2 research outputs found

    Machine Learning Methods for Product Quality Monitoring in Electric Resistance Welding

    Get PDF
    Elektrisches Widerstandsschweißen (Englisch: Electric Resistance Welding, ERW) ist eine Gruppe von vollautomatisierten Fertigungsprozessen, bei denen metallische Werkstoffe durch WĂ€rme verbunden werden, die von elektrischem Strom und Widerstand erzeugt wird. Eine genaue QualitĂ€tsüberwachung von ERW kann oft nur teilweise mit destruktiven Methoden durchgeführt werden. Es besteht ein großes industrielles und wirtschaftliches Potenzial, datengetriebene AnsĂ€tze für die QualitĂ€tsüberwachung in ERW zu entwickeln, um die Wartungskosten zu senken und die QualitĂ€tskontrolle zu verbessern. Datengetriebene AnsĂ€tze wie maschinelles Lernen (ML) haben aufgrund der enormen Menge verfügbarer Daten, die von Technologien der Industrie 4.0 bereitgestellt werden, viel Aufmerksamkeit auf sich gezogen. Datengetriebene AnsĂ€tze ermöglichen eine zerstörungsfreie, umfassende und prĂ€zise QualitĂ€tsüberwachung, wenn eine bestimmte Menge prĂ€ziser Daten verfügbar ist. Dies kann eine umfassende Online-QualitĂ€tsüberwachung ermöglichen, die ansonsten mit herkömmlichen empirischen Methoden Ă€ußerst schwierig ist. Es gibt jedoch noch viele Herausforderungen bei der Adoption solcher AnsĂ€tze in der Fertigungsindustrie. Zu diesen Herausforderungen gehören: effiziente Datensammlung, die dasWissen von erforderlichen Datenmengen und relevanten Sensoren für erfolgreiches maschinelles Lernen verlangt; das anspruchsvolle Verstehen von komplexen Prozessen und facettenreichen Daten; eine geschickte Selektion geeigneter ML-Methoden und die Integration von DomĂ€nenwissen für die prĂ€diktive QualitĂ€tsüberwachung mit inhomogenen Datenstrukturen, usw. Bestehende ML-Lösungen für ERW liefern keine systematische Vorgehensweise für die Methodenauswahl. Jeder Prozess der ML-Entwicklung erfordert ein umfassendes Prozess- und DatenverstĂ€ndnis und ist auf ein bestimmtes Szenario zugeschnitten, das schwer zu verallgemeinern ist. Es existieren semantische Lösungen für das Prozess- und DatenverstĂ€ndnis und Datenmanagement. Diese betrachten die Datenanalyse als eine isolierte Phase. Sie liefern keine Systemlösungen für das Prozess- und DatenverstĂ€ndnis, die Datenaufbereitung und die ML-Verbesserung, die konfigurierbare und verallgemeinerbare Lösungen für maschinelles Lernen ermöglichen. Diese Arbeit versucht, die obengenannten Herausforderungen zu adressieren, indem ein Framework fĂŒr maschinelles Lernen für ERW vorgeschlagen wird, und demonstriert fünf industrielle AnwendungsfĂ€lle, die das Framework anwenden und validieren. Das Framework ĂŒberprĂŒft die Fragen und DatenspezifitĂ€ten, schlĂ€gt eine simulationsunterstützte Datenerfassung vor und erörtert Methoden des maschinellen Lernens, die in zwei Gruppen unterteilt sind: Feature Engineering und Feature Learning. Das Framework basiert auf semantischen Technologien, die eine standardisierte Prozess- und Datenbeschreibung, eine Ontologie-bewusste Datenaufbereitung sowie halbautomatisierte und Nutzer-konfigurierbare ML-Lösungen ermöglichen. Diese Arbeit demonstriert außerdem die Übertragbarkeit des Frameworks auf einen hochprĂ€zisen Laserprozess. Diese Arbeit ist ein Beginn des Wegs zur intelligenten Fertigung von ERW, der mit dem Trend der vierten industriellen Revolution korrespondiert

    Service Abstractions for Scalable Deep Learning Inference at the Edge

    Get PDF
    Deep learning driven intelligent edge has already become a reality, where millions of mobile, wearable, and IoT devices analyze real-time data and transform those into actionable insights on-device. Typical approaches for optimizing deep learning inference mostly focus on accelerating the execution of individual inference tasks, without considering the contextual correlation unique to edge environments and the statistical nature of learning-based computation. Specifically, they treat inference workloads as individual black boxes and apply canonical system optimization techniques, developed over the last few decades, to handle them as yet another type of computation-intensive applications. As a result, deep learning inference on edge devices still face the ever increasing challenges of customization to edge device heterogeneity, fuzzy computation redundancy between inference tasks, and end-to-end deployment at scale. In this thesis, we propose the first framework that automates and scales the end-to-end process of deploying efficient deep learning inference from the cloud to heterogeneous edge devices. The framework consists of a series of service abstractions that handle DNN model tailoring, model indexing and query, and computation reuse for runtime inference respectively. Together, these services bridge the gap between deep learning training and inference, eliminate computation redundancy during inference execution, and further lower the barrier for deep learning algorithm and system co-optimization. To build efficient and scalable services, we take a unique algorithmic approach of harnessing the semantic correlation between the learning-based computation. Rather than viewing individual tasks as isolated black boxes, we optimize them collectively in a white box approach, proposing primitives to formulate the semantics of the deep learning workloads, algorithms to assess their hidden correlation (in terms of the input data, the neural network models, and the deployment trials) and merge common processing steps to minimize redundancy
    corecore