable level.

Figure 1.2 demonstrates the entire structure and its add-on modules.

During nominal tactical operation, or Collaborative 4D Trajectory Planning, processes

are mostly collaborative, where the pilot cooperates with the ground systems and

uses in-flight decision support and automated tools, as seen in Figure 1.2. Such

structure incorporates all tactical level information (e.g. weather, intent exchange,

user preferences, and traffic information) obtained from both air-to-air data links and

air-to-ground data exchange. Ground-based intent negotiation requests may arise in

with changes in drastic weather, operational constraints, conflict detection, emergency

situations, or when a detected aircraft does not follow the anticipated behavior. Intent

Generation Infrastructure translates a flight intent (FI), which is typically a formal

description of flight objectives attached to a strategic flight plan, into an aircraft intent

(AI), which provides a detailed formal description of the navigational commands of

the aircraft [5]. Trajectory Computation Infrastructure generates a unique predicted
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trajectory (TP) that relies on an aircraft performance model. This structure permits

low-level aircraft intent (AI) sharing between aircraft through air-to-air data links.

Low-level intent sharing also enables “machine-to-machine” talk where the pilot can

communicate with unmanned systems, as we anticipate the integration the UAVs into

national airspace. The Short Term Collision Avoidance module is not connected to

the AI exchange and works independently. Thus, it provides redundancy in flight deck

systems (e.g. TCAS).

In both nominal flight operations and active collaborative decision-making processes,

it is essential to keep the pilot in the loop at a manageable level. Moreover, pilots must

recover flight control from an automation failure. The new virtual Decision Support

Tools (vDST) with a head-down synthetic vision display (SVD) and augmented

reality-based head-up display (HUD) give the pilot a full understanding of the evolving

situation. In addition to these common display concepts, another synthetic vision

display concept, the 4D-Operational Display (4DOD) (Figure 1.1),has been developed

to manage tactical 4D-trajectory-based operations. This virtual decision support

tool provides pilots with a 4D projection (three spatial dimensions and time) of the

trajectories (including predicted trajectories of the surrounding aircraft) and allows

pilots modify the trajectory or requesting a re-plan. Conflict Monitoring and Conflict

Resolution functions perform the CDR algorithms that will be presented in this study,

which continuously ensure proper aircraft separation and generate required actions in

case of a failure to separate.

1.2 Literature Review

A comprehensive literature review of conflict detection and resolution is given in [6].

Many real-time conflict-detection and resolution systems use some form of open-loop

planning algorithms. Open-loop planners compute a “one-shot” trajectory projection

and plan without considering how future information will alter future actions. These

online algorithms first generate a sequence of actions to take from the current state,

and the plan is updated whenever a new observation arrives. The algorithm in [7],

NextCAS II, provided a model-based solution that computes alert thresholds that do

not violate an intruder’s protection zone. In [8],a model based on Mixed Integer

Linear Programming (MILP), involving approximate model (point mass model) of
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aircraft dynamics with linear constraints, is applied to open-loop aircraft collision

avoidance problems. [7] utilized the MILP method for solving conflicts arising

among several aircraft, but considered only velocity-changing actions. [9] suggested

a multi-layered open-loop “almost blind engagement” process where the planner tries

to solve ownship’s trajectory according to belief states of the intruder aircraft and

updates the projected belief whenever a new measurement arrives. Unlike open-loop

methods that generate static plans as new information becomes available updated,

closed-loops methods [10, 11] generate an action sequence that minimizes action cost

by accounting for future actions and updates alert likelihoods with new information.

Online Markov Decision Process (MDP) algorithms [12,13] address the shortcomings

of offline methods by only planning for the current belief state instead of planning for

all possible situations. A hybrid solution has been proposed [14] where the calculation

for the expected utility of being in a particular belief state and required action are

selected online; action utilities are computed offline. [15] provides a conflict-resolution

algorithm for solving a parametric-optimization problem of the point-mass model and

utilizes formal definitions for the predefined trajectory parameterization of the aircraft

intent.

In real time applications, such as tactical conflict resolution, the principal concern

is to find a feasible solution as fast as possible and to enhance the “quality” of

solution in the remaining time. Sampling-based algorithms have received considerable

attention in the trajectory-planning literature. As such, there has been increasing recent

interest (e.g. [16–19]) to demonstrably improve the quality of a sampling algorithm’s

solution as computation time increases. Sequential sampling-based algorithms do not

stop sampling once a feasible trajectory is found in order to find a better solution.

Sampling-based methods in trajectory planning randomly sample a set of states from

the state-space and check their connectivity without fully knowing the obstacles. This

approach provides significant savings in computation time since collision checks are

performed when required. The connectivity of these samples is strongly connected to

feasibility and reachability notions in planning problems. Even though sampling-based

methods do not provide completeness, they are probabilistically complete where

the probability of finding a feasible solution, if one exists, approaches one as the

number of samples increases. One such kinodynamic sampling-based planner is the
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Rapidly-Exploring Random Tree (RRT) algorithm, first proposed in [20]. Recently,

the RRT algorithm and its variants have been successfully demonstrated on different

dynamic systems [21–25]. An important step toward efficient optimization using

randomized planners was taken in [19], which proves that the RRT algorithm converges

on a non-optimal solution with a probability of one. Furthermore, this research

proposed a new algorithm, RRT ∗, and showed that it is globally and asymptotically

optimal while maintaining the same probabilistic completeness and computational

efficiency of the original RRT. RRT ∗ is a superior algorithm in comparison to other

sampling-based methods.

A common concern in randomized algorithms is their lack of repeatability, which

makes it impossible to certify their success and performance. Two successive runs

of these algorithms may not produce identical solutions even under identical initial

conditions, while a deterministic algorithm always has the same result. It is not

possible to give a clear proof that any randomized algorithm solves a motion planning

problem very quickly. Besides, [17] clearly showed that deterministic sampling

strategies outperform purely random sampling in solving many-dimensional problems.

To address this issue, a meta-heuristic can monitor the growth of the number of

samples and resets the search graph if its size exceeds a certain threshold. This

is necessary because processing complexity increases dramatically (e.g. finding

the nearest node) as the size of the search graph increases. The performance of

sampling-based algorithms can be further improved by employing more efficient

adaptive sampling. Several methods have been proposed [26–31] that utilizing

information from previous sampling loops. [32] transformed the sampling problem into

a stochastic-optimization problem, in which cross-entropy (CE) was used to estimate

the parameter set of a distribution, which guides the algorithm to sample around the

optimal trajectory. The CE method was originally introduced by [33] for estimating

rare-event probabilities, and since then, the method and its adaptations have become

useful tools for multi-extremal nonlinear optimization. Specifically, [32] has integrated

the CE into the RRT ∗ to iteratively update the distribution in accordance with costs

until the distribution closes around the optimum trajectory. In this project, we closely

followed [32], and propose a more generalized form of CE sampling for conflict

resolution.
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Motion-planning problems for aerospace vehicles are complicated by the fact that

planners based on optimal performance begin to fail, by means of computation,

when one takes into account the constraints of the aircraft’s dynamic equations. To

reduce the complexity of this problem, motion-description languages and quantized

control concepts were proposed in [34].Multi-modal maneuver-modeling framework

basically consists of decomposing a trajectory into a set of maneuver modes

and associating maneuver parameters. The complexity of maneuver planning is

significantly reduced by reducing the dimension of the problem (modal sequences have

lower dimensions than state-space descriptions) and relaxing parameter optimization

by designing specific optimization procedures for each mode. The planner constructs

a trajectory with proper modal sequence by switching instead of performing a highly

complex multi-objective parametric optimization over the full flight envelope. This

approach has been successfully applied in [35] for autonomous combat aerial vehicles,

which involves complex modeling and control. In the approach presented in [35],

parameterized sub-maneuvers are build up into complex sequences and make it

possible to address almost any arbitrary maneuver and the entire flight envelope.

In parallel with this research, closed-loop hybrid control systems were developed

for the same purpose using linear temporal logic [36]. For aerospace vehicles, a

hybrid model for aircraft traffic management calculating the largest controlled invariant

subset of each aircraft’s protected zone has been developed [37], where relatively

simplistic horizontal maneuver modes are used for an algorithmic demonstration of

a hybrid approach. Similarly, [38] suggested maneuver automaton, which uses a

number of feasible system trajectories to represent the building blocks of the aircraft’s

motion plan and a trajectory-based control system, which asymptotically regulates

the actual trajectory to the trajectory generated by maneuver automaton. However,

motion plans and controllable trajectories are restricted to the library of the maneuver

automaton. Such libraries are built by interpolating between feasible trajectories [39].

[40] extended this for online planning of feasible trajectories in partially unknown

environments by using receding horizon iterations.

Maneuver Modes and the Modal Inputs Configuration of a maneuvering aircraft can be

explicitly described in terms of a single state trajectory. However, it is also possible to

construct the maneuver by representing it as a sequence of predefined maneuver modes
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and associated parameters. In [41], a parameterized maneuver library is built where

each maneuver mode is represented by a set of state constraints and state equations

that evolve according to the modal inputs.

The rest of the thesis is structured as follows. Initially, the integrated flight deck testbed

with novel virtual decision support tools is explained. Then we give a formal definition

of the trajectory planning problem. Aircraft Performance Model section gives the

details of the performance model based on BADA 4 and the cost definition. Cost

Efficient Local Trajectory Generation section provides a method for generating local

trajectory segments through the modal decomposition approach. The flight template

automaton and its modal maneuver library are explained in this section. Tactical

4D Trajectory Generation section explains persistent conflict detection and resolution

(CDR) based on a stochastic planning algorithm that uses Local Trajectory Generation

and the importance-sampling method. The Integrated Simulations section gives some

examples from the experimental results. Conclusion summarizes the method and

presents potential future research.

9



10



2. FLIGHT DECK TESTBED

In this project, the author presents novel visual decision support tools and

interfaces incorporating next generation synthetic vision and augmented reality based

visualisation in order to support the flight crew. The presented head-down Synthetic

Vision screen pair enables pilots to manage both advanced low level and high

level tactical tasks with fully understanding the situation in 4D. Synthetic Vision

Display (SVD) side provides the pilots synthetic vision and also incorporates required

additional guidance and limited operational information. 4D Operational Display

(4DOD) side aims to present higher level operational information allows understanding

the states of the operation and results of any modification on processing flight intent.

The interface allows pilots to change demonstrated detail levels in both 2D+time and

3D+time. The other display, which is Head-Up-Display (HUD), provides pilot to

efficiently operate flight operation by eliminating the need of continually transition

from head-down to head-up; and aims to present all essential flight information

in the pilot’s forward field through augmented reality implementations. Even in

low-visibility operations (e.g. due to fog, clouds, unlighted landing etc.), pilots can

easily manage the flight by ensuring following the "visual tunnels" appear in the head

up display. These visual decision support tools are envisioned to significantly increase

situational awareness (SA) of the pilots during the flight operations.

Situation awareness (SA) refers to the operator’s understanding of the relevant

environment state and the operator’s ability to anticipate future changes and

developments in that environment. Specifically, there are three levels of situational

awareness constructed by humans. These levels are perception, comprehension and

projection [42]. Progression of these layers, the level of Automation and the extend

of SA does not indeed exhibit a simple 1-1 relation. For example, inappropriate

levels of the automation can impact SA with results such as automation complacency,

automation mistrust, increased workload, and automation transparency. For example,

high levels of automation can indeed create cases in which the pilot no longer actively
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processes information to maintain an awareness of the system state In other words;

pilot falls out-of-the-loop due to over-trust in the system. Such fall-outs effectively

diminish the pilot’s ability to recover from automation failure . When the pilot

perceives the automation to be unreliable and gives excessive attention to monitor the

automation, SA can also be diminished with high workload and result in a phenomenon

called attention tunneling [43]. In attention tunneling, all attention is drawn only

to the primary task at hand. SA is also reduced while interacting with a decision

support system which requires extensive evaluation of alternatives and choices [44].

The additional workload associated with extensive evaluation and selection naturally

reduces the resources available for maintaining SA. A system is transparent when the

underlying information behind the automation can be accessible . In a fully transparent

system a pilot may be led to attend to too much and too low level system information,

resulting in high workload and diminished SA [45].

By considering these factors, an expectation from a good decision support system

is that it should provide transparency at a manageable workload level. In general,

any form of automation support that unintentionally hides information seems to be in

conflict with the responsibilities of the pilot (even if it might result in low workload

and good performance). A cooperative process, in which the automation enables the

pilot to be in-the-loop, is considered to be the optimal outcome of the design [45]. The

conflict resolution experiments conducted in support this proposition. For example,

in the SA test scenarios it is observed that the response times of the operators to

immediate questions about past, present, and future events were faster if the operator

is in interactive and manual conditions. This is in comparison to response times when

Figure 2.1 : Airspace Model and ATM Testbed for in-operation experiments
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the operator is in fully automated condition (complacency). Relatively better SA in the

interactive and manual conditions implies that conflict resolution systems may profit

from keeping the pilot actively engaged in the task. However, evaluating conflict free

flight plan with their alternatives, in both space and time, within various constraints,

is a complex task especially in immediately emerging traffic situations (short term and

mid term). The crew cannot be expected to perform such a complex task without some

form of automated observation-evaluation-strategy generation support. Therefore, the

pilot is located in-the-loop, but at a higher strategic level where he or she is constantly

aided with safe flight plans and alternatives.

2.1 Integrated Testbed: Flight Deck Simulator and ATM Testbed
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Figure 2.2 : Architecture of the integrated next generation flight deck system with
novel add-on modules

The integrated system including a B737-800 flight deck testbed and an ATM testbed is

envisioned to validate innovative add-on avionics and features come into the flight deck

automation systems in order to meet the requirements of the future flight operations.

The given flight deck structure uses two different autonomy levels and handles
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switching these autonomy level modes considering the required response time. These

two process cycles at different autonomy levels are represented with Collaborative

Mid-term Trajectory Planning and Short Term Collision Avoidance modules where

both are involving different tools, procedures and algorithms. The visual Decision

Support Systems, allow the flight crew to efficiently monitor the processes, and interact

with them at a manageable level. Through these objectives, two groups of displays,

head-down Synthetic Vision Displays (including separated Synthetic Vision Screen

and 4D Operational Screen) and Head-up-Diplay (HUD) are integrated into the flight

deck to support the pilots and significantly enhance their situational awareness of the

pilot. Figure 2.2 demonstrates whole integrated structure and its add-on modules.

Airspace Model and ATM Testbed (seen in Figure 2.1) involves air traffic management

related simulation tools such as: Traffic and Weather Generator, ATC displays and

Automated ATC Models. The testbed allows to simulate ALLFT+ based historical

traffic data set or any custom scenario in the same form. The Traffic and Weather

Generator incorporates airport and airspace capacity information from the historical

Demand Data Repository (DDR) data set and operational context information comes

from the Aeronautical Information Publication (AIP) in order to create complete

airspace picture. Similarly, customised scenarios or historical weather effects can

be regenerated with the simplified version of the METAR data. The testbed allows

to perform both traditional air traffic control operations via ATC displays and voice

communication, and fully automated or aided traffic control operations through the

hybrid Automated ATC Models which is ongoing research. The software structure of

the entire with their physical links are also given for further understanding in Figure

2.3

In the nominal tactical flight operations, it is expected that the pilot cooperates with

the ground systems through a data link, and uses decision support and automated tools.

In this operation mode, the envisioned system decision support tools incorporates all

tactical level information (i.e. weather data, intent data, user preferences data and

traffic data) obtained from both on-board sensing (including air-to-air data link) and

air-to-ground data exchange. The pilots can also manage Intent Negotiation process via

visual Decision Support Tools initiated by either the flight deck or the ground system.

The ground based intent negotiation request may emerge in some circumstances
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Figure 2.3 : Software Architecture of the integrated System

such as drastic weather change, change in operational constraints, conflict detection,

emergency situations or detection of an aircraft does not conform to the anticipated

behaviour. During the intent negotiation, pilot can monitor the requested trajectory,

modify the solution, or request re-planning through the 4D Operational Screen.

Similarly, the flight deck may also create an intent negotiation cycle and pilot can

request an acceptance on the modified intent sequence (e.g. direct route to a fix or

efficient flight path around hazardous weather). Trajectory Computation Infrastructure

(TCI) and Intent Generation Infrastructure (IGI), automatically validates the feasibility

of the given intent data, and Conflict Monitoring block checks potential conflicts

between the predicted trajectories in the traffic.

2.2 Next Generation Synthetic Vision Screens

Presented synthetic vision display includes two separate screen (Figure 2.4); which one

for synthetic vision flight and the other for operational management. These screens are

envisioned to provide the pilot with full understanding on the evolving flight operation

and effects of any intervention. Even in automated nominal flight operations, it is

important to keep pilot in-the-loop at a suitable level where the flight crew should

recover the flight control from an automation failure. Therefore, on the track of
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Figure 2.4 : Synthetic Vision Display (SVD) and 4D Operational Display (4DOD)
screens in the flight deck

the negotiated trajectory, the flight crew is continuously supported with information

about the current state and objectives of the operation (e.g. intent trajectory, RTA

objectives, delays, ascending/descending slope and glide slope) and the environment

(e.g. surrounding traffic, potential loss of separation, proximity to the terrain). During

the intent negotiation process, one synthetic vision screen demonstrates processing

flight intent to the pilot and enables required interaction to accept, modify or request

re-planning – which are the functions of the collaborative decision making. Through

the 4D Operational Display (4DOD), the flight crew can understand the states of the

operation and results of any modification on processing flight intent. Whenever the

negotiation has been concluded with a success, the negotiated intent can be executed

autonomously via FMS (as seen in the Figure 2.2), or pilot can choose to follow the

trajectory manually with guidance of the tunnel-in-the-sky visualisation on Synthetic

Vision Display (SVD) and HUD.

The 4D Operational Operational Display (4DOD) provides the pilots with high-level

information about the whole flight operation and trajectory. Through the 4DOD, the

pilot can monitor the flight trajectories (negotiated or processing) of the ownship and

surrounding aircraft in four dimensions (including time); environmental effects such as

weather, airspace boundaries, terrain obstacles; status of the flight involving required
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Figure 2.5 : Definitions of the symbology in 4D Operational Display (4DOD)

time of arrival objectives, delays, estimated capacity of the airspace; and safety related

warnings such as conflict probability predictions. The display gives 3D visualisation

ability to the pilot as supervisor, and he/she can easily change supervisor look-angle

and look-position using haptic interfaces. For experimental purposes, two types of

haptic interfaces have been included; an external trackpad and 3D navigator mouse;

which both provides better 3D navigation on the operational map overlay. The flight

crew can also monitor future projection of the trajectories using the time slider button

on the screen, or initiating fast time simulation of the flight. This is where the third

dimension (time) perception is provided to the user. Specifically, the flight crew a) can

see the flight trajectories of the ownship and surrounding aircraft in 2D map overlay,

in a traditional way; b) may choose to go into details using 3D navigation (e.g. around

the potential conflict ); c) are able to go forward on time to see the projected future;

and d) even may chose to perform fast time simulation for entire or specific part of the

flight. The Figure 2.5 gives definition for main symbols in 4DOD.

The 4DOD is envisioned to increase not only "transient situational awareness" but

also enhance fully understanding the entire flight operation. In the context of the 4D

trajectory based operation, it has to be handled Required Time Arrival (RTA) objectives

and neutralised delays in the air in order to obtain both optimal flight regimes and

efficient use of the airspace. The 4DOD also demonstrates these types of information

to the flight crew. In the collaborative negotiation with the ground segments, the

flight crew can evaluate these objectives and performance scores (both in time and

fuel efficiency) of the processing trajectories and their alternatives result in custom
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modifications. Through this screen, the flight crew can accept the trajectory on which

ATC requested negotiation; or can modify existing trajectory by adding or removing

fixes and then puts it on the ATC for acceptance. This communication is handled via

air-to-ground data link and formal intent languages.
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Figure 2.6 : Definitions of the symbology in Synthetic Vision Display (SVD)

The Synthetic Vision Display (SVD) gives the pilots synthetic vision and also

incorporates additional guidance and operational information. In addition to standard

motion related information such as airspeed, vertical speed, altitude and inertial angles;

the envisioned screen also demonstrates planned/negotiated trajectory through the

"tunnel-in-the-sky" demonstration. The pilot can operate the entire flight without

having to look up in case of the low visibility flight operations. Tunnel visualisation

also gives a continuous perception across the whole trajectory from surface operation

to landing with glide slope. In addition to synthetic terrain visualisation, It also enables

to visualise the weather through the METAR data; and other soft obstacles such as
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closed airspace (segregated for other users), airspace constrained altitude levels and

high loaded traffic volumes. The definitions for the symbology in the Synthetic Vision

Display (SVD) have been given in Figure 2.6.

2.3 Augmented Reality Based Head-up Display

The proposed structure of the Head-Up-Display (HUD) seen in Figure 2.7 aims to

present all essential flight information in the pilot’s forward field of view eliminating

the need of continually transition from head-down instruments to head-up. It is

envisioned that HUD provides "informational summary" about the transient status of

the flight including near-term objectives. In addition to presenting flight path marking,

flight path acceleration, speed and altitude meters, glide-slope angle, and runway

aim point demonstrations, similarly as in SVD, negotiated continuous trajectory

demonstration is provided through "tunnel-in-the-sky".

The demonstration of "tunnel-in-the-sky" is obtained through a combination of all

tactical level informations such as negotiated trajectory, airport location, glide-slope

angle, take-off/landing runway with clearance, all come from Flight Management

System (FMS). The negotiated trajectory information at all phases (including

land operations, take-off en-route and landing) is transformed into virtual tunnel

visualisation in order to aid the pilot. It is aimed that pilot can operate the entire

flight by following the demonstrated virtual tunnel ensuring safety. In addition to path

curvature and torsion mostly associated with ascent/descent and turn actions of the

aircraft, continuously streaming lights at the corner of the tunnel frames provides the

pilot effective flight direction perception. The brief descriptions of the nominal HUD

symbology can bee seen in Figure 2.8.

The transparent head-up-display screen also enables to demonstrate text based

pop-up message boxes to give high-level status information. Required Time Arrival

(RTA), which is one of the important concepts of the 4D Trajectory management,

is demonstrated with the related information such as; next destination fix name,

remaining distance and negotiated RTA. In addition to this, an another coloured

message box (i.e. green for positive and red for negative values) shows predicted

delay time for the next fixes. It also enables to demonstrate pop-up messages for the
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Figure 2.7 : Transparent Screen overlay for HUD augmented reality implementations

check lists according to related situations (e.g. engine start-up, emergency and required

traffic and conflict avoidance messages etc.)

The integration of these new implementations and other possible applications on the

current flight decks will possibly saturate the flight crew with a huge amount of

information and interaction loads. In order to make possible the pilot to perform

these redefined tasks, they should be supported with a new form of decision support

tools utilizing recent interface and visualisation technologies. Therefore, conceptual

visual decision support tools are also added to the envisioned flight deck structure.

The integration of such tools aims to keep the pilot in-the-loop, but at a higher level

where he or she is managing the operation, understanding newly evolving situations

and analysing the potential solutions with their alternatives.

Two forms of visual decision support interfaces, Augmented Reality Based Head-Up

Display and Synthetic Vision Display, are introduced in this module. In the nominal

flight operation, it is expected that the pilot cooperates with automated tools by

interacting them through the interfaces of the visual decision support tools. 2D

and 3D information visualisation is created on both Augmented Reality Based

Head-Up Display and Synthetic Vision Display by fusing all tactical level data

obtained from both on-board sensing and air-to-ground data exchange. The flight
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Figure 2.8 : Definitions of the symbology in Head-Up-Display (HUD)

crew is continuously supported with information flow about the current state of the

operation (e.g. RTA objectives, delays and ascent/descent slope) and environment

(e.g. surrounding traffic, potential loss of separation, proximity to the terrain). The 3D

visualisation use gives the pilot sense that he or she is flying in the virtual tunnel (along

the track of the trajectory) appearing in the sky. Other objects such as terrain, obstacles,

aircrafts are visualised with graphical and textual objects. The Figure 1.1 shows this

application while running in our experimental synthetic display. This tunnel-in-the-sky

visualisation can be also used in head-worn displays (HWD) and goggles enabling

to create spatially integrated and large field-of-view augmentation. We are currently

using aligned projector layers to create this effect in our integrated test platform . This

visual demonstration aims to prevent "tunnelling effect" results in degraded flight deck

efficiency and reduced safety margins. In the analysis of the American Airlines Flight

965 accident at Cali, Columbia, it is reported that the flight crew spent a huge amount

of time heads-down trying to program the FMS to perform an infrequent task, which

is not well supported by the interface, and this inefficient interaction contributed to the

occurrence of the accident with several other circumstances [46].

During the intent negotiation process, which is an interaction intensive process,

the Synthetic Vision Display demonstrates processing flight intent to the pilot and

enables required interaction to accept, modify or request replanning. Through the

2D visualisation of Synthetic Vision Display (see the Figure 1.1), the flight crew
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can readily understand the results of any modification (in both space and time) on

processing flight intent. The touch screen interface allows the pilot to easily modify

the requested intent by interpreting resulting trajectories. The potential conflicts, which

are detected by onboard Conflict Monitoring, are also demonstrated in terms of space

and time, so the flight crew can analyse the situation and evaluate the required solution.
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3. PROBLEM DEFINITION

The trajectory generation problem can be given in two parts [19]. First part is

feasibility, which refers to performable actions of the aircraft within its limits of

maneuverability, performance, and control as well as environmental and operational

constraints. The second part is optimality, which considers costs in terms of fuel and

time.

Consider the following general form of the time-invariant dynamics of the aircraft;

ẋ(t) = f (x(t),u(t)), x(0) = x0, (3.1)

where the x(t)∈X ⊆Rn, u(t)∈U ⊆Rm such that n,m∈N and the state x0 ∈X is called

the initial state of the ownship. Similarly let χ j(t)∈ X ⊆Rn, ϑ j(t)∈U ⊆Rm represent

the predicted trajectory set and the control input set for the reachable set of the

surrounding aircraft. Let Xobs and Xarr represent the obstacle region (static obstacles)

and arrival region respectively. Then we can define the conflict-free space depending

based on time (due to dynamic conflict avoidance) as X f ree(t) : X \Xobs∪Xsep(t), where

Xsep(t) denotes the set of regions centered at ∗x j(τ) such that χ(τ) =
⋃∗ x j(τ) for all

t ∈ [0,τ]. Here, ∗x j(τ) represents all states for all aircraft that can be reached from an

initial state x j(0) at time τ > 0. This region is defined by a set of aircraft separation

cylinders. So, a dynamically-feasible trajectory in X f ree (an abbreviation for X f ree(t))

starts at xinit and ends in the arrival region Xarr.

Feasibility: The feasible trajectory generation problem can be defined as finding a

feasible trajectory if one exists or otherwise report a failure [47]. For a bounded

connected open set X ⊂ Rn, and obstacle region Xobs ⊂ X , an initial state xinit ∈ X f ree

and a arrival region Xarr ⊂ X , a feasible trajectory is x : [0,τ] → X f ree such that

x(0) = xinit and x(τ) ∈ Xarr, if one exists.
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Let J : xX f ree → R>0 be a cost function for all collision-free trajectories. The optimality

problem of trajectory planning can be defined as generating a feasible trajectory with

minimum cost [47].

Optimality: For a given bounded connected open set X ⊂ Rn, and obstacle region

Xobs ⊂ X , an initial state xinit ∈ X f ree and a arrival region Xarr ⊂ X , find a trajectory

x∗ : [0,τ]→ cl(X f ree) such that;

(i) x∗(0) = xinit and x∗(τ) ∈ Xarr,

(ii) J(x∗) = minx∈∑cl(X f ree)
J(x),

where cl(X f ree) denotes closure of X f ree. Moreover, by considering the local trajectory

generation, for two path segments x1,x2 ∈ ΣX f ree , let the concatenation of two paths be

x1|x2 ∈ ΣX f ree , then the cost function should satisfy;

(i) J(x1|x2)≥ J(x1) ,

(ii) J(x1|x2) = J(x1)+ J(x2).

The overall 4D-trajectory generation problem is to find a proper trajectory sequence

with states and effective time interval representations that are subject to dynamic

modification through conflict resolution. That is:

π(t0 : tend) = {(x0,τ0),(x1,τ1), . . . ,(xend,τend)}. (3.2)

where tε > 0, and tcurrent < t0− tmin_action. This ensures that the solution trajectory

begins with at least the minimum required time to perform a safe action before the

first collision. The each xi is the minimum-cost trajectory segment that is generated by

Local Trajectory Generation. The proper sequence pi(t0 : tend), which will be sent to

the flight management system (FMS) to control the aircraft, is generated through the

Tactical 4D Trajectory Planning to find an asymptotically optimal trajectory.

The following sections first explains the Aircraft Performance Model that is used,

and then give the cost-efficient Local Trajectory Generation and finally Tactical 4D

Trajectory Planning algorithm.
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4. AIRCRAFT PERFORMANCE MODEL

The proposed Aircraft Performance Model (APM) heavily depends on the Base of

Aircraft Data (BADA) 4 dataset [48]. The operational version, BADA 3, does

not include all the relevant physical dependencies and provides little flexibility.

Moreover, BADA 3 does not allow for dynamic calculation of the forces acting on

the aircraft, which are the functions of the input variables used in APM. Specifications

in BADA 3 only make it possible to evaluate maximum climb/take off and maximum

cruise/descent thrust forces and their nominal values. These descriptions are not open

for optimization. BADA 4, currently under development, aims to meet advanced

functional and precision requirements of new ATM systems. For example, it

provides a generalized thrust model as a function of the throttle parameter and Mach

number. Such generalized expressions allow us to develop advanced cost-optimization

procedures utilizing modal parametric definitions of aircraft performance. We have

rigorously studied the BADA 4 dataset and integrated all the relevant functions into

our three-degrees-of-freedom (3DOF) motion equations and cost-efficient trajectory

calculations, which are essential for effective cost minimization. Figure 4.1

demonstrates our parameter handling in trajectory generation.

Aircraft Performance Model (APM) details an aircraft’s performance parameters

operational limits. Specifically, the BADA 4 dataset includes Aerodynamic

Forces and Configurations Model (AFM) for drag and lift coefficient calculations,

Propulsive Forces Model (PFM) for thrust and fuel coefficient calculations, and

Aircraft Limitation Model (ALM) for identifying geometric, kinematic, dynamic,

and environmental operation limitations. The Operation of Configuration Parameters

Model (OPM) defines transition time for both high-lift devices and landing gear

configurations [49]. The interactions between these different models can be seen in

Figure 4.1.

The following 3DOF motion equations are considered sufficient to describe the aircraft

dynamics in an air traffic management (ATM) context.
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˙VTAS =
T −D−W sinγ

m
− ẇ1 (4.1)

χ̇h =
Lsin µ

m +(ẇ3 sin µ− ẇ2 cos µ)

vcosγ
(4.2)

ṁ = −F (4.3)

λ̇ =
VTAS cosγ sin χ +w2

(Nc +h)cosϕ
(4.4)

ϕ̇ =
VTAS cosγ cos χ +w1

(Mc +h)
(4.5)

ḣ = VTAS sinγ, (4.6)

L =
W cosγ−m(ẇ3 cos µ + ẇ2 sin µ)

cos µ
. (4.7)

where [VTAS,χh,m,λ ,ϕ,h] ∈ X ⊆ Rn denote the states of the aircraft and represent the

true airspeed, true airspeed yaw, mass, latitude, longitude and altitude of the aircraft,

respectively. [γ,δT ,µ] ∈U ⊆Rm are the control variables that represent the flight path

angle, the throttle parameter and the aerodynamic bank angle. W [N] is the aircraft

weight, D[N] is the total drag, T [N] is the total thrust, L[N] is the total lift force and

F is the fuel consumption rate in [kg/s]. Mc is the ellipsoid radius of curvature in the

meridian plane and Nc is in the prime vertical according to the WGS84 earth model.

The wind gradients are represented by ẇ1, ẇ2 and ẇ3, which are defined in a proper

axes system. ∆= [δHL,δLG,δSB] is the configuration input set where δHL is the position

of the high lift devices, δLG is the landing gear configuration and δSB is the speed break

configuration. The Earth Model is described by the vector Em = [δ ,θ ,g,w], where δ is

the local pressure ratio, θ is the local temperature ratio, g[m/s2] is the local acceleration

of gravity and w[m/s] is the local wind speed vector.

The equations for the drag force D and the weight W are given as:

D =
1
2

κ p0δM2SCD, W = mg, (4.8)

where κ is the adiabatic index, p0 is the pressure at sea level and S is the wing area. M

is the Mach number, M = VTAS
a , where a is the speed of sound and v is the true airspeed.

CD is the drag coefficient, which is defined as a function of the Mach number, the lift

coefficient and the configuration of the aircraft ∆:

CD =CD(M,CL,∆), (4.9)
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The lift coefficient CL is calculated from the lift force in Eq. 4.7

CL =
2L

κ p0δM2S
. (4.10)

The total thrust T and fuel consumption rate F are given as:

T =WMTOW δTCT (4.11)

F =WMTOW a0δT
√

θCF , (4.12)

where WMTOW = mMTOW g is the maximum take-off weight, a0 is the speed of sound

at sea level and δT is the throttle control parameter, which is an abstraction of the

real flight control available for the pilot and the flight management computer (FMS) to

manipulate the thrust. CT =CT (M,δT ) is the thrust coefficient and CF =CF(M,δT ) is

the fuel coefficient. These coefficients are obtained from Propulsive Forces Model part

of BADA 4.

In summary, given the states X(tk) and inputs U(tk),∆(tk) at time tk, the derivatives in

Eqs. 4.1-4.6 need be calculated to obtain the state configuration X(tk+1) by integration.

To calculate the derivatives, first the lift force L is calculated using the Eq. 4.7. Once

the lift L is calculated, the lift coefficient can be determined from the Eq. 4.10. Next,

the drag coefficient is computed using the Eq. 4.9, depending on the configuration of

high lift devices, speed brakes and landing gears. Then the thrust and fuel coefficients

are calculated. Next, the drag D, the thrust T and the fuel consumption F are computed

from Eqs. 4.8, 4.11 and 4.12 respectively. Once these forces are obtained, the state

derivatives in Eqs. 4.1-4.6 can be integrated for trajectory propagation. At every

integration step, the feasibility of certain parameters and states is checked by the a/c

limitation model, which is defined in the ALM part of BADA 4.

The constraints and limitations on the state and control variables are checked at each

step by the ALM. In BADA 4, the performance limitations are categorized into five

distinct models; geometric, kinematic, buffet, dynamic and environmental models.

These constraints are given as follows,
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Figure 4.1 : Aircraft local trajectory generation through the Aircraft Performance
Model and parametric definitions in BADA 4

max[0,hasmin] ≤ hH p ≤ min[hH pmax(δHL),hasmax ] (4.13)

M ≤ MM0(δLG) (4.14)

δTmin ≤ δT ≤ δTmax (4.15)

VCASstall(δHL,δLG) ≤ VCAS ≤VM0(δHL,δLG) (4.16)

VCAS ≤ 250 kts for h≤ 10,000 ft (4.17)

0 ≤ CL ≤CLmax(M,δHL,δLG) (4.18)

mmin ≤ m≤ mMTOW (4.19)

nmin(δHL) ≤ n≤ nmax(δHL), (4.20)

where, hasmin is the minimum altitude allowed in the airspace, hH p is the geopotential

pressure altitude, hH pmax(δHL) is the maximum geopotential pressure altitude when

the high-lift devices are applied and hasmax is the maximum altitude allowed in the

airspace. MM0(δLG) denotes the maximum operating Mach number depending on

the landing gear configuration. δTmin is the minimum throttle setting and δTmax is the

maximum throttle setting. VCAS is the calibrated airspeed, VCASstall(δHL,δLG) is stall

calibrated airspeed depending on the high-lift device and landing gear configuration.

CLmax(M,δHL,δLG) represents the function for the maximum lift coefficient depending

on the Mach number, high-lift device and landing gear configuration. mmin is the

minimum operating mass while mMTOW is the maximum take-off mass. nmin(δHL)

is the function for the minimum loading factor depending on the high-lift device
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configuration and nmax(δHL) is the maximum loading factor function depending on

the high-lift device configuration.

The certified operating ceiling altitude h and the maximum geopotential pressure

altitude hH pmax(δHL) are obtained from the Geometric Limitations Model. This height

depends on whether the high-lift devices are deployed. If the high-lift devices are in

effect, operational use of certain airspaces limits the maximum and minimum flight

altitude as well. The maximum calibrated airspeed VCASmax and Mach number MM0 of

the aircraft are obtained from the Kinematic Limitations Model for all combinations

of the high-lift device δHL and the landing gear δLG deployments. The relationship

between the true airspeed VTAS and the calibrated airspeed VCAS is given as follows:

VTAS =

√
2p
µρ

{(
1+

p0

p

[(
1+

µρ0

2p0
VCAS

2
) 1

µ −1
])µ

−1
}
, (4.21)

where p is the air pressure, ρ is the air density, µ is a function of the adiabatic index

κ , p0 is the air pressure at the sea level, ρ0 is the air density at the sea level and the

speeds are in [m/s].

Another limitation for the calibrated airspeed VCAS comes from the operational use

of airspaces, i.e. VCAS must be under 250 knots while the aircraft is below 10,000 ft

altitude. The maximum lift coefficient CLmax as a function of aircraft aerodynamic

configuration is given in Buffet Limitations Model for both clean and non-clean

configuration modes. For the clean configuration, the maximum lift coefficient is a

function of Mach number. For the non-clean configuration, corresponding maximum

lift coefficients are defined for every combination of the high-lift device and landing

gear position. The operational mass m limits are acquired from Dynamic Limitations

Model. The Dynamic Limitations Model also provides the maximum and minimum

load factors n depending on whether the high-lift devices are used or not. Table 4.1

summarizes the equations of trajectory computation and aircraft performance model.

4.0.1 Aircraft Trajectory Cost Definition

The cost-to-travel J(x∗) for a given trajectory x∗ is expressed as a combination of fuel

cost J f , time cost Jt and en-route overfly charges Jr, that is;

J = c f δm+ ctτ +∑
n

criδdi, (4.22)
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Table 4.1 : Equations of Trajectory Computation and Aircraft Performance Model

Aircraft EoM ẋ = f (x,u,∆,E, t)
xp = [λ ,ϕ,h]

Control and Config. Inputs U = [γ,δT ,µ]
∆ = [δHL,δLB,δSB]

Earth Model Eq. Em = f (xp, t)
W = f (m,E)

D = f (CD,M,E)
T = f (W,M,E,CT )
F = f (W,M,E,CF)

Aircraft Performance Model CL = f (L,M,E,∆)
CD = f (CL,M,∆)

CT = f (δT ,M)
CF = f (δT ,M)
δT = f (M,E)

Aircraft Limitations Model glim(x, ẋ,u,∆, t)≤ 0
Operation of Conf. Param. Model f : ∆→ [0,τ]

τtrans = f (∆1,∆2)

where c f is the per lb fuel cost in cents, δm is the consumed fuel in kg, ct is the

per hour time cost in dollars and τ is the flight time for a given trajectory segment.

En-route overfly charges Jr, are the costs to airspace users by the air navigation service

providers (ANSPs). The zone dependent charge notion is defined in [50], such as

cri = pti where ti is the airspace dependent unit rate per kilometer[km] and p is the

weight factor, i.e. p =
√

mMTOW/50. In Eq. 4.22, di denotes the great circle distance

flown over the charging zones and expressed in kilometers[km]. The entry and exit

points to the zones are outlined as filed in the flight plan. Therefore, we accept that

these points have been already fixed before the aircraft is airborne. Thus, the rate

of this term does not appear in the tactical trajectory optimization procedure. For

operational considerations, we also give a definition for the cost index CI, which is

a parameter representing the ratio between the time cost and the fuel cost of a flight

operation, as defined in [51], i.e. CI = ct [$/hr]
c f [cents/lb] . The Flight Management Computer

(FMC) fully utilizes this performance parameter to generate any operational behavior

that influences the descent, ascent and cruise modes. The parameter interval varies for

different aircrafts, for example, [52] indicates that CI is 0−500 for the B737-800 and

0−999 for the B777. For instance, if the pilot commands zero cost index through the

FMC interface, the performance behavior yields maximum range airspeed, and the fuel

consumption remains at a minimum by ignoring the time-related cost. If the cost index
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is maximized, flight time will be minimized with maximum climb/descent velocity

and cruise Mach numbers, by neglecting the fuel cost. Hence, this index parameter

strongly conforms to the objectives [3]. In summary, the following tactical cost-to-go

for a given trajectory segment is

J = c f (δm+CIτ)+Cr, (4.23)

where Cr denotes the fixed en-route overfly charges coming from the last filed flight

plan.
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5. COST EFFICIENT LOCAL TRAJECTORY GENERATION

The problem of finding an optimal trajectory J(x∗) = minu∈U J(x) in real-time

applications is highly complex because the constraints are nonlinear. In this section,

we present a multi-modal decomposition approach to trajectory optimization. The

multi-modal approach uses approximate solutions via maneuver decomposition instead

of solving the problem globally, so it significantly reduces computational complexity

and enables real-time local trajectory generation. The required inputs of the trajectory

generation algorithm are initial state xinit , a reference objective position xwpt =

[λwptϕwpthwpt ] and a reference cost index CI. The algorithm returns a dynamically

feasible trajectory segment with the proper control input set and their effective time

intervals. This local planning approach ignores obstacles and leaves collision checks

to the trajectory planner that combines the trajectory segments.

The rationale behind the modal decomposition is to first determine the required flight

template and then generate an appropriate maneuver sequence with the corresponding

parameter set using a finite maneuver library. The predefined flight templates are

Cruise (CRZ), Climb (CMB) and Descend (DES) and their switching logic is illustrated

in Figure 5.1. These flight templates can be also directly mapped to the maneuver

library Sm, which is described in Table 5.1.

Table 5.1 : Maneuver library Sm for Maneuver Automaton

ACC Level-thrust acceleration
DEC Level-thrust deceleration
CAS Hold calibrated airspeed
Mach Hold Mach number
LVL Level Flight

By following this approach, a proper maneuver sequence can steer the aircraft from

the initial state xinit to a reference goal point xwpt , if it is applicable. Maneuver

sequences with their transition states and time schedules are determined by performing

a gradient-descent search of the parameter space of the predefined maneuvers.

Once the switching conditions are computed, the complete trajectory along with the
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corresponding inputs is obtained. Thus, the 3DOF trajectory optimization problem

is approximated and finds cost-efficient switching parameters between the predefined

maneuver modes. This flight template selection and cost minimization formalism

is parallel to the trajectory generation procedure in the flight management systems

(FMS). In our structure, the modal maneuver sequence selection in the flight templates

differs due to the volume of the region of interest, where our aim is to generate

relatively small trajectory segments resolving potential conflicts while the FMS

calculates cost-efficient trajectories for the entire flight.

The procedure for maneuver decomposition is given by a two-layer finite state

automaton. The first step is to determine the flight template sequence through a higher-

level automaton, which is shown in Figure 5.1. This automaton involves basic flight

templates, which are cruise (CRZ), climb(CLB) and descent(DES). Specifically, the

Flight Template Automaton compares the initial altitude hinit and the reference altitude

hwpt to switch states.

xinit

DESCRZ

CLB

a1

a2

a3

a4

a4

a4

a1 : hinit = hwpt ,hinit ∈ xinit
a2 : hinit < hwpt
a3 : hinit > hwpt
a4 : xp = xwpt

Figure 5.1 : Flight Template Automaton with Cruise, Climb or Descent templates.
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Note that the flight templates and the corresponding maneuver set also involve

longitudinal dynamics. To generate 3D motion and keep the aircraft on a horizontal

track, a lateral path controller generates the bank angle µ and is coupled with these

maneuver modes. To integrate the motion equations, Euler discretization is utilized

with a step size of ∆t = 0.1 second. Cost-effective maneuver composition for Cruise,

Climb and Descent flight templates are described in the following subsections.

5.1 Cruise

For the Cruise template; the objective is to find a proper cruise Mach number Mtgt,crz

that minimizes the Economic Cruise Cost Function. ECCF is a method typically

preformed in FMC [49]. Note that the wind speed w is also taken into account in

this minimization.

dJ = c f Fdt + ctdt =
c f F + ct

(VTAS +w)
dr (5.1)

ECCF =
dJ

c f dr
=

c f F + ct

c f (VTAS +w)
=

CI +F
VTAS +w

(5.2)

Mcruise = {Mi, i ∈ N,0 < Mi ≤Mmo} (5.3)

ECCF(Mtgt,crz) = minM∈McruiseECCF(M) (5.4)

It is supposed that the variations in speed and altitude are relatively small and hence

they are ignored. The simplifications for Cruise template can be given as follows:

L =W, T = D and γ = 0 (5.5)

This flight template involves a set of maneuvers Scruise = { Level-Thrust Acceleration,

Level-Thrust Deceleration, Level Flight }. Switching between these maneuvers is

controlled by the automaton depicted in Figure 5.2. For the acceleration maneuver

ACC, the throttle parameter δT is set to its maximum limit δT max to obtain the

maximum thrust available. On the other hand, LIDL (low idle) rating where δT is

set to its minimum δT LIDL to induce a lower thrust T than the drag force D generating
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xinit LV L

DEC

ACC

xwpt
b2

b3

b4

b4

b5

b5

b5

b1

b1 : Mtgt,crz < Minit ,Minit ∈ xinit
b2 : Mtgt,crz = Minit
b3 : Mtgt,crz > Minit

b4 : M(t + τM) = Mtgt,crz,τM ∈ [0,τ]
b5 : xp = xwpt

Figure 5.2 : Cruise flight template automaton

decelerated maneuver DEC. Eventually, the Level Flight mode follows each of these

maneuvers where the throttle parameter δT is adjusted to a certain level, that is;

δT lvl =
{

δT ∈ [δT min,δT max]|T (δT ,M) = D(M)
}

(5.6)

Figure 5.3 shows the Mach number variation for different cost index CI values for

Boeing 737-800 aircraft flying at an altitude of FL250. The blue curve indicates the

smallest cost index (i.e. CI = 0), where fuel saving is preferential without considering

time related cost, and results in a lower cruise Mach number profile. The effects of the

different directions of the wind on the economy cruise Mach number can be seen in

Figure 5.4, where the increment in the true airspeed VTAS due to tail wind results in a

decreased optimum cruise speed, and head wind shifts the optimal cruise Mach number

Mtgt,crz to higher values. Note that the numbers for the cost function axes (y-axis) are

removed from the plots, as the the scale is completely depends on c f /ct value.
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Figure 5.3 : Economy cruise cost function vs. Mach profile for low CI and high CI
values
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Figure 5.4 : Effects of wind directions in evaluations of optimum cruise Mach profile

37



5.2 Climb

The Climb flight template provides a proper Mach number Mtgt,cmb profile that

minimizes the total cost.

Mclimb = {Mi, i ∈ N,Minit < Mi ≤Mmo} (5.7)

J(Mtgt,cmb) = minM∈MclimbJ(M) (5.8)

The Climb template utilizes a set of maneuvers such that Scmb =

{Hold CAS,Hold Mach,Level Flight},Scmb ⊂ Sm. Cost effective trajectory generation

for Climb template involves speed profile scheduling with CAS/Mach Climb action.

In this regime, the FMS first holds its CAS until a specified Mach number Mtgt,cmb is

reached. The maneuver is followed by holding the Mach number and adjusting CAS

until reaching a reference altitude hwpt . Finally, the aircraft follows the level-flight

maneuver until arriving at the reference point xwpt . The finite state automaton given in

Figure 5.5 executes these maneuver switching procedures for Climb template.

CAS

Mach

xwpt

LV L

c1 c2

c3

c3

c3

c1 : M(t + τM) = Mtgt,cmb,τM ∈ [0,τ]
c2 : h(t + τh) = hwpt ,τh ∈ [0,τ]

c3 : xp = xwpt
Figure 5.5 : Climb flight template automaton
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Throttle parameter δT is set to maximum climb rating δT mcmb during climbing. In

BADA 4, this rating is formulated as:

δT = f (M,δ ) (5.9)

where the δT is calculated at each step with respect to the Mach number M and

atmospheric conditions. This formulation results in one intent equation and leaves

the last one to obtain flight path angle γ to maintain the required speed schedule. The

equation with a proper discretization depending on true airspeed VTAS can be written

as:

VTASk+1−VTASk = ∆t
(

Tk−Dk

mk
−gsinγk− ẇ1(k)

)
(5.10)

During the calculation of path angle seen in Eq. 5.10, following assumptions are

employed: a) the derivative of the wind speed ẇ is very small relative to the aircraft

speed profile, b) For ∆t = 0.1 step size, variations in parameters related to atmospheric

conditions such as temperature ratio θ and the pressure ratio δ are assumed to be very

small (i.e. Em(k+ 1) ' Em(k)). Due to these assumptions, the required true airspeed

VTAS to perform Hold CAS maneuver can be estimated through CAS to TAS conversion

through Eq. 4.21. Similarly, in the Hold Mach maneuver, equivalent true airspeed VTAS

can be stated as:

VTAS =
√

κRThMtgt,cmb, (5.11)

where Th is the air temperature and R is the gas constant.

Thus, the flight path angle γ is the only unknown parameter in Eq. 5.10, and can be

evaluated from the following expression;

Γ =
1
g

(
Tk−Dk

mk
− VTASk+1−VTASk

∆t

)
(5.12)

γk = sin−1
Γ (5.13)

The flight path angle γ is given as;

γ =

{
γmax if sin−1

Γ > γmax or Γ > 1
sin−1

Γ o.w
(5.14)
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Figure 5.6 : Cost function vs. Mach profile for Climb flight template with low and
high CI values

where γmax > 0. To demonstrate the cost management for the Climb, an example test

case where the aircraft climbs to FL210 from FL110 with an initial calibrated airspeed

of 252 kts is simulated. Figure 5.6 shows the relation between the cost function and

Mach number for the two different CI values. The blue curve denotes the cost curve for

a low cost-index (0) and a high cost-index (100) is represented by the orange curve. As

can be seen in the figure, the economic climb Mach number is seen at lower rates for

lower cost-index values. Figure 5.7 illustrates the performed speed profile for CAS/M

climb and level-flight for this scenario. The effect of wind direction is given in Figure

5.8. Figure 5.7 shows that the optimum Mach number Mtgt,cmb has higher values with

a headwind and lower values with a tailwind.

5.3 Descent

In the Descent template, the aircraft starts its descent by adjusting CAS and holding

initial Mach number Minit . It is followed by decreasing Mach number by holding CAS.

After descending to the target altitude hwpt , the aircraft performs steady-level flight.

The objective is to find a proper calibrated airspeed CAS profile that minimizes the

total cost of the trajectory segment where CASmo is the maximum operating calibrated

airspeed.
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Figure 5.7 : CAS and Mach profiles for the example climb action – climbing from
FL170 to FL220
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Figure 5.8 : Wind direction effect on optimum climb Mach Mtgt,cmb
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Mach

CAS

xwpt

LV L

d1 d2

d3

d3

d3

d1 : CAS(t + τCAS) =CAStgt,des,τCAS ∈ [0,τ]
d2 : h(t + τh) = hwpt ,τh ∈ [0,τ]

d3 : xp = xwpt
Figure 5.9 : Descent flight template automaton

CASdescent = {CASi, i ∈ N,CASstall <CASi ≤CASmo}

J(CAStgt,des) = minCAS∈CASdescent J(CAS)

Similar to the Climb template, this template uses the following set of maneuvers;

Sdes = {Hold Mach,Hold CAS,Level Flight},Sdes ⊂ Sm

Switching between these maneuvers is controlled by the Descent automaton, which is

shown in Figure 5.9. Throttle parameter δT is set to δT LIDL(M) rating and calculated at

each step with respect to the Mach number M and atmospheric conditions. This results

in a lower thrust T than the drag force D and the aircraft starts to descent. The flight

path angle γ is computed at each step using the same approach presented in the Climb

section. To prevent a steep descent maneuver, flight path angle γ is restricted to a value

of γmin < 0.

γ =

{
γmin if sin−1

Γ < γmin or Γ <−1
sin−1

Γ o.w
(5.15)

42



260 262 264 266 268 270 272 274 276 278
CAS (kts)

C
I*

τ 
+

 δ
m

Cost Index Effect

 

 
High CI
Low CI

Figure 5.10 : Cost function vs. CAS profile for Descent flight template with low and
high CI values
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Figure 5.11 : Mach and CAS profiles for the descent template – descending from
FL300 to FL260
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Figure 5.12 : Wind direction effect on optimum descent CAS

In order to demonstrate the cost management for the Descent flight template, we

simulate a test case where the aircraft descends from FL300 to FL260 with an initial

Mach number of 0.66. Figure 5.10 shows the relation between the cost function and

CAS value for different CI values. The blue curve represents the low cost-index (0)

while higher cost-index (100) is depicted with the orange curve. As can be seen in

the figure, at the higher cost index, the minimum of the cost function J will be higher,

which means the aircraft can descend to the level-off altitude and continue with a level

flight while maintaining higher CAS values. Figure 5.11 illustrates the speed profile

for M/CAS descend and level-flight for this scenario. The effect of wind direction is

given in Figure 5.12 where the optimum calibrated airspeed CAStgt,des will be higher

with a headwind and will be lower in case of tailwind.

For each flight template, a lateral path controller is employed to generate the

horizontal components for the maneuvers. In order to calculate the control input set

upk+1 depending on the desired bearing χhk+1 ∈ xwpt , the inverse dynamics upk+1 =

f (xk+1,xk,∆t,glim) is employed, where up = [γ,µ]⊂U .

Following section gives 4D Trajectory Planning algorithm which combines local

trajectory segments between the sampled states.
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6. TACTICAL 4D TRAJECTORY PLANNING: CONFLICT DETECTION
AND RESOLUTION

Tactical 4D-trajectory planning is a procedure that spatially explores the airspace for

feasible trajectory segments and provides proper separation with persistent conflict

check and resolution. Such motion-planning problems strongly depend on the

reachability notion due to the dynamic constraints of the aircraft. We suppose that

ground systems can predict future trajectories based on computationally complex

calculations with approximate performance models and airborne systems are obliged

to frequently share information. It is expected that next generation on-board FMSs will

exchange parametric uncertainties for each state through available data links.

Let χ j(t) in Figure 6.1 denote all possible states that can be reached from a state

x j(τ) for any t > τ time without considering obstacles. This estimation of χ j is

derived differently by the ground segment and the on-board FMS due to information

availability.

Suppose that Trajectory Generation Infrastructure of the ground segment has access

to dynamic representations of all types of aircraft, i.e., Aircraft Performance Models

(APM), which is generally given in a ẋ j(t) = f (x j(t),u(t)) form, where x j(t0) = x j,0.

Hence, the set of states χ j that can be reached from a given state x j(τ) within the small

time interval tε > 0 is denoted through the following expression:

χ j(τ + tε) = Rε |
τ+tε

(x j(τ)) f or any τ : [0,∞] and tε > 0. (6.1)

This definition is built on the reachability notion subject to dynamic constraints. A set

of reachable states from z (ε-reachable set) is Rε(z) = {z′ ∈ Z | ∃x ∈ Xz,z′ such that

x(t) ∈Bε(z) ∀t ∈ [0,τ]} satisfies ẋ j(t) = f (x j(t),u(t)). Let Bε(z) be the closed ball

centered at z, which is Bε(z) = {z′ ∈ Z | ||z′−z|| ≤ ε} and ε > 0. If the given dynamic

system is time invariant, then the reachable set grows monotonically, such that:
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Figure 6.1 : Ground perspective: conflict monitoring with flight intent and reachable
sets associated with different performance models.

Rε |
t2
(x j(t1))⊂Rε |

t3
(x j(t1)) f or t1 ≤ t2 ≤ t3. (6.2)

The best practice for the estimation of χ j is to depend on another estimation which will

bound the growth. Let x̂ and x̂ j be the approximate (nominal) linear trajectories of the

ownship and all other aircraft respectively, which is driven from current velocities (seen

in Figure 6.1). It is easy to obtain set of states x̂(τ) and x̂ j(τ) for any τ : [0,∞]. Hence,

Conflict Detection check is done over the path x̂ : [0,T ]→ X such that if a portion of

the path at τ can be reached by any other aircraft with any admissible control input

set u j(τ − tε) ∈U j ⊆ Rm. Let tε > 0 be a small amount of time such that u j(τ − tε)

transforms the state x̂ j(τ− tε) into the set of state χ j(τ) for any τ ∈ [tε ,T ]. If such an

admissible control input set exists, potential loss of separation may occur. Figure 6.1
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Figure 6.2 : Airborne perspective: conflict monitoring with flight intent exchange and
ADS-B.

.

depicts conflict check operation from the ground for non- homogenous airspace that

involves many types of aircraft.

Suppose that in highly-heterogeneous airspace, the APMs for the other aircraft are

not available to the airborne Trajectory Generation Infrastructure of FMS. While the

flight intent provides future projection of the traffic, ADS-B/In (direct communications

from surrounding aircraft) provides frequent and inherently more precise information

about current states of the surrounding aircraft. Suppose that ADS-B/In reception

also provides uncertainty parameters for some states, e.g. horizontal position accuracy

(NACp), horizontal velocity accuracy (NACv), and vertical accuracy (GVA). Their

operational limits are given numerically in [53]. Hence unlike the reachability notion,
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a possible set of states has a known, unbounded probability distribution that can be

represented by a Gaussian distribution with a mean and covariance. Let x̂ j in Figure

6.2 be the linear approximation of the trajectories, depending on the currently available

set of states for all surrounding aircraft, and Px, j(t) be the states’ time-dependent

covariance. That is x̂ j = x̂ j,curr|
t

such that t ∈ [0,T ]. Note that, the x̂ j,curr|
t

depends on

time, since it is recalculated as new ADS-B/In information becomes available. Thus

the potential future set of states χ j estimation for each aircraft is seen as an error

estimation problem by the onboard FMS through following expression:

χ j(τ) = χ j,curr(τ) f or any τ ∈ [0,T ] (6.3)

where χ j,curr are instantaneous Gaussian distribution of the predicted state over the

approximate paths. That is;

χ j,curr(τ)∼ N(x̂ j,curr |
τ

(τ),Px, j(τ)) (6.4)

Similar to the previous path approximation, x̂ j,curr|
t

is the linear approximate

trajectories (seen in Figure 6.2) depending on current ADS-B information share. A

set of states x̂ j,curr(τ) is derived by considering the current velocities for any τ : [0,∞].

Hence, Conflict Detection check is done along the path x̂ : [0,T ]→ X to query whether

a portion of the path at τ , i.e. x̂(τ), can be reached by any other aircraft with their

estimated set of state, i.e. χ j,curr(τ). If this overlap exists, potential loss of separation

may occur. Figure 6.2 demonstrates typical airborne conflict check implementation

with instantaneous ADS-B information availability.

Now we can give a common and generalized definition of loss of separation for both

the ground segment and on-board Trajectory Generation Infrastructure based on own

estimation of the possible future set of states. Thus the following condition indicates

the potential loss of separation such that:

if x̂(αtε) ∈
N⋃
j

χ j(β tε)∪Xobs and α = β

a potential collision occurs around at time t = αtε and an avoidance action is

required before t = αtε − δ tmin_action. Note that α,β ∈ N > 1. The “required

response time” term is defined as the minimum time for creating an appropriate
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response (including comprehending, evaluating, and reacting) to solve the occurring

and evolving situation. The following subsection explains the procedure for generating

trajectories for avoidance and recovery.

6.1 Sampling-based Conflict Resolution

Collision detection is a persistent process in both ground systems and airborne FMS.

Intervention depends on the required action time after detecting a potential collision.

The ground systems, with human operators, mostly monitor potential collisions and

develop potential solutions by modifying flight plans with minimum deviation. If the

required time for action is not enough, immediate action may be needed without the

human operator’s involvement. It is envisioned that, in such a case, the automated

collision avoidance would fully control the aircraft or instruct the pilot.

In order to generate feasible trajectories for a given aircraft model, we chose to

implement the RRT ∗ algorithm proposed in [19] for its asymptotic optimality in

addition to the many other advantages of sampling-based strategies. Asymptotic

optimality means that the solution converges on an optimal solution as the number of

samples approaches infinity (refer to Figure 6.4). The approach provides an open-loop

plan that computes a trajectory projection without considering how future information

will alter the future actions. The main structure of the algorithm is given in the

following pseudo-code:

Algorithm 1: RRT ∗ with Cross-Entropy sampling
1 V ← zinit , E← /0, i← 0, π ← Quantize(FI)
2 while i < N do
3 G← (V,E)
4 xrand ←CE_Sample(π)
5 (V,E)← Extend(G,zrand)
6 π ← Near(G,zgoal, |V |)
7 i← i+1

In this pseudo-code (Algorithm 1), GE_Sample() function returns a sample state by

utilizing Cross-Entropy sampling which is detailed in the following subsection. A

directed graph G = (V,E) is composed of a vertex set V and an edge set E. A

directed path on G is a proper sequence (v1,v2, ...,vn) of vertices such that (vi,vi+1)∈E

∀i ≥ 1. An elite trajectory set π includes edge sequences that can reach the goal. In
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Figure 6.3 : RRT ∗ algorithm solutions are shown after 100, 600 and 1200 vertices
generation respectively.

.

order to immediately build a non-empty set, the elite set n initially involves flight

plan trajectory (FI) which is not conflict-free. The initial probability distribution that

employs cross-entropy sampling employ is set over the quantized states of the reported

flight plan. The Quantize function quantizes the flight plan (FI) into a set of states. The

idea behind of this initialization is that the minimum cost trajectory is most likely to

be near the original flight trajectory. Note that the success of the proposed algorithm

does not strongly depend on this assumption where CE sampling disperses over the

search space until finding a new elite trajectory by adding variance smoothing. We

have slightly modified the RRT ∗ algorithm algorithm to integrate CE sampling.. Near

function in Line 6 (Algorithm 1) collects the edge sequences almost reaching to the

goal state zgoal without considering their costs.

For a given graph G = (V,E) and a point x ∈ X f ree, the function Nearest : (G,x)→ v

returns a vertex v ∈ V that is the closest to the x state in terms of distance. We can

define in a formal description such that Nearest(G,x) = argminv∈V dist(x,v).

The dist function returns the optimal cost of trajectory between two states without

considering obstacles. Hence, dist(x1,x2) = minτ∈R≥0,u∈U J(x) where ẋ(t) =

f (x(t),u(t)) for all t ∈ [0,τ] and x(0) = x1, x(τ) = x2.

We can also define Near function as more generalized form of the Nearest function.

For a given graph G = (V,E), a point x ∈ X f ree and a point d ∈ N, the function Near

: (G,x)→V ′ returns a vertex set such that V ′ ⊆V and for all vertices x′ ∈V ′, satisfies

dist(x′,x)≤ l(d). The distance threshold l(d) is chosen base on a closed ball of volume

γ log(d)/d (refer to [54]) where the γ is an appropriate constant.

Conflict_Free is a Boolean function and returns true if a generated trajectory segment

x(t) lies in X f ree(t) for all t ∈ [0,τ], otherwise returns false. Please recall that X f ree(t) :
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Algorithm 2: Extend()
1 V ′←V , E ′← E
2 znearest ← Nearest(G,z)
3 (xnew,unew,τnew)← Generate(znearest ,z)
4 znew← xnew(τnew)
5 if Con f lict_Free(xnew) then
6 V ′←V ′∪{znew}
7 zmin← znearest
8 Znear← Near(G,znew, |V |)
9 forall the znear ∈ Znear do

10 (xnear,unear,τnear)← Generate(znear,znew)
11 if Con f lict_Free(xnear) and xnear(τnear) = znew then
12 c′← J(znear)+ J(xnear)
13 if c′ < J(znew) then
14 zmin← znear

15 E ′← E ′∪{(zmin,znew)}
16 forall the znear ∈ Znear\{zmin} do
17 (xnear,unear,τnear)← Generate(znew,znear)
18 if Con f lict_Free(xnear) and J(znear)>

J(znew)+ J(xnear) and xnear(Tnear) = znear then
19 zparent ← Parent(znear)
20 E ′← E ′\{(zparent ,znear)}
21 E ′← E ′∪{(znew,znear)}

22 return G′ = (V ′,E ′)

X \Xobs∪Xsep(t), where Xsep(t) denotes set of regions centered at χ j(t) (representing

trajectories of the surrounding aircraft) for all t ∈ [0,τ].

For two states x1,x2 ∈ X , Generate(x1,x2) function returns a terminal time T , required

inputs ∑
m
i=1 ui(t) ∈U and a trajectory segment x(t) : [0,τ]→ X connecting x1 and x2.

Note that, for any ε > 0 and for any two states x1,x2 ∈ X , Generate function satisfies

||x1−Generate(x1,x2)(t)||< ε property for all t ∈ [0,τ].

Here trajectory planning uses local cost-efficient trajectory segment generation that

depends on the Aircraft Performance Model (APM); this is detailed in the previous

section. The optimality guarantee of the algorithm strongly depends on holding the

“additivity” property, i.e. cost function J satisfies J(x1|x2) = J(x1)+ J(x2).

Generally, the RRT ∗ algorithm first extends the nearest neighbour (initially xinit is

the only vertex in the tree) toward the sample (Algorithm 2 – Lines 2-6). However,

it generates a path segment to the xnew from the vertex within Xnear set, incurring
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minimum cost (Algorithm 2 – Lines 7-15). Finally, it extends the new vertex xnew

toward the vertices in Xnear, which can be reached through xnew with a lower cost

(Algorithm 2 – Lines 16-21). For instance, an example run of RRT ∗ is given in Figure

6.3 to demonstrate its asymptotic convergence as the number of sampling increases

through the Halton sequence sampling.

The cost of the minimum trajectory in the RRT ∗ algorithm converges on a robustly

optimal solution J∗, i.e. P({limi→∞Yi = J∗}) = 1, where Yi is the cost of the best

trajectory segment after Extend() procedure is run under following conditions:

Monotonicity: For two path segments x1,x2 ∈ ΣX f ree , let the concatenation of two paths

be x1|x2 ∈ ΣX f ree , then the cost function satisfies J(x1|x2)≥ J(x1).

Additivity: For all x1,x2 ∈ ΣX f ree , the cost function also J satisfies J(x1|x2) =

J(x1)+ J(x2).

Continuity: The cost function J satisfies Lipschitz continuity in the following sense:

there exists a constant κ such that for any two paths x1 : [0, t1]→ X f ree and x2 : [0, t2]→

X f ree, |J(x1)− J(x2)| ≤ sup
τ∈[0,1]

||x1(τt1)− x2(τt2)||.

Local Controllability: Let Bε(z) denote the closed ball centered at z, which is Bε(z) =

{z′ ∈ Z | ||z′− z|| ≤ ε}. Define a set of reachable state from z (ε-reachable set)

Rε(z) = {z′ ∈ Z | ∃x ∈ Xz,z′ such that x(t) ∈Bε(z) ∀t ∈ [0,τ]}

For any state z ∈ X , the set Rε(z) of all states that can be reached from z with a path

(ignoring obstacles) that lies entirely inside the ε-ball centered at z, where ε ∈ R≥0.

This assumption guarantees that aircraft dynamics satisfy this weakened version of

local controllability.

Conflict-free Trajectories: For an optimal and feasible trajectory x∗ : [0,τ]→ X f ree

and a continuous function q : R>0 with limε→0q(ε) = x∗ such that ε ≥ 0

(i) xε is a ε-collision-free path where xε(0) = zinit and xε(τ) ∈ Xarr,

(ii) For z1 = xε(t1) and z2 = xε(t2) such that t1 < t2, then the ball of radius α||z1− z2||n

52



Figure 6.4 : Pseudo-random sampling and asymptotic convergence in RRT ∗ with 40,
120 and 400 samples

centered at z2 is ε-reachable from z1, where α ∈ R>0 is a constant.

Hence, this assumption guarantees the existence of an optimal trajectory considering

differential constraints and spacing between obstacles (including dynamic obstacles

such as aircraft).

The result will be a trajectory with their states and effective time intervals which will

be sent to FMS to control the aircraft. That is:

π(t0 : tend) = {(x0,τ0),(x1,τ1), . . . ,(xend,τend)}. (6.5)

where t0 = τ , τend ≤ tend− tε and surely tcurrent < t0− tmin_action. The tmin_action is the

minimum required time to perform a safe action before the first detected collision. This

decrement ensures that the solution path begins tmin_action in advance.

6.1.1 Importance Sampling with Cross-Entropy

Regarding the sampling strategy, discrepancy and dispersion are two common criteria

to measure uniformity and "quality" of the sampling strategies. Let Z = [0,1]n ∈ Rn

be a n-dimensional unit space to generate sample set where Z = z0, . . . ,zN−1 denotes a

finite set of N n-dimensional points. Let B is a nonempty Lebesgue-measurable subset

in Z and λn denotes n-dimensional Lebesgue measure (or volume), then a general

notion of discrepancy [55] of the P is given as;
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Figure 6.5 : Importance sampling strategy of CE and asymptotic convergence in
RRT ∗ with 40, 120 and 400 samples in RRT ∗

DN(P;B) = sup
B∈B

∣∣∣∣ |P∩R|
N
−λn(B)

∣∣∣∣ . (6.6)

The discrepancy notion can be defined as a quantitative measure of irregularity in the

sampling distribution, in the other words, it measures the largest volume estimation

error [17]. Note that 0≤ DN(P;B)≤ 1 such that limN→∞ DN(P;B) = 0.

For a given n-dimensional unit space X = [0,1]n ∈ Rn and n-dimensional point set

Z = z0, . . . ,zN−1 ∈ Z, the dispersion notion is defined as;

dN(P;Z) = sup
z∈Z

min
0≤n<N

d(z,zn), (6.7)

where d denotes any distance metric, e.g. Euclidean distance. Dispersion can easily

defined as the radius of the largest ball that does not contain any point of P. For any

finite set P of N points following relation between discrepancy and dispersion is given

as (see proof in [55];

dN(P;Z)≤ DN(P;B). (6.8)

This relation shows that the low-discrepancy sampling is also a low-dispersion

sampling, but the converse is not true (e.g. every dense sequence in Z should be

uniformly distributed, which is not true). Dispersion has an obvious relationship

with the optimization that bounds the error for motion planning problems. The lower

bound for any point set P of N point with Sukharev sampling (point set sampling) in
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n dimension is defined as dN(P) ≤ 1
2[N1/n]

in [55]. Note that this is the best possible

point set dispersion, which depends on the dimension and fixed number of points. In

motion planning problems, since the amount of sampling is not known in advance, we

prefer to use the lowest possible discrepancy, hence the lowest dispersion in selecting a

sampling strategy. An example of this is Halton sequence sampling (pseudo-random)

within the RRT ∗ algorithm, which is given in Figure 6.4. The figure demonstrates

the convergence on an optimal trajectory with pseudo-random sample distribution of

RRT ∗ with 40, 120 and 400 number of vertices, respectively.

Sampling performance can be further improved by importance sampling, in which the

sampling distribution over the state space incrementally concentrates on promising

regions. The sampling problem becomes a stochastic optimization problem of finding

a proper sample set that leads the algorithm to the minimum cost trajectory. For

this purpose, we have integrated the CE method. CE is an adaptive algorithm,

first introduced in [56], that estimates probabilities of rare events through variance

minimization. CE uses an iterative procedure that first generates a set of samples

from a specified distribution and then updates associated parameters. This procedure

continues until the distribution of the sample set approaches a delta function. To

integrate CE sampling into the planning algorithm, we closely follow [56].

Let Z ∈ Z ⊂ Rn be a n-dimensional space to generate sample, and f (.;ν) be a

probability density defined on the Z. Consider following estimator;

`= E[H(Z)] =
∫

z
H(z) f (z;ν)dz (6.9)

where H is a measurable function. The problem was originally to find a trajectory

with minimum cost, such that J(z)≤ γ . Suppose that ` ∈ R is very small real number.

Hence, this formalism translates the problem into estimation of rare event probabilities,

that is;

`= Pν(J(z)≤ γ) = Eν [I{J(z)≤γ}] (6.10)

where the I{J(z)≤γ} is 1 if J(z) ≤ γ , 0 otherwise. The use of Monte-Carlo sampling

with low-discrepancy (e.g. Halton sequence) may require a large sampling effort to
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properly estimate `, since {J(z)≤ γ} is a small subset of the entire space, that is, a

rare event. The alternative approach is to use importance-sampling, which generates a

sample from a probability density function g defined by Z. Then estimator ˆ̀ becomes;

ˆ̀=
1
N

N

∑
i=1

I{J(z)≤γ}
f (Zi;ν)

g(Zi)
(6.11)

Let g∗ be the optimal density for g, that is;

g∗(z) =
I{J(z)≤γ} f (z;ν)

`
(6.12)

By applying this density in Eq. 6.11, we get;

`= I{J(z)≤γ}
f (Zi;ν)

g∗(Zi)
, ∀i (6.13)

As seen in Eq. 6.13, g∗ depends on `, which is also unknown. By choosing g in

probability density f (.;ν), the problem becomes determining the optimal parameter

ν , such that distance between g∗ and f (.;ν) is minimal. The Kullback-Leibler (KL)

distance between the two densities g and h, which is the CE between g and h, is defined

as;

D(g,h) =

Eg[ln
g(Z)
h(Z)

] =
∫

z
g(z) lng(z)dz−

∫
z
g(z) lnh(z)dz (6.14)

Minimizing D(g∗, f (.;ν)) with respect to ν is equivalent to solve the following

problem;

argmax
ν

∫
g∗(z) ln f (z;ν)dz (6.15)

Eventually the optimal importance density parameter ν∗ can be evaluated as;

argmax
ν

D(ν) = argmax
ν

E[I{J(z)≤γ} ln f (Z,ν)] (6.16)

A numerical estimation of ν∗ can be obtained by solving following stochastic problem;
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ν̂∗ = argmax
ν

1
N

N

∑
i=1

I{J(z)≤γ} ln f (Zi,ν) (6.17)

where Z1,Z2, . . . ,Zn are i.i.d samples from f (z;ν).

CE optimization transforms the problem into searching for the minimum cost,

i.e. γ∗ = minz∈Z J(z) associated with trajectories. If γ is very close to γ∗, then

f (z;ν∗) accumulates its probability mass around to x∗ such that it approaches to

a delta distribution. In the selection of probabilistic densities, a Gaussian Mixture

Model (GMM) [57] is preferred due to its ability to form smooth approximations

of arbitrarily-shaped sample distributions. For model parameter estimation, the

Expectation-minimization (EM) algorithm, which maximizes the likelihood of the

GMM, is utilized. The selection of GMM component number k is an arbitrary

parameter such that the selection of k depends on the complexity of the environment.

In [32], it is empirically shown that more than four components do not improve the

solution. Future studies may identify the proper k value.

Algorithm 3: CE_Sampling()

1 {γi}|π|i=1← GetCost(π)
2 ind← Sort({γi}N

i=1)
3 πelite← π[ind(ρ : end)]
4 Z← BackTrack(πelite)
5 f (z;ν∗)← GMMFit(Z)
6 ν∗← Smoothing(ν∗)
7 repeat
8 zrand ∼ Sample f (z;ν∗)
9 until Con f lict_Free(z)

10 return zrand

In this pseudo code (Algorithm 3), the CE_Sampling generates a sample state zrand .

GetCost function returns the cost of values γi for each vertex z ∈ π ⊂ V . Remember

that V denotes vertex set in directed graph G = (V,E). Sort() function sorts these cost

values and its elite set is stored in πelite (Algorithm 3 – Line 3). The elite set involves

that the vertices with cost values lower than γρ . In order to build importance sampling

regions, BackTrack function backtracks parents of the elite set of vertices connecting

to the initial state zinit . GMMFit function uses the EM algorithm to estimate the

parameters in Gaussian mixture model for the sample set Z. The Smoothing function

updates parameters of Gaussian mixture model νt−1 to νt , such that:
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ν̂t = αν̃t +(1−α)ν̂t−1 (6.18)

where ν̃t is the parameter found in Eq. 6.16. α ∈ R is the arbitrary smoothing

parameter with 0.7 < α ≤ 1, where α = 1 indicates no-smoothing. The sample

routine picks a conflict-free sample from the constructed distribution (Algorithm 3

– Line 7-10). Figure 6.5 shows convergence rate of the RRT ∗ algorithm, this time

with CE-based importance sampling. Note that, sampling concentrates around the

parametric set of the optimal path as the sample increases.

The convergence rate and the computational effort of the CE sampling in comparison

to pseudo-random sampling (i.e. Halton Sequence) are analyzed, and statistical results

are plotted. Figures 6.6 and Figure 6.7 show an example with a 10X10X10 box

environment, that is, a three-dimensional information space. The results are from

experiments repeated 100 times. The standard deviation in convergence to an optimal

path as the number of sample increases is displayed with the error bars. As seen in

the plot, sampling with CE benefits from importance sampling as it requires a smaller

number of vertices to converge on the optimal solution. The average computational

effort to generate a certain number of vertices is also analyzed. The effort rate

of importance sampling is much less than that of pseudo-random sampling. The

CE sampling requires additional computational effort while the number of samples

increases, as it sorts the samples and shrinks them into an elite set at each iteration.

However, the CE sampling reaches the minimum cost value with less computational

effort as the exponentially growing trend begins after reaching the minimum cost

value. The black indicators in Figure 6.7 show where CE and pseudo-random sampling

methods reach the minimum cost value.
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Figure 6.6 : Trajectory cost convergence with the number of vertices in
pseudo-random sampling and CE sampling

Figure 6.7 : Computational effort with the number of vertices in pseudo-random
sampling and CE sampling
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7. INTEGRATED SIMULATIONS
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Figure 7.1 : Conflict resolution trajectory for the multiple-thread Scenario 1

This section presents the simulation results of some example scenarios. In these

scenarios, we study standard separation problems with multiple aircraft. Trajectory

projections up to ten minutes for the surrounding aircraft are determined through the

reported states, which are updated at ∼ 1 Hz simulation computer. For the sake of

simplicity, we have used a point-mass model for the moving intruder aircraft with

fixed speed and fixed heading profiles. In these scenarios, a Gaussian distribution for

wind is applied with an average wind speed of 7[m/s].
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Figure 7.2 : Trajectory cost convergence curve of CR algorithm for the Scenario 1
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For the separation minimums, we have applied standard horizontal radar separation in

en-route airspace, which is 5 nmi and 2000 vertical ft. These boundaries are shown

as a cylinder around intruder aircraft. Note that these cylinders show positions of the

intruder aircraft at the last second of the simulations. On the other hand, we have

ignored the semicircular (or hemispheric) rule, which applies east–west track split at

certain flight levels, since we instead aim to emulate future airspace, which will most

likely allow self-separation operation and enable self-regulated flight level to increase

capacity.

Table 7.1 : Scenario 1: Flight template and maneuver mode sequence in solution
trajectory

Flight Template Maneuver Sequence Time Interval[sec]
Descent Mach Descent [0, 88.7]

Level Flight [88.7, 142.4]
Climb CAS Climb [142.4, 212.6]

Level Flight [212.6, 323.3]
Climb CAS Climb [323.3, 428.4]

Level Flight [428.4, 498.7]
Cruise Level Thrust Acc. [498.7, 531.8]

Level Flight [531.8, 649.2]
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Figure 7.3 : CAS and Mach profiles of conflict resolution trajectory to the Scenario 1

In the first scenario, shown in Figure 7.1, potential conflicts with multiple aircrafts

are considered. The conflict resolution (CR) algorithm generates a trajectory tracking

descent, climb, and cruise templates as seen in Table 7.1 with their effective time
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Figure 7.4 : Altitude profile of conflict resolution trajectory to the Scenario 1

intervals. Figure 7.2 shows the cost convergence curve of the cross-entropy based

CR algorithm while the number of samples is increasing. Note that, we have chosen

to remove the values for the trajectory cost as it originally depends on the real market

values of fuel per gallon and time-related costs. Specifically, through the maneuver

tree search, the CR algorithm gives a CAS/M Descent first, then climbs to FL300 and

accelerates to economic cruise Mach Mtgt,crz. The maneuver sequence also involves a

lateral component. Note that, the cost index is CI = 50 for this scenario and the entire

maneuver sequence takes approximately 630 seconds. The speed (CAS and Mach) and

altitude profiles with their effective time intervals are given in Figures 7.3–7.4.
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Figure 7.5 : Conflict resolution trajectory for the multiple-thread Scenario 2

In the second scenario, shown in Figure 7.5, similar to Scenario 1, the CR algorithm

generates a cascade climb maneuver to resolve potential conflicts. Note that the cost

index is 50 for this scenario, and the entire maneuver sequence takes approximately

680 seconds. Cost convergence curve of the CR algorithm while the number of
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Figure 7.6 : Trajectory cost convergence curve of CR algorithm for the Scenario 2

sampling increasing is demonstrated in Figure 7.6. Table 7.2 gives the generated flight

templates and maneuvers over the solution trajectory. At the first stage of the climb,

the aircraft increases its Mach number M until it reaches the target altitude hwpt while

maintaining the calibrated airspeed VCAS. This means that the optimum climb Mach

number Mtgt,cmb is the speed at which the aircraft reaches the level-off altitude and the

Hold Mach maneuver is performed instantly. At the second stage of the climb, the

optimum climb Mach number Mtgt,cmb is equal to the aircraft’s initial Mach number

Minit at this point. As can be seen in Figure 7.7, the Hold CAS maneuver is executed

immediately, and the aircraft climbs to the level-off altitude while maintaining its Mach

number M. The altitude profile for the second scenario is illustrated in Figure 7.8.

Table 7.2 : Scenario 2: Flight template and maneuver mode sequence in solution
trajectory

Flight Template Maneuver Sequence Time Interval[sec]
Climb CAS Climb [0, 195.6]

Mach Climb [195.6, 196.1]
Level Flight [196.1, 575.1]

Climb CAS Climb [575.1, 611.5]
Level Flight [611.5, 678.0]

The third scenario, shown in Figure 7.9, simulates another dense en-route airspace.

The cost index is 50 for this scenario, and the entire maneuver sequence takes

approximately 570 seconds. The trajectory planning algorithm generates a single

Climb action with its maneuver sequences as shown in Table 7.3. Cost convergence

curve of the CR algorithm while the number of sampling increasing is demonstrated in

Figure 7.10. The aircraft starts to climb from FL240 to FL350 with an initial calibrated
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Figure 7.7 : CAS and Mach profiles of conflict resolution trajectory to the Scenario 2
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Figure 7.8 : Altitude profile of conflict resolution trajectory to the Scenario 2
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Figure 7.9 : Conflict resolution trajectory for the multiple-thread Scenario 3

airspeed of 263 kts. After approximately 5 minutes, the automaton switches to the Hold

Mach maneuver and the aircraft starts to climb while maintaining the optimum climb

Mach number Mtgt,crz = 0.75 until it reaches to the target altitude hwpt . The generated

speed and altitude profile of the aircraft is given in Figures 7.11–7.12.
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Figure 7.10 : Trajectory cost convergence curve of CR algorithm for the Scenario 3
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Figure 7.11 : Speed profiles of conflict resolution trajectory to the third scenario

In addition to these scenarios, to demonstrate the real-time applicability of the method,

we have run recurrent simulations with the same sampling number (e.g. 200 vertices)

and obtained computation times for the different scenarios with different numbers

of aircraft. Average computation times were obtained for 100 runs performed with

a 2.67 GHz processor and 8 GB RAM. The results are given in Table 7.4. Note

that computation efforts show that the proposed method is favorable for real-time

applications even for a highly complex multi-aircraft separation.

For operational demonstration, we have integrated proposed CDR algorithm into the

developed conceptual decision support tools that are briefly explained in Introduction

section. These trajectories might be generated by the ground systems and transferred

through the data links, or by the onboard system of the aircraft. A screenshot from

4D Operational Display (4DOD), which is deployed in B737-800 Flightdeck testbed

(seen in 1.1) and providing visual understanding for the flight trajectory, is given in
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Figure 7.12 : Altitude profile to the third scenario

Table 7.3 : Scenario 3: Flight template and maneuver mode sequence in solution
trajectory

Flight Template Maneuver Sequence Time Interval[sec]
Climb CAS Climb [0, 319.6]

Mach Climb [319.6, 344.8]
Level Flight [344.8, 506.4]

Figure 7.13 : A screenshot from 4D Operational Display (4DOD) illustrating initial
(red), updated (green) and intruder aircraft’s (dark blue) trajectories

Table 7.4 : Average CDR computation times for different multiple-thread scenarios

Num. of a/c 1 2 3 5 10 20
time (sec) 3.57 4.07 6.93 8.59 16.18 24.39

Figure 7.13. This screenshot that shows initial descent (in the solution trajectory) is

taken while running the simulation for Scenario 1.
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8. CONCLUSION

In this project, I have presented a theoretical framework for in-tactical 4D-trajectory

generation and shown that an aircraft equipped with automated tools can achieve

airborne self-separation. The proposed framework can also be easily extended to

strategic planning problems. The proposed structure involves a demonstrably optimal

sampling-based algorithm (RRT ∗) with an embedded cross-entropy strategy and

multi-mode local trajectory optimization. The cost-efficient modal trajectory segment

generation utilizes advanced aircraft performance model and relies on BADA 4.

As local planners, we have developed a flight template automaton with cruise,

climb and descent templates. Each template employs its own approximate trajectory

optimization method. These templates utilized the lower-level maneuver mode

automatons, which involve predefined maneuver mode sequences. The parametric

model of these maneuver modes uses advanced aircraft performance description based

on BADA 4. This local trajectory-generation algorithm provides a control input

sequence for a feasible trajectory segment, which is structured to be compatible with

the formal language of current flight management systems (FMS). Thus, we have

envisioned extending the proposed method to negotiation-based separation assurance

through a data link.

As the main contribution of the paper is to adding proper importance-sampling utilizing

flight plans and directly mapping the stoctachic planning method into the completely

realistic problem, we have compared the proposed method with the standard RRT*

algorithm using pseudo-random sampling, which is the closer method (most popular

as well) to our fashion. The planning algorithm RRT ∗ utilizes the local trajectory

segment generation and instinctively embeds the stochastic nature of events, which

are inherent in air traffic realm, e.g. unpredictable weather conditions and uncertain

aircraft movements. It guarantees asymptotic optimality under certain conditions. Its

probabilistic search routine rapidly explores the airspace through the local trajectory

segment generation, which employs flight template and maneuver mode automatons.
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We have replaced the standard random (or quasi-random) sampling generation routine

with the CE method in order to benefit from its importance-sampling strategy based

on stochastic optimization. We have run our empirical analyses so that CE rapidly

converges on the optimal sampling set with a small number of vertices. We have

demonstrated that these algorithms can be implemented in realistic multi-threat

simulations and also provided average computational efforts for these multi-threat

scenarios.

In future research, we are planning to extend the CDR algorithm to an entirely

collaborative approach so that aircraft exchange their flight intents to provide enhanced

situational awareness. Moreover, we will further improve the maneuver automatons to

cover the full flight envelope of the aircraft and consider rare behaviors.
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E-Mail: uzunm@itu.edu.tr

B.Sc.: Aeronautical Engineering, 2013

B.Sc.: Control and Automation Engineering, 2015

M.Sc.: Aeronautical and Astronautical Engineering

PUBLICATIONS/PRESENTATIONS ON THE THESIS

Uzun M., Guner G., Koyuncu E. and Inalhan G., Integrated Flight Deck Testbed
with Next Generation Visual Decision Support Tools, 6th International Conference on
Research in Air Transportation, May 2014

Uzun M., Guner G., Koyuncu E. and Inalhan G., Flight Deck Centered 4D Trajectory
Planning and Collision Avoidance with Flight Envelope Sampling, International
Conference on Application and Theory of Automation in Command and Control
Systems, September 2015

Koyuncu E., Uzun M. and Inalhan G., Cross-Entropy Based 4D Trajectory
Generation for Airborne Conflict Resolution, Journal of Aerospace Engineering,
(Accepted)

Panel Participant, "Flight Deck Centered Tactical Trajectory Planning", BADA User
Conference, Boeing East Headquarters, Washington DC, September 2015

79


