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Kurzfassung

Elektrisches Widerstandsschweißen (Englisch: Electric Resistance Weld-
ing, ERW) ist eine Gruppe von vollautomatisierten Fertigungsprozessen,
bei denen metallische Werkstoffe durch Wärme verbunden werden, die
von elektrischem Strom und Widerstand erzeugt wird. Eine genaue
Qualitätsüberwachung von ERW kann oft nur teilweise mit destruktiven
Methoden durchgeführt werden. Es besteht ein großes industrielles
und wirtschaftliches Potenzial, datengetriebene Ansätze für die Qualitäts-
überwachung in ERW zu entwickeln, um die Wartungskosten zu senken
und die Qualitätskontrolle zu verbessern. Datengetriebene Ansätze wie
maschinelles Lernen (ML) haben aufgrund der enormen Menge verfügbarer
Daten, die von Technologien der Industrie 4.0 bereitgestellt werden, viel
Aufmerksamkeit auf sich gezogen. Datengetriebene Ansätze ermöglichen
eine zerstörungsfreie, umfassende und präzise Qualitätsüberwachung, wenn
eine bestimmte Menge präziser Daten verfügbar ist. Dies kann eine
umfassende Online-Qualitätsüberwachung ermöglichen, die ansonsten mit
herkömmlichen empirischen Methoden äußerst schwierig ist.

Es gibt jedoch noch viele Herausforderungen bei der Adoption solcher
Ansätze in der Fertigungsindustrie. Zu diesen Herausforderungen gehören:
effiziente Datensammlung, die das Wissen von erforderlichen Datenmengen
und relevanten Sensoren für erfolgreiches maschinelles Lernen verlangt;
das anspruchsvolle Verstehen von komplexen Prozessen und facettenreichen
Daten; eine geschickte Selektion geeigneter ML-Methoden und die Integra-
tion von Domänenwissen für die prädiktive Qualitätsüberwachung mit in-
homogenen Datenstrukturen, usw.
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Bestehende ML-Lösungen für ERW liefern keine systematische Vorge-
hensweise für die Methodenauswahl. Jeder Prozess der ML-Entwicklung
erfordert ein umfassendes Prozess- und Datenverständnis und ist auf ein
bestimmtes Szenario zugeschnitten, das schwer zu verallgemeinern ist.
Es existieren semantische Lösungen für das Prozess- und Datenverständ-
nis und Datenmanagement. Diese betrachten die Datenanalyse als eine
isolierte Phase. Sie liefern keine Systemlösungen für das Prozess- und
Datenverständnis, die Datenaufbereitung und die ML-Verbesserung, die
konfigurierbare und verallgemeinerbare Lösungen für maschinelles Lernen
ermöglichen.

Diese Arbeit versucht, die obengenannten Herausforderungen zu
adressieren, indem ein Framework für maschinelles Lernen für ERW
vorgeschlagen wird, und demonstriert fünf industrielle Anwendungsfälle,
die das Framework anwenden und validieren. Das Framework überprüft die
Fragen und Datenspezifitäten, schlägt eine simulationsunterstützte Datener-
fassung vor und erörtert Methoden des maschinellen Lernens, die in zwei
Gruppen unterteilt sind: Feature Engineering und Feature Learning. Das
Framework basiert auf semantischen Technologien, die eine standardisierte
Prozess- und Datenbeschreibung, eine Ontologie-bewusste Datenaufberei-
tung sowie halbautomatisierte und Nutzer-konfigurierbare ML-Lösungen
ermöglichen. Diese Arbeit demonstriert außerdem die Übertragbarkeit des
Frameworks auf einen hochpräzisen Laserprozess.

Diese Arbeit ist ein Beginn des Wegs zur intelligenten Fertigung von
ERW, der mit dem Trend der vierten industriellen Revolution korre-
spondiert.
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Abstract

Electric Resistance Welding (ERW) is a group of fully automated manu-
facturing processes that join metal materials through heat, which is gener-
ated due to electric current and resistance. Precise quality monitoring of
ERW can often be performed only partially by using destructive methods.
There is huge industrial and economical potential to develop data-driven
approaches for quality monitoring in ERW, to reduce maintenance cost and
improve quality control. Data-driven approaches, such as Machine Learning
(ML), have attracted much attention due to the enormous amount of avail-
able data provided by technologies of Industry 4.0. Data-driven approaches
allow non-destructive, all-covering and precise quality monitoring if a cer-
tain amount of precise data are collected. This can enable large-scale and
online quality monitoring that are otherwise extremely difficult through tra-
ditional empirical methods.

However, there remain many challenges of adoption of such approaches
in manufacturing industry. These challenges include: adequate data collec-
tion which requires knowledge of necessary data amount and relevant sen-
sors for successful machine learning; understanding of sophisticated process
and multi-faceted data and efficient data management; selection of machine
learning methods and integration of domain knowledge for predictive qual-
ity monitoring with inhomogeneous data structures, etc.

Existing ML solutions for ERW do not provide systematic approaches for
method selection. Each process of ML development requires extensive pro-
cess and data understanding and is tailored to a specific scenario, thus diffi-
cult to generalise. There exist semantic solutions for process understanding,
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data understanding and management. These solutions consider data analysis
as several isolated stages. They do not provide system solutions for process
and data understanding, data preparation, and ML enhancement that allows
configurable and generalisable machine learning solutions.

This work strives to address these challenges by proposing a framework
of machine learning for ERW and demonstrates five industrial use cases that
apply and evaluate the framework. The framework revisits the questions
and data particularities, suggests simulation-aided data collection, discusses
machine learning methods organised in two groups, feature engineering and
feature learning, and relies on semantic technologies to allow standardised
process and data understanding, ontology-aware data preparation, and semi-
automated and user-configurable machine learning solutions.

Furthermore, this work also applies the same framework on another man-
ufacturing process with a use case: the high-precision laser process, to
demonstrate the transferability of the framework.

This work starts the journey towards a more intelligent manufacturing,
which will merge to the grand trend of the Fourth Industrial Revolution
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1 Introduction

1.1 Background and Motivation

Manufacturing industry has long been playing an important role in eco-
nomic growth and employment in Germany and worldwide. The term man-
ufacturing can be generally understood as transformation of material inputs

and immaterial inputs into new products [1, 2]. It is the main contributor to
innovation, exports and productivity growth [3]. In 2017, manufacturing
industry contributes to about 30% economic growth in Germany and world-
wide (Figure 1.1), over 90% to export, 65% to innovation, and 40% to pro-
ductivity growth in the 24 countries (Table 1.1). Manufacturing is especially
important for Germany, as Germany is one of the leading export countries
in the world [4]. Productivity describes the rate at which goods and services
are produced [5, 6], and is important to a country’s living-standard [5] and
economic well-being [7].

Figure 1.1: GDP by sectors in Germany and worldwide [8, 9]
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1 Introduction

Table 1.1: Contribution of each sector (percent) of 24 countries in OECD for 2000-14 [10]

Therefore, many major economies have initiatives to foster the develop-
ment of manufacturing industry [11]. Among which, Industry 4.0, first ini-
tiated by the German government [12], is also increasingly affecting Euro-
pean policy [11]. The term Industry 4.0, coined by Kagermann in 2011, rep-
resents the fourth industrial revolution [13]. It results from the introduction
of the Internet of Things and Services into the manufacturing environment
[14]. The Internet of Things (IoT) is defined as a global infrastructure

enabling advanced services by interconnecting (physical and virtual) things

based on existing and evolving interoperable information and communica-

tion technologies [15]. Kagermann describes Industry 4.0 in the way that
smart machines, storage systems and production facilities will be incorpo-

rated into an aggregate, called Cyber-Physical Systems (CPS) [14, 16]. The
resulting Smart factory is a production solution that integrates networked
manufacturing systems and products to enable flexible and agile production
[17] to meet individual customer requests [14].

According to these definitions and descriptions, this work understands In-
dustry 4.0 as a series of profound changes towards to omniscient sensoring,
ubiquitous connecting, and decentralised, intelligent information processing
in manufacturing industry.

There exist various surveys for key technologies required for Industry 4.0
and Internet of Things (IoT) [18, 14, 19, 20]. This work summarises these
research requirements in a non-comprehensive list from a data-centric view:

1. Sensor technology enabling data collection

2



1.1 Background and Motivation

2. Communication technology facilitating data exchange between devices

3. Computational technology providing sufficient computational power
and intelligent data processing algorithms

4. Actuator technology meaningfully transforming data into machine ac-
tion

Machine Learning, categorised into computational technology, is one of
the key technologies of Industry 4.0 [21, 11, 22]. Machine learning provides
intelligent data processing algorithms. In manufacturing, it has created new
intelligent tools for automatic information extraction and knowledge discov-
ery [23, 24], which are important for practices like root cause identification
or decision-making [25]. A big data problem arises because an unprece-
dented amount of data are collected in manufacturing industry nowadays
[26]. The resulting "4Vs" requirements need to be addressed: Volume, Ve-

locity, Variety, Veracity (Authenticity) [27, 28].
In an Industrial 4.0 scenario, voluminous data are collected through in-

terconnected devices, which by themselves possess a certain degree of pro-
cessing power. The large amount of data are stored in a central or distributed
database, and then centrally or distributedly processed by some intelligent
algorithms, to extract organised information and systematic rules, which
culminate as "knowledge" learned from the data, enabling machine guided
process optimisation, namely machine learning. The key differences be-
tween the human guided process optimisation and machine guided process
optimisation lies thereupon, that the machine guided process optimisation
is not explicitly programmed, and requires no or little manual effort in de-
signing all the optimisation parameters and even procedures. Instead, the
process of optimisation, or learning in another word, happens in an at least
partially automatic way. Yet, no machine learning method is able to build
a technologically meaningful information processing from an unstructured
dataset on its own. Each application domain needs to be analysed and then
appropriate machine learning processes can be designed.

3
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Electric Resistance Welding (ERW), widely applied in automotive pro-
duction, is a typical automatic manufacturing process with inhomogeneous
data structures as well as statistical and systematic dynamics [29]. Qual-
ity monitoring is to estimate or predict the quality characterised by some
categorical or numerical values. It is an essential task in ERW as well as
in manufacturing (Other tasks include process development and optimisa-
tion, etc.). There exists huge industrial and economic potential to develop
data-driven approaches, especially machine learning approaches, for quality
monitoring in ERW, to reduce maintenance cost and improve quality con-
trol. Machine learning approaches are non-destructive and can potentially
monitor the quality of all welding processes. Recently many ML-tools [30]
have become available thanks to extensive research in this area.

The central question of this thesis is to identify challenges of developing
machine learning approaches for quality monitoring in ERW and to explore
solutions to them.

The rest of this chapter is organised as follows. Section 1.2 introduces the
electric resistance welding process and summarises the typical difficulties
in this field. Section 1.3 gives a short overview of machine learning and
ontology background knowledge necessary for this work. Section 1.4 takes
a glance at recent development of machine learning in manufacturing to see
if there exist similar challenges and solutions in other manufacturing fields,
and narrows the scope step by step from manufacturing in general, to condi-
tion monitoring, metal welding technology, and electric resistance welding.
Section 1.5 derives the open questions in the field of machine learning in

electric resistance welding by translating the difficulties in Section 1.2 and
partially adapting the challenges in previous studies in Section 1.4. Sec-
tion 1.6 decomposes the central question into sub-objectives and lists the
organisation of the thesis.
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1.2 Electric Resistance Welding

(a) (b)
Figure 1.2: (a) RSW as an example of ERW. The current I flows through the welding zone

and results in a spot-form connection [29]
(b) Measuring the welding spot diameter by tearing the welded worksheets
apart [29].

1.2 Electric Resistance Welding

This section first gives a short description of the ERW process [31] (Section
1.2.1), then introduces state-of-the-art of process development, monitoring
and maintenance in ERW (Section 1.2.2), and at the end summarises the
typical difficulties (Section 1.2.3).

1.2.1 Description of Electric Resistance Welding Process

Electric resistance welding (ERW) is a group of welding processes with

pressure in which the heat necessary for welding is produced by resistance

to an electrical current flowing through the welding zone [32]. The welding
zone is between the electrodes (Figure 1.2), including the small volume of
worksheets and their contacting surface. After the welding process, a con-
nection will be formed in the contact areas. The connection can have the
form of e.g. spots (Resistance Spot Welding, RSW) or wire-hook joint (Hot
Staking, HS).

In industrial practice, ERW is ubiquitously applied. The wide application
of the ERW is the result of numerous advantages of ERW, including mini-
mal deformation of the welded products, excellent chemical and mechanical
properties of the welding areas, time- and energy-efficiency, high degree of
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automation, etc. However, there still exist many difficulties in ERW (Section
1.2.3).

1.2.2 State-of-the-art of Process Development, Quality
Monitoring, and Maintenance in ERW

To understand the central question of quality monitoring in ERW, it is neces-
sary to understand a general process pipeline in ERW (Figure 1.3). The raw
products, such as chassis for RSW and electric motors for HS, are trans-
formed into products by a welding process. The welding process is con-
trolled by a welding control, normally an adaptive control, which forces the
actual process variables, such as process curves of current, voltage, to follow
predefined values or profiles named as setpoints or reference curves. The
welding control also constantly collects measurement data from the process,
and compares these measurements with the references stored in the adaptive
control, to give estimations of quality indicators. Quality indicators describe
quality, which is the degree to which a set of inherent characteristics fulfils

Figure 1.3: A general process pipeline for electric resistance welding. Thick arrows indicate
material and energy flow. Thin arrows indicate information flow.
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1.2 Electric Resistance Welding

requirements [33]. The references of quality indicators are obtained in pro-
cess development, where a certain number of manufacturing operations are
carried out without the adaptive control. Some of these operations, whose
quality indicators are estimated as good, are selected for determining the
references.

Quality monitoring assesses various quality indicators. Some quality in-
dicators are measured (QImeas), including e.g. welding spot diameter for
RSW [34, 35] or tensile shear strength (TSS) for both RSW and HS. For
these two, relatively precise measurements can only be obtained through
destructive methods (Figure 1.2b). In automotive industry, this means tear-
ing the welded chassis apart. There also exist non-destructive methods to
measure them, like ultrasonic and X-ray tests in RSW, but these methods
also cause problems in terms of costs and facilities [36, 37], and are there-
fore only used for random samples [38]. Since the measured quality indi-
cators are very costly, some empirical quality indicators (QIemp) are devel-
oped, which are estimated through comparing references and measurements.
Their expected behaviour is to be stable around a setpoint pre-defined by the
welding program. The empirical quality indicators can reflect the measured
quality indicators in most cases, but their correspondence is not perfect.

Measured quality indicators QImeas and the estimated empirical value
QIemp both are assumed to follow Gaussian distribution (Figure 1.4). These
empirical quality indicators are monitored according to principles of Statis-

tical Process Control (SPC) [39]. A process is capable if it adheres to the

tolerance specifications defined with respect to the evaluated quality char-

acteristics [40], quantified by process capability indices, such as those in
Equation (1.1). In the equation, UT L and LT L represent upper tolerance

limit and lower tolerance limit (determined by experiments or empirically
by process development engineers), respectively. µ̂ and σ̂ stand for the
mean and standard deviation (estimated from samples) of the quality indi-
cators to be characterised. These indices evaluate the probability that the
quality indicators lie in the tolerance limits, compared to a baseline of 6σ
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Figure 1.4: Two-dimensional Gaussian distribution (6σ area is drawn within an eclipse)
of measured quality indicators QImeas and empirical quality indicators QIemp.
UT Lmeas and LT Lmeas stand for the upper tolerance limit and lower tolerance limit
of the QImeas; UT Lemp and LT Lemp stand for the estimated upper tolerance limit
and lower tolerance limit for QIemp. The intersection area of the rectangle with
thick dashed lines is the area of True Positive (TP), where the QIemp as well as the
QImeas lie within the respective tolerance bands. The other areas are False Positive
(FP), False Negative (FN), and True Negative (TN) (Table 1.2). In the figure only
the TP/FP/TN/FN for exceeding the UTL are drawn.

(a probability of 99.73%). The bigger Ĉp,Ĉpk are, the more probable the
quality indicators lie in the tolerance limits.

Ĉp =
UT L−LT L

6σ̂

Ĉpk =
min(UT L− µ̂, µ̂−LT L)

3σ̂

(1.1)

There exist four cases of whether QIemp deviates from QImeas, represented
by a confusion matrix (Table 1.2). False Negative (FN) means a product
of good quality is estimated to be of poor quality, which is a waste of pro-
duction. False Positive (FP) means a product of poor quality is estimated
to be of good quality, which is undetected quality failure. FP is normally
much worse than FN, because FN is merely a waste of time and resource,
but quality failure in e.g. vehicles could cause severe accidents.

Process maintenance in ERW include regular maintenance and main-
tenance in case of quality failure. The former one is needed because the
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1.2 Electric Resistance Welding

Table 1.2: Confusion matrix of estimated value and predicted value

electrodes directly touching the parts wear due to e.g. oxidation, material
sticking, etc. Common regular maintenance can be e.g. Dressing [41], that
is to remove a thin surface layer of the electrodes to restore the surface con-
dition, or that the electrodes will be changed when dressing is not working
anymore. The regular maintenance is currently performed with a fixed pe-
riod. In case a quality failure is detected by the adaptive control, the whole
production line will be stopped and necessary manual interference is needed,
causing enormous economic loss.

1.2.3 Typical Difficulties in Electric Resistance Welding

To achieve successful quality monitoring in ERW, many questions and dif-
ficulties need to be solved. This work summarises these difficulties in two
aspects.

A priori knowledge problems are problems of limited domain knowledge.

• Empirically understood process. There exist many effects that are limitedly
and empirically understood, e.g. contact resistance between electrodes and
worksheets, strong electric-magnetic interferences, and empirical quality
indicators. Their mechanism and influence on quality can therefore not
thoroughly described with domain knowledge.

• Systematic variance. The systematic variance is caused by systematic
change of welding conditions, e.g. the wearing effect of electrodes through
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time, system and environmental temperature change. The mechanism of
how these changes influence welding is limitedly understood.

• Unknown discrepancy between process development and deployment. The
references of quality indicators are obtained in process development, but the
conditions are often different to real production conditions. This discrep-
ancy may cause a discrepancy between the quality of process deployment
and the quality of process development.

Data problems are problems of lacking of data.

• Partial coverage of quality monitoring. Measured quality indicators re-
quire destructive methods like tearing the welded products apart, or non-
destructive methods like X-ray or ultrasonic test. These methods are only
carried out sample-wise on the products and data of measured quality
indicators are mostly unavailable. A full-coverage quality monitoring is
needed.

• Expensive data acquisition. Both destructive methods that destroy the prod-
ucts and non-destructive methods that require extra X-ray or ultrasonic
equipment are extremely expensive. Moreover, extra sensor measurements
that can potentially improve quality monitoring are also costly and there-
fore not available in production.

• Data variety. Data collected from multiple sources have various differ-
ences. Production data are generated by multiple versions of production
systems due to user individualisation. Laboratory or simulation data of-
ten contain more sensor measurements and are stored with various formats,
variable names, sampling frequency, etc.

• Statistic variance. The statistic variance is the result of multiple uncon-
trollable variables, e.g. different properties of raw products that are manu-
factured by different suppliers in multiple production batches, despite that
they are nominally identical.
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To address or partially solve these difficulties, this thesis suggests using
Machine Learning, which is a data-driven approach, limiting the cost, and
has great modelling power for complicated problems. Only after properly
translating the difficulties in ERW and manufacturing to questions in ma-
chine learning (Section 1.5), it becomes possible to develop machine learn-
ing approaches.

1.3 Introduction to Machine Learning and
Ontology

The term machine learning (ML) was coined by Samuel in 1952 [42].
From a handful of engineering practices and statistics, machine learning
has developed into a broad discipline both rich in applications and theory
[43]. There exist different definitions or descriptions for machine learn-
ing and data mining [44, 45, 46]. One common understanding of machine
learning (ML) is using statistical theory in building mathematical models

to enable computers to make inference from data without being explicitly

programmed [46, 47]. This seems to emphasise the modelling aspect men-
tioned in the definition of data mining, the complete process of data collec-

tion, preparation, preprocessing, modelling and interpretation [48]. Since
modelling would be not possible or meaningful without the other steps, es-
pecially in manufacturing, data mining and machine learning in this work
are treated as having the same meaning. In the following text, only the term
machine learning will be used. Machine learning, in a higher view, is a pro-

cess of extracting information and learning knowledge from data, to support

decision-making, and in the long-term to form knowledge and wisdom (Fig-
ure 1.5) [48, 49].
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Figure 1.5: Pyramid of data mining: extracting information from data, learning knowledge
from information, and achieving wisdom with knowledge [49]

The pre-requisite of successful machine learning practice is a good ques-
tion definition in the specific domain and a meaningful transformation of
the question into mathematical representation [48] (question definition in
machine learning). Figure 1.6 shows a typical workflow of machine learn-
ing. The question can be defined before or after data collection.

Data collection is the process of collecting raw data. This process could
be measuring of some physical quantities manually, or by sensors, cameras,
etc. Raw data are collected in various formats, e.g. csv files, txt files, SQL
databases.

Data preparation is the process of merging different sources of data into
one uniform format, possibly also changing their naming, to facilitate vi-
sualisation or analysis. Until this step, the statistic properties of data are
unchanged.

Data preprocessing and modelling are two deeply intertwined steps.
Data preprocessing is to change the representation of data so that it can be
used by the subsequent machine learning algorithms. Common data prepro-
cessing procedures are feature extraction, selection, normalisation, etc. The
statistic properties of data will be changed in this step. Modelling is to use
machine learning algorithms, ranging from classic machine learning meth-
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Figure 1.6: A typical machine learning workflow [44, 50, 51]. The question can be defined
before or after data collection.

ods to complicated neural networks, to extract statistic regularities from the
input data and make predictions.

Interpretation of results is to combine the results delivered by data anal-
ysis and problem-specific domain knowledge and its mathematical formu-
lation, to evaluate and visualise the meanings of the results to support
decision-making.

Significant effort of machine learning flows into data preprocessing so that
the resulting data representation or features [52] can facilitate effective ma-
chine learning modelling [53, 54]. The choice of feature extraction meth-
ods, which can be categorised into two groups, feature engineering (Section
1.3.1) and feature learning (Section 1.3.2), greatly impact the choice of the
subsequent machine learning algorithms.

From this point of view, machine learning approaches can be largely di-
vided into two groups [51]:
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• feature engineering + classic machine learning algorithms;
• feature learning + neural networks, or more commonly known as deep

learning.

It is important to note that there exists no clear boundary between the two
groups in a mathematical or even sometimes methodological sense. Yet
these two groups follow two different philosophies. The former empha-
sises on integration of domain knowledge in feature engineering and inter-
pretability of the extracted features, ML algorithms and results. Instead,
the latter strives to minimise the effort to use domain knowledge for fea-
ture extraction, and to build rather general machine learning algorithms for
different purposes.

1.3.1 Feature Engineering + Classic Machine Learning

Feature Engineering (FE) is the process of transforming features through
domain expert knowledge [51] or mathematics so that machine learning al-
gorithms work. The choice of data representation is crucial to the perfor-
mance of machine learning algorithms that are applied on the data. Feature
engineering integrates human ingenuity and prior knowledge to compensate
that some machine learning models are not effective and delicate enough to
capture the subtle discriminative information lying in the data [52].

Common feature engineering methods include:
• Generating new single features from raw single features using unary

or binary operations [55], e.g. logarithmic, reciprocal, sine/cosine,
correlation features, etc.;

• Extracting single features from data with temporal or spatial struc-
tures, e.g. segmenting [56], subsampling [57, 58], calculating statistic
properties like maximum, variance [59], filtering [60], transforming
to frequency domain [61, 62] or time-frequency domain [62], etc.;

• Reducing the raw features to a lower dimensional space, e.g. Prin-
cipal Component Analysis (PCA) [63], Linear Discriminant Analysis
(LDA) [64], etc.
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After feature engineering, even very simple machine learning algorithms
can deliver good results. These simple algorithms can be Linear Regression
(LR), Polynomial Regression (PolyR) [45], k-Nearest Neighbours (kNN)
methods [65], etc. The advantage of the pipeline of feature engineering +
classic machine learning is that the models are more transparent and un-
derstandable than feature learning. Which features are more important and
how they influence the model quality is easily interpretable from the model
results.

1.3.2 Feature Learning + Neural Networks (Deep
Learning)

According to [52], Feature Learning (FL), or representation learning,
refers to an algorithm that can learn to identify and disentangle the under-

lying explanatory factors hidden in the observed milieu of low-level sensory

data. Feature learning was initiated to avoid labour intensive and domain-
specific feature engineering. The advantage of feature learning is that the
learning algorithms become less dependent on feature engineering so that
novel applications could be developed faster.

The current feature learning study has developed into two parallel ap-
proaches: probabilistic graphical models and neural networks (or deep
learning) [52]. The former approach attempts to recover latent random
variables describing a distribution, while the latter one uses a computational
graph to extract abstract features from the data. There exists no formal def-
inition for the term deep learning, but various literature [52, 66, 67, 68, 69]
shares the view that Deep Learning (DL) is a group of machine learning

algorithms for multiple layers (or levels) of non-linear information process-

ing to learn hierarchical representations (or abstractions) of data, mainly

with neural networks. Some authors thinks the hierarchical feature learn-

ing is the most important characteristic for deep learning [70]. Others think
more than one hidden layer is required [71]. For simplicity and clearance,
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this work refers to deep learning as neural networks with more than one

hidden layer for hierarchical feature learning, i.e. deep learning has at least
two hidden layers, one input layer, and one output layer. Artificial neu-
ral networks with fewer than two hidden layers, or that do not possess the
characteristic of hierarchical feature learning, are categorised into classic
machine learning.

A basic type of deep learning is Deep Neural Networks (DNN), which is
MLP with at least two hidden layers [72]. There exist other types of neural
networks designed for specific data structures, e.g. Convolutional Neural
Networks (CNN) [73] for data with temporal or spatial structures, Recurrent
Neural Networks (RNN) [74] or Bidirectional Recurrent Neural Networks
(BRNN) [75], and Long Short-Term Memory (LSTM) [76] for data with
temporal structures, etc.

1.3.3 Introduction to Ontology

An ontology [77, 78] is a shared conceptualisation of a domain of interest
written in a formal language. The ontological modelling in this work follows
the description logic of OWL 2 [79], which is built upon the World Wide
Web Consortium’s (W3C) XML standard for objects called the Resource
Description Framework (RDF) [80] and compatible with RDF Schema
(RDFS) [81].

Ontology and its related semantic technologies, represent semantics (mean-
ing) and associations between data [82]. Semantic technologies have re-
cently gained a considerable attention in industry for a wide range of ap-
plications and automation tasks such as modelling of industrial assets [83]
and industrial analytical tasks [84], integration [85, 86, 87, 88] and query-
ing [89] of production data, and for process monitoring [90] and equipment
diagnostics [91].
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Figure 1.7: (a) An example of ontology. (b) Different types of ontologies [92].

All entities, including physical objects and abstract concepts are described
with rdfs:Class1 (blue rounded squares in Figure 1.7a). Data are modelled
with rdfs:Literal and connected by owl:DatatypeProperty (black squares in
Figure 1.7a) to rdfs:Class, described with xsd:<schema>. The prefixes indi-
cate their following namespace.

Each formula in ontology states that one complex class is a subclass of
another class, or a property is a subproperty of another property. Complex
classes are composed from the atomic classes and properties using logical
AND, OR, and Negation, as well as universal and existential quantifiers.
Reasoning over ontologies allows to compute logical entailments.

Figure 1.7a illustrates a simple ontology. The default namespace here is
Manufacturing Ontology, for which the prefix is mo:, or simply a colon :.
In the ontology, three classes and one datatype property are defined. These
classes are connected with two types of predicates, rdfs:subClassOf, indicat-
ing a hierarchy of categories. It can be serialised in Manchester Syntax [77]:

Class: mo:ElectricResistanceWeldingProcess

SubClassOf: core:ManufacturingProcess

and owl:ObjectProperty, indicating a non-hierarchical relationship:

ObjectProperty: mo:hasOperation

Domain: mo:ElectricResistanceWeldingProcess

Range: mo:ElectricResistanceWeldingOperation

The owl:DatatypeProperty is a property connected to a feature in data:

1 Note there exists no space after the colon in the representation of ontologies.
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Figure 1.8: An example of ontology templates. By providing values for the variables in the
template (middle row in the figure), an ontology can be instantiated (lower row).

DataProperty: mo:hasOperationID

Domain: mo:ElectricResistanceWeldingOperation

Range: xsd:string

The predicates of object properties and data properties can also be grouped
hierarchically using rdfs:subPropertyOf.

Ontologies are of different types (Figure 1.7b). An Upper Ontology is to
describe a general and cross-domain ontology, e.g. a Manufacturing Ontol-

ogy. A Domain Ontology contains terms that are fundamental concepts of
a domain of interest, e.g. a Electric Resistance Welding Ontology and they
are subclasses of the upper ontology. A Task Ontology includes fundamental
concepts of a task, e.g. a Machine Learning Ontology for machine learning
analysis in this work. An Application Ontology is a specialised ontology
focusing on a specific domain and task, e.g. a Quality Monitoring Ontology

of using machine learning for welding quality monitoring.
Ontology templates are a language and tools for creating OWL ontol-

ogy models with parametrised ontologies by providing values for each
variable [93]. Figure 1.8 gives an example for creating a small ontology
that contains Welding Operation, which belongs to WeldingProcess and has
WeldingOperationID. The user needs to select the super class Operation,
specifies its class name, and chooses its belonging WeldingProcess (this
class is created beforehand). Then the ontology for welding (domain ontol-
ogy) is created from the template (upper ontology), and serialised as OWL
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axioms. Templates guarantee good quality and consistency of the created
ontology, as well as the relative simplicity of the ontology creation process.

1.4 Machine Learning in Manufacturing

This section first takes a glance at machine learning in manufacturing in
general, and then narrows the scope to condition monitoring, other metal
welding processes, and finally ERW.

1.4.1 Overview of Machine Learning in Manufacturing

In recent years, machine learning in manufacturing has been increasingly
drawing attention [94, 24, 95]. It is developed and applied in various sub-
fields in the broad and comprehensive realms of manufacturing industry, in-
cluding plant-wide optimisation, sustainable production, agile supply chain
[26], and product lifecycle management [28], etc., to achieve goals [94] like
cost estimation, quality monitoring and improvement, fault diagnosis, con-
dition monitoring, process optimisation, etc.

The challenges of machine learning in manufacturing [94] include
• acquisition of relevant data [95];
• big data problems like handling high-dimensional and voluminous

data;
• skewed distribution of failure types;
• selection of suitable machine learning algorithm;
• interpretation of the results;
• adaptability to changing environment, conditions or problems.

Solutions to address these problems include:
• Data lakes [96] were proposed to store unstructured raw data;
• Data warehouse [97] for integrated data;
• Various descriptions or solutions on big data problems were proposed

in [27, 28];
• Machine learning-algorithms were organised to different groups ac-

cording to nature of defined question and data structure [94].
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All these challenges also exist in machine learning in ERW. The solutions
to address them were also adapted to ERW in this thesis. Details see Section
1.5 and 1.6.

1.4.2 Machine Learning in Condition Monitoring

Condition monitoring is a sub-discipline in manufacturing, referred to as
activity intended to assess the characteristics of the physical actual state of

an item [98]. Condition monitoring is frequently performed for predictive
maintenance, which is defined as condition-based maintenance carried out

following a forecast derived from repeated analysis and evaluation of the

degradation of the item [98].
Condition monitoring and the subsequent predictive maintenance can be

performed for two types of purposes. Machine health monitoring [99]
means to maintain the healthy state of an equipment, while quality moni-
toring is to ensure the product quality within acceptable limits.

The challenges in condition monitoring include using meta-information
and sensor measurements for

• feature extraction, including feature fusion, dimension reduction [62],
feature learning [99], etc.;

• fault detection and state classification, for machine health, e.g. wind
turbine [100], bearing [62], line insulators [101], and for product
[102] in e.g. plastic injection moulding [103];

• estimation (regression) of a machine health indicator or quality indi-
cator, e.g. tool wear [104].

Solutions are feature engineering and classic machine learning models,
e.g. random forests [105], support vector machines [106], fuzzy logic [107],
Bayesian networks [107], and feature learning with Deep Learning algo-
rithms, e.g. stacked auto-encoder [108], Deep Neural Networks [109].

The same challenges also exist in quality monitoring in ERW. Many of the
proposed ML methods can also be used, but the challenge of selection of
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suitable machine learning algorithm needs to be solved. This thesis will ad-
dress quality monitoring for welding in detail in the following two sections.

1.4.3 Machine Learning in Metal Welding

Metal welding is defined as welding processes that join metal by means of

heat or pressure, or both, in such a way that there exists continuity in the

nature of the metal which has been joined [32]. Welding technologies for
non-metal material will not be addressed in this thesis.

In the literature, many studies have used machine learning approaches for
quality monitoring in welding technologies. Here some examples are listed
in detail.

The challenge is always estimation or prediction of quality indicators us-
ing classification or regression analysis, and optimisation of the process,
examples include

• estimation of lap-shear strength and welding seam width in laser
welding [110, 111];

• classification the welding seam type as good, lack of fusion, or burn
through in Gas Metal Arc Welding (GMAW) [112, 113, 114, 115,
116], and process optimisation [117] ;

• estimation of bead width, height and hardness in Submerged Arc
Welding (SAW) [118], and process optimisation;

• estimation of tensile shear strength, yield strength, elongation and
hardness, in Friction Stir Welding (FSW) [119, 120] and process op-
timisation.

Solutions are data collection from sensor measurements and statistical
modelling using various machine learning algorithms, examples include

• using features of welding speed, power, stand-off distance, clamp
pressure in laser welding and modelling with Multilayer Perceptrons
(MLP) and Polynomial Regression (PolyR) [110];

• using feature of welding speed, and statistic features extracted from
the process curves of current (I) and voltage (U) in GMAW, and mod-
elling with J48 Random Forest [112];
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• using features of voltage, current, welding speed, nozzle-to-plate dis-
tance in SAW, evaluating with analysis of variance, and then mod-
elling with polynomial regression [118];

• using features of tool rotation speed, profile, feed speed, and hardness
in FSW, and modelling with Multilayer Perceptrons [119].

It is also worthy to notice that all these studies have collected data from
laboratory experiments. Due to high cost of data collection their data
amount are relatively small, e.g. 14 in [118] and 26 in [110].

1.4.4 Previous Studies of Machine Learning in Electric
Resistance Welding

Many previous studies have adopted the approach of machine learning to

predict quality indicators in ERW based on the historically recorded data.
The most studied process is Resistance Spot Welding (RSW). No literature
about machine learning in Hot-Staking (HS) is found. This section will
review the previous studies from the following perspectives and summarise
the detailed information in Table 1.3 and 1.4.

Question Definition. The previous studies have defined the question either
as Classification (C) - that is to predict the category of quality: good, bad,
and sometimes the concrete failure types - or Regression (R) - that is to
assess a numerical value of the quality. Each welding operation is treated
as an independent event. The quality indicators to be classified or predicted
are usually spot diameter (D), spot height (h), Tensile Shear Strength (TSS),
spatter, failure load (load). Special quality indicators include gaps [121],
pitting potential (Epitt ) [122], and penetration [36]. Some works also studied
Optimisation (O) of the process.

Data Collection. It is worthy to note that almost all of the previous studies
have collected data from laboratory experiments, or from welding machines
for production but under experimental settings, except for [123], which used
accumulated production data. In fact, there exist at least three data sources
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throughout process pipeline of development, monitoring and maintenance:
simulation, laboratory, and production data. The dataset size, i.e. number
of welding spots, ranges from 10 to around 3000. For a summary of the
previous two aspects see Table 1.3.

Data Preprocessing and Modelling. In the input features, Single features
(SF) are recorded as constants for a welding process, including electrode
force (F), welding current (I), welding time (t), sheet thickness (thickness),
sheet coating (coating), pressure. Some features are recorded as Time se-
ries (TS), including dynamic resistance (Re), electrode force (F), welding
current (I), electrode displacement (s), welding voltage (U), ultrasonic oscil-
logram, power. Besides the two common types, [127] used images collected
from Scanning Acoustic Microscopy (SAM).

Most of these studies have extracted geometric features or statistic features
based on or inspired by domain knowledge, denoted as domain knowledge
based feature engineering (DKFE), but the usage of domain knowledge for
machine learning and interpretation is still limited. The methods for Time
Series Feature Engineering (TSFE) include subsampling, segmentations,
histogram, and transition points. Some studies extracted geometric features
like slopes, lengths of slopes, signal drops from a peak to the following
valley, or statistic features (stats), e.g. maximum (max), minimum (min),
maximum position (mxpo), mean, standard deviation (std), range, root mean
squared (rms), because these features are considered meaningful also from
the ERW process perspective. A special method named as scale-space fil-
tering [149] is used in [142] for times series segmentation. Some works
applied a further step of Feature Engineering (FE) on raw single features
and time series extracted features, using PCA, polynomial feature genera-
tion, discretisation, radar chart, Chernoff face. Feature Selection (FS) are
performed in [135], [136], [139], applied methods including analysis of
variance (ANOVA), power of the test, Sequential Forward Selection (SFS),
Sequential Backward Selection (SBS), Sequential Forward Floating selec-
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Table 1.3: An overview of related works of machine learning in ERW, Part 1. All studies are
carried out with laboratory data source on RSW except for [123]. Explanations for
acronyms see Section 1.4.4 or Table of Acronyms and Symbols.

Citation Year Author Question #Data
[38] 2000 Cho R: TSS 50
[124] 2000 Li R: D 170
[125] 2001 Lee R: TSS 80
[126] 2002 Cho R: D,TSS 60
[127] 2003 Lee C: D 390
[128] 2004 Cho C: TSS 10
[56] 2004 Junno C: D 192
[129] 2004 Laurinen C: D 192
[57] 2004 Park C: TSS, h 78
[130] 2004 Podržaj C: spatter 30
[131] 2005 Haapalainen C: TSS 3879
[132] 2006 Tseng R, O: load 25
[121] 2007 Hamedi R, O: gaps 39
[133] 2007 Koskimaki C: TSS 3879
[134] 2007 Martin C: D 438
[135] 2008 El-Banna C: D 1270
[136] 2008 Haapalainen C: TSS 3879
[137] 2009 Martin R: TSS 242
[36] 2010 El Ouafi R: h, penetration, D 54
[122] 2010 Martin R: Epitt 242
[138] 2012 Li R: D 145
[139] 2013 Panchakshari R, O: D, TSS, load 25
[140] 2014 Afshari R: D 54
[141] 2015 Yu C: TSS, spatter 473
[58] 2015 Zhang C: TSS, D 200
[142] 2016 Boersch R: D 3241
[143] 2016 Pashazadeh R, O: D, h 48
[144] 2016 Wan C,R: D, load 60
[145] 2017 Summerville R: D 126
[146] 2017 Summerville R: TSS 170
[147] 2017 Sun C: TSS 67
[148] 2017 Zhang C: TSS 120
[123] 2018 Kim R: D 3344

24



1.5 Open Questions

tion (SFFS), Sequential Backward Floating Selection (SBFS) and N-Best
Features Selection (nBest).

Most of the subsequent machine learning models are classical ma-
chine learning methods like Linear Regression (LR), Polynomial Regression
(PolyR), k-nearest neighbours (kNN), Bayesian Network (BN), Decision
Trees (DT), Genetic Algorithm (GA), Support Vector Machines (SVM), etc.
The Artificial Neutral Networks (ANN) used in previous studies, include
Fuzzy Neural Networks (FuzzyNN), Self-organising Maps (SOM), General
Regression Neural Networks (GRNN), Hopfield Neural Networks (Hop-
fieldNN), and Multilayer-Perceptrons. Since these networks either have
fewer than two hidden layers, or do not demonstrate the characteristic of hi-
erarchical feature learning (see Section 1.3), this thesis subsumes them into
the category of classic machine learning. A summary of data preprocessing
and machine learning modelling see Table 1.4.

1.5 Open Questions

After viewing typical difficulties in ERW (Section 1.2.3), challenges and
solutions of machine learning in manufacturing and in ERW (Section 1.4),
this thesis summarises Open Questions (OQ) below.

• OQ 1. Insufficient data problem. In order to build a all-covering qual-
ity monitoring system, data collection is crucial. Data collected from
production however often lack the most important quality indicator,
e.g. the diameters, due to expensive measuring methods. Data col-
lected from laboratory experiments can have the quality indicators,
but the amount is limited compared to production data, and cannot
fully cover the various production conditions exhaustively. Further-
more, some important features such as temperature, force, displace-
ment, are only available in laboratory. Previous studies have very lim-
ited addressed the insufficient data problem. The questions remain
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Table 1.4: An overview of related works of machine learning in ERW, Part 2. Explanations of
the acronyms see Section 1.4.4 or Table of Acronyms and Symbols.

Citation Features & Preprocessing Methods
[38] TS: Re; TSFE: DKFE (slope, max, std, mxpo) MLP
[124] SF: F, t, I; TS: F, Re, s; TSFE: subsampling; FE: PCA, rms MLP
[125] TS: Re, s; TSFE: subsampling, DKFE (slope, mxpo, range). Fuzzy NN
[126] TS: Re; TSFE: DKFE (max, slope, min, std), stats LR, LogR, MLP
[127] Image from SAM; ImageEF: dilation, quantisation MLP
[128] TS: Re; TSFE: TS to bipolarised image HopfieldNN
[56] TS: I, F, U; TSFE: means of segmented TS SOM
[129] TS: I, F, U; TSFE: histogram, discretisation of quartiles BN
[57] TS: s; TSFE: subsampling, slopes LVQ, MLP
[130] TS: U, I, Re, s, F; TSFE: subsampling, std LVQ
[131] TS: I, U; TSFE: transitions, segmentation mean; FE: PCA. LDA, QDA, MD,

kNN, LVQ
[132] SF: I, F, t, thickness GRNN, GA
[121] SF: I, t, thickness MLP, GA
[133] TS: I, U; TSFE: segmentation mean kNN, SOM
[134] TS: ultrasonic oscillogram; TSFE: DKFE (heights & dis-

tances of echoes)
MLP

[135] TS: R; TSFE: segmentation, DKFE (max, min, mean, std,
range, rms, slope); FS: power of the test

LVQ

[136] TS: I, U; TSFE: transitions, segmentation mean; FE: PCA;
FS: SFS, SBS, SFFS, SBFS, nBest

kNN

[137] SF: t, I, F LR, MLP
[36] SF: Thickness, I, F, t; TS: Re; TSFE: subsampling MLP
[122] SF: t, I, F; FE: polynomial features MLP
[138] TS: s; TSFE: DKFE (geometric features) MLP
[139] SF: I, welding time, holding time, squeezing time; FS:

ANOVA
LR, GA

[140] SF: F, t, I MLP
[141] SF: coating, F; TS: Power; TSFE: DKFE (mxpo, max, drop) LogisticR
[58] TS: s; TSFE: segmentation, mean, radar chart, geometric fea-

tures
DT ID3

[142] TS: I, U, T; TSFE: derivative, segmentation, scale-space fil-
tering, geometric features, stats

LR, M5 model
tree [150],
M5Rules, RF,
SVM, kNN

[143] SF: t, I, Pressure PolyR, MLP, GA
[144] SF: F, I, t, TS: Re; TSFE: PCA MLP
[145] TS: Re; TSFE: PCA LR
[146] TS: Re; TSFE: PCA PolyR
[147] SF: I, t, Pressure PSO, KELM
[148] TS: s; TSFE: DKFE stats, Chernoff images, binary features HopfieldNN
[123] SF: material, thickness, t, coating, I SWRL, DT, CART
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1.5 Open Questions

whether the available data amount is sufficient, and whether further
features are necessary to be collected from production.

• OQ 2. Standardised process description, data description and man-

agement. Machine learning projects in manufacturing involve multi-
ple parties with distinct knowledge background, e.g. process experts,
measurement experts, data scientists, managers. A standardised pro-
cess description is needed to ease the communication between these
experts. Based on the process description, the data also requires to be
modelled in a standardised way, to facilitate the data management of
different data sources and processes.

• OQ 3. Dataset evaluation for identifying conspicuity. Large vol-
umes of data are generated from manufacturing processes like elec-
tric resistance welding. It is very desired to gain a quick overview
of the data collected from all welding machines, to evaluate the col-
lected datasets and identify which welding machine, which welding
program or which dress cycle are conspicuous and may be subject to
risks of quality failures.

• OQ 4. Quality monitoring with temporal structure and probabilistic

estimation. Previous studies estimated quality monitoring as sin-
gle values for each welding operation independently. In fact, these
welding operations comprise a welding process with temporal struc-
tures caused by the continuous wearing effect of the electrodes. The
estimation of quality indicators should be a probabilistic distribution.

• OQ 5. Evaluation and selection of machine learning methods. Vari-
ous machine learning methods have been experimented for ERW and
Manufacturing. Yet it remains unclear, when and how to use which
methods, and how to evaluate the machine learning models.

• OQ 6. Integration of domain knowledge problem. Previous studies
have used domain knowledge to some degree in feature engineering,
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1 Introduction

but there exists still improvement space for more systematic discus-
sions of the role of domain knowledge in machine learning, such as
what is the best role of domain knowledge in machine learning, how
the influence of domain knowledge can be intensified, etc.

• OQ 7. Concept drift monitoring. When the production condi-
tions change during the production process, the developed methods
for quality monitoring could fail, because the data under the changed
conditions differs for the data collected for model training. A mech-
anism is needed to detect the data drift and adapt the model accord-
ingly.

• OQ 8. Transfer of developed ML approaches to other datasets and

processes. As mentioned in Section 1.1, there exists no machine
learning method that can perform technologically meaningful infor-
mation processing from unstructured datasets. Manufacturing datasets
with different structures can be generated frequently from different
data sources, i.e. operation conditions, machines, plants. Little work
has been done in ERW to make machine learning methods scalable to
different sources, versions of datasets, and to different manufacturing
processes.

1.6 Objectives and Thesis Outline

The aim of the Ph.D. study is to study and develop effective and gener-
alisable machine learning frameworks, for quality monitoring in electrical
resistance welding, i.e. assessment and prediction of the quality indicators.
In an attempt to achieve this central goal, this work has the following sub-
objectives.

• Discussing the central goal of quality monitoring and studying the particu-
larities of data of electrical resistance welding in depth;
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1.6 Objectives and Thesis Outline

• Exploring, developing and organising the machine learning methods and
other methods for handling and modelling the data;

• Implementing software for ML analysis and data handling;

• Applying, validating and demonstrating the methods on industrial datasets
in use cases.

This work is organised as follows. Chapter 2 proposes a ML frame-
work that attempts a comprehensive coverage for collecting, understanding,
preparing, preprocessing, and modelling the data in ERW and elaborates
the methodological details. The framework is a result of deep intertwin-
ing of ML methods, domain knowledge of ERW, and semantic technolo-
gies. Chapter 3 describes one implementation of the methodologies in this
work on two programming platforms, Python and SciXMiner (MATLAB).
Chapter 4 selects six industrial use cases to demonstrate and validate the
application of methodologies, to evaluate their performances and test their
transferability. Chapter 5 summarises the thesis, lists the contribution, con-
cludes the work and previews the outlook.
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2 A Framework of Machine
Learning in Electric Resistance
Welding

In developing methodologies of machine learning in ERW, it often reveals
that the development of new algorithms are not the most urgent tasks. Ma-
chine learning approaches are not able to retrieve meaningful information to
support decision making from unstructured and not-understood datasets. It
is not trivial to use and adapt the existent algorithms in the field of ERW as
well as manufacturing. This work will therefore focus more on identification
of a suitable framework that makes the machine learning approach effective
for the datasets we have understood once, and scalable for other datasets
with similar structures. This work will go across the boundaries of data sci-
ence, understanding data characteristics of ERW from a combined view of
data science, domain knowledge of engineering, and semantic technologies,
revealing some aspects that are limitedly discussed in previous studies.

2.1 Question Definition Revisited

This section discusses questions resulting from data characteristics in ERW
as well as in manufacturing. The questions are addressed in the procedures
of machine learning workflow (Section 1.3): data collection, data prepara-
tion, data preprocessing and machine learning modelling.
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2 A Framework of Machine Learning in Electric Resistance Welding

Figure 2.1: Quality indicators of different levels. “Dec” stands for decision. The asterisk in-
dicates data-driven methods for estimating quality indicators, which is the central
goal of this thesis, that can be seen as online analysers. The optimal target (labels)
of machine learning analysis are usually QI1 to QI3.

2.1.1 Quality Indicators of Different Fidelity Levels and
Accessibility

The central question of the thesis is to estimate quality indicators. Vari-
ous quality indicators have been discussed in the literature [151, 152, 153],
but they have not been systematically organised or are not applicable to
ERW [154, 155, 156, 157]. This thesis groups them into different levels ac-
cording to their fidelity and accessibility. Figure 2.1 illustrates these levels
based on the workflow of quality control.

After a welding process, the welded part will go through a series of quality
control gates. At each gate, a rejection decision can be made according to
the corresponding judgement based on the respective quality indicators.

• QI1 is the “final” quality indicator of a product, the optimal label to be
predicted in machine learning. This can be e.g. the lifespan of a product
before quality failure. However, QI1 is usually unavailable, unless ex-
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2.1 Question Definition Revisited

tremely huge effort is spent on measuring this indicator, e.g. collecting
voluminous historical usage data from customers.

• QI2 and QI3 stand for quality indicators that can only be measured of-
fline, i.e. after the production process, and are therefore only measured
sample-wise due to cost reasons. QI3 are those measured using non-
destructive methods, e.g. ultrasonic test results or X-ray test results, QI2
are those that can only be measured using destructive methods, e.g. spot
diameters in RSW, tensile shear strength in RSW and HS. Since QI2 is
already relatively precise and much more available than QI1, QI2 is es-
tablished as a standard quality indicator [32, 34]. QI2 and QI3 are also
usual target (labels) for ML prediction.

• QI4 are the quality indicators that can also be measured online in pro-
duction, but require extra equipment, which are usually even more ex-
pensive than the welding machines themselves. An example would be
the contact resistance between the welded wire and hook (called as the
GDG-resistance [31]) in Hot-staking (HS).

• QI5 and QI6 are quality indicators that can be measured or calculated on-
line by the machine software systems. QI6 indicates the direct measured
physical quantities, e.g. current, resistance, force, etc. QI6 is replaced
by QI5, if QI5 exists. QI5 represents the calculated quality indicators de-
veloped with process know-how. QI5 functions as online analyser during
the production process. Examples of QI5 include the Q-Value, spatter oc-
curring time, the process stability factor in the Bosch Rexroth welding
system [31].

The goal of all data-driven methods can be seen as to build an offline or
online analyser to estimate an improved QI5 quality indicator, to save QI1
to Q4 as a long-term goal. This thesis treads the starting steps towards the
long-term goal by proposing the framework (Chapter 2), studying QI5 that

33



2 A Framework of Machine Learning in Electric Resistance Welding
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Figure 2.2: (a) Q-Value along number of welding operations for an example welding machine.

The red rectangle indicates the area for a closer look in (b).
(b) Welding operations performed with different welding programs often possess
different dynamics, e.g. the mean of Q-Values are different

replaces QI2 with simulation data (Use Case 4.1), and forecasting quality
indicators (Use Case 4.3), etc.

2.1.2 Multi-levels of Temporal Structures in Data

Previous studies have treated each welding operation independently (Sec-
tion 1.4.4). If we closely examine the data, e.g. Figure 2.2 showing the
Q-Value along the number of welding operations for an example welding
machine, we can see clearly that the data has relatively strong periodicity,
which indicates the data very likely have temporal dependencies. With the
example dataset of RSW, this section elaborates the multi-levels of temporal
structures in data, which is an intrinsic result of the structure of production
processes.

The first time level is the welding time level during a single welding op-
eration, which usually takes several hundreds of milliseconds (Figure 2.3a).
From each welding operation, data of single features and process curves are
recorded (Figure 2.3b). The consecutive welding operations constitute the
second time level, the welding operation level. All process curves on the
welding time level for one single welding operation (including e.g. the pro-
cess curves in Figure 2.3a) are aggregated onto one time step on the welding
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2.1 Question Definition Revisited

operation level (Figure 2.3b). These operations are controlled by the adap-
tive control system and are operated according to welding programs. A
closer look at a small area reveals that the welding programs of the opera-
tions are arranged with specific orders prescribed by the production schedule
(Figure 2.2b). These operations with each welding program form the weld-
ing program level. As the welding process goes on, the electrode wears.
Since there exists no available feature that reflects the wearing effect in a
physically meaningful way, the wearing effect is quantified using the single
feature WearCount (Figure 2.5).

Table 2.1: Correspondence table of temporal structure features (Ft ) and time levels

Ft Symbols Time level
TimeStamp t Welding time level
WearCount NWC Welding operation level
DressCount NDC Dress cycle level

ElectrodeCount NEC Electrode cycle level
ProgramNumber ProgNo Welding program level

MachineID - Machine level

A regular welding process can include welding, dressing, and short-circuit
measurements before and after dressing (Figure 2.4). A complete dressing-
welding-dressing procedure forms a Dress Cycle. The wearing effect repeats
in each dress cycle. The consecutive dress cycles form the dress cycle level.
According to the domain expert, the periodicity of the Q-Value is caused by
the wearing effect. The Q-Values in Figure 2.2 begin with small values at
each start of dress cycle, rises as the electrode wears, and normally reaches
stable conditions at the end of the dress cycle. After a certain number of
dress cycles, the electrode needs to be changed (for RSW the electrode cap
is changed). The welding dynamics is thus influenced by the new electrode.
All operations welded by one electrode constitute an Electrode Cycle. The
consecutive electrode cycles comprise the electrode cycle level. Note that
for some manufacturing processes, some levels are optional. For example,
the dress cycle level does not exist for HS, since in HS the electrode will be

35



2 A Framework of Machine Learning in Electric Resistance Welding

directly changed instead of being dressed. Table 2.1 lists the correspondence
between temporal structure features (Ft ) and time levels.

Until here, the time levels of a single welding machine are explained. A
step further to see the multiple machines organised in production lines re-
veals two typical structures of production lines. Figure 2.6 schematically il-
lustrates a production line for RSW with a sequential structure, while Figure
2.7 schematically illustrates a production line for Hot-staking with a parallel
structure. These organisations of welding machines constitute the machine
level. Depending on the structures of production lines, the collected data
points need to be organised with different temporal structures.

Other time-levels, including the level of car bodies, production batches of
car bodies and machines, suppliers of the car bodies and machines, are also
important, but this information is currently not available in the data studied
by this work. They will not be addressed in this work.

Further levels above the production lines are the levels of plant locations,
and different original equipment manufacturers (OEM). These levels are no
longer temporal levels and are normally treated independently.
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Figure 2.3: (a) Examples of process curves. The adaptive control will try to force the process

curves follow the reference curves defined by the welding program. Left y-axis:
Resistance (anonymised), right y-axis: Current (anonymised), x-axis: Samples
(b) Consecutive welding operations constitute the welding operation level. Data of
single features on the welding operation level and process curves on the welding
time level (Section 2.1.2) are recorded by the machine software system.
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2.1 Question Definition Revisited

Figure 2.4: Schematic illustration of a welding process from the perspective of one machine,
including maintenance of a welding machine in RSW. NWC stands for WearCount,
NDC stands for DressCount. Before and after each dressing operation, short-circuit
measurements (optional) are performed to monitor the electrode status. The ma-
chine is responsible for several designated spots on each chassis part (marked with
blue circles).

In data analysis, a data instance is an atomic object. Depending on the time
level of analysis, a data instance can be a welding operation, an electrode
dress cycle, a welding program, a welding machine, etc.

2.1.3 Insufficient Data Problem and Three Data
Challenges

As mentioned in Section 1.2.3 and 1.4, data acquisition is difficult in man-
ufacturing in general as well as in ERW, especially the labelled data (QI1-
QI3). Most of the previous studies have mentioned that their data were
collected from laboratory experiments. The laboratory data and the models
trained on them are different than that of the real production, as the welding
conditions (such as cooling time and wearing effect) are usually different.
Apart from the labelled data amount problem, other difficulties exist for
machine learning in ERW. This work summarises these difficulties as three
Data Challenges.
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2 A Framework of Machine Learning in Electric Resistance Welding

Figure 2.5: Example of temporal structures in the RSW data quantified by WearCount, Dress-
Count, and CapCount. WearCount is a counter on the welding operation level. It
increases by one after one welding operation, and is reset to zero after a dressing
is performed, or the cap is changed. DressCount is a counter on dress cycle level.
It increases by one after one dressing operation, and is reset to zero after the cap is
changed.

Figure 2.6: Sequential structure of a simplified RSW production line, where multiple types
of car chassis part, each with a certain amount of welding spots with specified
types, go through a sequence of welding machines. Each machine is responsible
for several designated spots (marked with blue circles). Each spot type is welded
with one pre-defined welding program by one machine in a fixed order.
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2.1 Question Definition Revisited

Figure 2.7: Parallel structure of a simplified hot-staking production line, where several elec-
tric motors are welded by several welding machines simultaneously, and these
welding machines can be controlled by one welding controls system.

Challenge 1 is the limit on labelled data amount, which results from the
difficulty in collecting labelled data in production or in the laboratory.

Challenge 2 is the limit on features. Additional sensors, e.g. electrode
displacement, or extra measurements, such as actual worksheet thickness or
material properties, may be necessary for reliable quality prediction in man-
ufacturing processes. However, more sensors mean higher costs, change
of equipment design, larger installation space, increased risks of expensive
machine stops caused by sensor failures, etc. The installation of some sen-
sors are even physically infeasible. When deciding whether to install an
extra sensor, its benefit needs to outweigh the disadvantages. It is there-
fore important to understand which sensors or measurements (or features in
data science) are necessary and to quantify their benefit to justify the higher
costs.

Challenge 3 is the limit on coverage of relevant situations. Quality fail-
ures are very unusual in manufacturing data, because the welding quality is
good under normal conditions. Moreover, quality failures may be of differ-
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2 A Framework of Machine Learning in Electric Resistance Welding

ent types, making it even more difficult to collect sufficient data for reliable
quality prediction.

These three data challenges can be interpreted as concrete questions:

• Questions to Challenge 1: How much labelled data should be collected?
• Questions to Challenge 2: Which sensors should be installed? Which

precision level should the measurements have?
• Questions to Challenge 3: What production conditions are meaningful to

study? Are they covered in the available data?

The methods to address the three Data Challenges are proposed in Sec-
tion 2.2.4.

2.1.4 Multi-fidelity Data Model and Application Questions

Manufacturing data are collected from three typical sources, the production
plants at OEMs, the laboratories for process development, and simulation
in research centre for a better understanding of the process. In compari-
son to literature, where almost only laboratory data are analysed and the
different data sources are not separately addressed, this work proposes the
multi-fidelity data model (Figure 2.8) to cover these three data sources. This
section will discuss the three sources in aspects of data properties and pos-
sible application questions. The three data sources have different properties
(Table 2.2), and therefore can be potentially combined to compensate their
respective disadvantages.

Properties of the three data sources. The ultimate goal of any process
monitoring, development or diagnostics is to improve the actual production
process and produced goods. The production data (prod) collected from
plants are the most realistic data. Yet the disadvantages are obvious. Pro-
duction data are provided as is. As a by-product of the produced goods,
they can be constantly collected but their conditions (normally) cannot be
specified or designed. The available features from production are limited to
the already implemented sensors. The cost to collect labels from production
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2.1 Question Definition Revisited

Figure 2.8: Multi-fidelity data model. Each data source can have multiple variants due to e.g.
customer individualisation for production data, various experimental settings for
lab data or simulation data.

data is enormous, considering that the produced goods, e.g. chassis, needs
to be destroyed. Only very few labelled data are collected.

The laboratory data (lab), collected from laboratory experiments or pro-
duction lines under experimenting settings, can be almost very authentic
to production data, if the setting is exactly tailored to mimic the real pro-
duction conditions. There still exist some differences from the production
condition, e.g. normally worksheets are used instead of real chassis. The
cost is therefore lower than that in production. The degree of freedom of in-
stalling sensors in the laboratory is much higher than that in the production,
but is still limited due to physical reasons, e.g. temperature at the welding
spot can never be measured.

Simulation data (sim) of physical reality (also referred to as "digital twin"
[95]) are very advantageous because there exist almost no limitation in in-
stalling "sensors", and the costs of data collection are only computation,
once a good simulation model has been established. The more similar the
simulation settings are compared to that in the production, the more valu-
able simulation data can be. The costs come from the preliminary effort to
build a realistic and robust simulation model.
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Table 2.2: Properties of three data sources
Data source Veracity Degree of freedom Cost

Production (unlabelled) High Low Low
Production (labelled) High Low High

Laboratory Relatively high Medium Medium
Simulation Relatively high High Medium

Application questions. Based on the properties of different data sources in
the multi-fidelity data model, many concrete Application Questions (AQ) are
worthy to study. For some of them, this work will give concrete use cases
in Chapter 4. For the others, this work will only limitedly address them
and leave them for future research. An overview of addressed AQs, their
corresponding Open Questions (Section 1.5) and their use cases (Chapter 4)
is listed in Table 2.3. These AQs categorised below in two groups:

Analysis of one data source, including:
• AQ 1. Dataset evaluation to quickly gain an overview of datasets, for the

purpose of identifying conspicuous welding machines, welding programs,
dress cycles, outliers from huge datasets collected from various welding
machines, and pointing out interesting datasets for further investigation.

• AQ 2. Data amount analysis to assess minimal necessary data amount
for effective quality monitoring with machine learning for guiding data
collection and saving costs.

• AQ 3. Feature evaluation to evaluate importance and benefits of features
collected from sensors or measurements or generated in data preprocess-
ing, for understanding process, analysing root causes of failures, guiding
data collection, etc.

• AQ 4. Classification and regression analysis for estimating the value of
current quality indicators using data-driven methods.

• AQ 5. Classification and regression analysis for predicting the value of
future quality indicators with historical data.
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• AQ 6. Process parameter optimisation using algorithms such as Bayesian
optimisation and reinforcement learning, which are usually built upon the
classification / regression models for AQ4 and AQ5.

• AQ 7. Semi-supervised learning for predicting partially labelled data, e.g.
using a large amount of unlabelled production data to train an auto-encoder
and then using a small amount of labelled data to train a decoder.

Analysis across data sources, including:
• AQ 8. Similarity analysis between datasets to determine how similar or

dissimilar two datasets are, for determining the fidelity of a data source
and guiding data collection. E.g., similarity analysis between simulation
dataset and laboratory dataset can reveal whether the simulation scenario
is designed sufficiently realistic as the laboratory data so as to determine
whether simulation data can be used for process understanding, etc.

• AQ 9. Interactive data acquisition and analysis by analysing a data source
with fewer data to guide collection of another data source with more data
amount, for example, analysing the laboratory data to help with designing
simulation scenarios, then determining similarity between the two datasets,
then designing new simulation scenarios.

• AQ 10. Transferability of models trained on one dataset to other datasets,
or trained on one data source (typically with more data and lower costs,
e.g. simulation data) to other data sources (typically with less data amount
and higher costs, e.g. production data).

2.2 Data Collection: Data Acquisition and
Evaluation

This work addresses the data collection topic with the following aspects:
(2.2.1) simulation-supported interactive data acquisition and analysis; (2.2.2)
data similarity analysis; (2.2.3) inverse modelling of simulation model;
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Table 2.3: Overview of application questions (AQ), their corresponding open questions (OQ)
(Section 1.5), method sections (M), and use cases (Chapter 4). Some method sec-
tions are partially evaluated and their use cases are not presented in this thesis due
to space limit.

AQ OQ Methods Use case

AQ2, AQ3, AQ4 OQ1, OQ5 M2.1.1, M2.1.2, M2.1.3, M2.2.4,
M2.4.2, M2.4.5, M2.4.8 Use Case 4.1

AQ1 OQ3, OQ4 M2.2.5 Use Case 4.2
AQ3, AQ5 OQ4, OQ5, OQ6 M2.1.1, M2.1.2, M2.4.1, M2.4.2, M2.4.7 Use Case 4.3

AQ3, AQ5 OQ4, OQ5, OQ6 M2.1.1, M2.1.2, M2.2.4, M2.4.1,
M2.4.2, M2.4.5, M2.4.3, Use Case 4.4

AQ5, AQ10 OQ4, OQ8 M2.1.1, M2.4.5 Use Case 4.5
AQ2, AQ6 OQ1, OQ5, OQ8 M2.1.3, M2.2.3, M2.2.4 Use Case 4.6

- OQ2 M2.3.1, M2.3.2 -
- OQ5, OQ6, OQ8 M2.3.3, M2.4.6 -

(2.2.4) determining necessary data amount for ML modelling; (2.2.5) iden-
tifying conspicuous data areas for a further analysis.

2.2.1 Overview: Simulation-supported Interactive Data
Acquisition and Analysis

The interactive data acquisition and analysis relies on generating data of
user-defined scenarios by physics-based simulation with a verified Finite
Element Method (FEM) model [158].

Simulation-supported data collection. The FEM simulation models me-
chanical effects (elastic-plastic deformation and thermal expansion), ther-
mal effects (temperature changes and heat transfer) and electrical effects
(change of electric current density and electric potential field). Non-linear
changes of material and contact properties, such as electrical and thermal
contact conductivity, are also taken into account. Strong interactions be-
tween all three fields result in very dynamic process behaviour and require
a multi-field coupled simulation. The FEM models should be verified using
data from laboratory tests or production lines under controlled conditions.
An established simulation model has four advantages:
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• Each simulation run produces one labelled data point. Running a lot of
simulations can thus offer a large amount of labelled data.

• There is little limit for obtaining features measured by sensors that are
costly or difficult to install in the laboratory or production.

• By designing the simulation scenarios astutely, rare situations in produc-
tion can be studied in detail.

• There are no precision issues of sensor measurements that are present in
the laboratory or in production.

The main effort of the FEM simulation lies in two points: (1) gathering
relevant information as simulation inputs, such as worksheet and electrode
geometries, temperature-dependent material data, contact properties, etc.;
(2) setting up a parametric Finite Element Model in an automated simula-
tion loop, including simulation preparation and data extraction, using com-
mercial and open source tools, such as Python, software packages for Finite
Element Method, etc.

Interactive data analysis and collection. The simulation supported data
collection follow the six steps iteratively (Figure 2.9).

1. Data collection from laboratory or production.
2. Initial simulation scenario definition.
3. Data collection from simulation.
4. Similarity analysis between simulation data and laboratory/production

data.
5. Data amount and feature evaluation.
6. New simulation scenario definition.

2.2.2 Similarity Analysis between Datasets

Dataset similarity analysis is to answer the question of how similar two
datasets are. A deep understanding of this topic requires rigorous mathe-
matical deduction. In the literature, various methods have been proposed,
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Figure 2.9: Simulation-supported interactive data analysis and collection

e.g. similarity measures for one-dimensional datasets [159], an effective sta-
tistical evaluation of genomic dataset similarity [160], measuring similarity
between homogeneous datasets for distributed data mining [161], similarity
of condensed data models (e.g. for check data anonymisation) across high-
dimensional datasets [162]. However, similarity comparison methods for
ERW or manufacturing have been limitedly discussed in the literature. No
method can be directly applied.

This work suggests some practical concepts and methods for similarity
analysis of ERW datasets, for which there exist many important application
examples: (1) comparing simulation data with laboratory/production data
to test veracity of simulation data; (2) comparing the dataset collected for
model development with another dataset collected for model deployment
to test model deployability; (3) comparing datasets collected from different
machines, production lines, welding conditions to test transferability. If the
simulation model is realistic enough, then it can be used to generate more
labelled data, for providing engineering insights, or substitute the costly lab
data or production data. The pre-requisite for similarity analysis is that the
two datasets should share a common subset that contains the same features
representing the same physical meanings. The term dataset similarity can
be divided into two aspects:

• Mechanism, whether the change of features in two datasets follow the
same patterns.
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• Distribution, whether the data points in two datasets have similar value
distributions and lie in similar operating areas, defined by statistic proper-
ties e.g. amplitudes, changing range, etc.

Mechanism similarity analysis. The analysis of mechanism similarity has
two levels. The first level is to identify whether the features in two datasets
follow the same correlation patterns, i.e. whether the correlation relation-
ships between features of two datasets are similar (Figure 2.10a). The sec-
ond level is to figure out whether the causality patterns of two datasets are
similar (Figure 2.10b).

Figure 2.10: Correlation pattern is generated by drawing lines between pairs of features
whose correlation coefficients are greater than a defined threshold.

The correlation pattern [163, 164] is to calculate correlation matrix using
e.g. Pearson coefficient [165]. the causality pattern is to calculate pair-wise
transfer entropy matrix [166, 163].

Distribution similarity analysis. The analysis of distribution is to compare
the statistic properties of the two datasets, including mean, median, standard
deviation, range, maximum, minimum, ratio between important features se-
lected using domain knowledge, etc.
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Figure 2.11: ML for inverse modelling of a simulation model

2.2.3 Inverse Modelling of the Simulation Model

Inverse modelling aims at facilitating the fine-tuning of the simulation
model so that the simulation data become more similar to the laboratory
data or production data.

Inverse modelling has two steps. Step 1 is to train a ML model with
simulation data. For the training, simulation results (Rsim) serve as the inputs
(Figure 2.11), and simulation input parameters (Pin) serve as the outputs of
ML modelling. In this way, the ML model mimics an inverse model of
the simulation model ( fml = f−1

sim). Step 2 is to feed the desired simulation
results (Rdes), which can be laboratory data or production data, as inputs to
the ML model. The outputs of ML model are then the estimated simulation
input parameters (P̂in), which should generate (Rdes). After that, these P̂in

are delivered to the simulation model, whose results (R′sim) should be very
similar to the desired results (Rdes).

For the case when multiple sets of simulation input parameters (Pin) can
produce the same simulation results (Rdes), the ML model may output sev-
eral sets of estimated simulation input parameters (P′in) in case of multiple
times of application. From these estimated input parameters, one can be
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chosen based on manual preferences, or some performance metrics, like
higher similarity, less simulation time, etc.

2.2.4 Data Amount and Feature Sets Analysis

This section aims at addressing the three data challenges in Section 2.1.3.
The approaches centre on training machine learning models with different
data subsets and comparing their performance.

Analysis of training data numbers. Data can be split into several subsets
of different training data numbers for answering the question: How much
labelled data should be collected (Data Challenge 1). A series of train-
ing subsets is built by randomly selecting a different number of data points
from the training dataset, and the larger training subsets always contain the
smaller ones. To allow direct comparison of the testing results, the test
dataset always contains the same data points. ML models are trained with
these subsets of different training data numbers, and tested on the same test
set (Table 2.4).

Table 2.4: Data splitting to subsets of different training data size. Dtr1 stands for training set
1, Dtr,all stands for training set with all data, and Dtst stands for test set, where
Dtr1 ⊂ Dtr2 ⊂ Dtr3 ⊂ ...⊂ Dtr,all .

Training data Dtr1 Dtr2 Dtr3 ... Dtr,all

Test data Dtst Dtst Dtst ... Dtst

Analysis of feature sets. Data can be split into several subsets of different
features for answering the question: Which features are important (Data
Challenge 2). All available features, i.e. time series features as well as single
features, are divided into four subsets (Table 2.5). The feature importance
is evaluated by comparing the performance of ML models trained with the
four different feature subsets.

Analysis of noisy sets. Data can be augmented with additional noise to
answer the question: Which precision level should the sensors have (Data
Challenge 2)? Adding noise to the aforementioned non-noisy subsets of
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Table 2.5: Data splitting into four subsets of different features

Feature set Description
FeatSetprod Features that are always available in production.
FeatSetlablow FeatSetprod + features available in laboratory with relatively low cost.
FeatSetlabhigh FeatSetlablow + features available in laboratory with higher cost.

FeatSetall
FeatSetlabhigh + other features in simulation that are difficult or extremely
costly to realise in reality.

different training data and feature sets results in a series of subsets with
noise. The way of adding noise and the noise levels can be determined
collectively with process and measurement experts for single features and
time series.

• For time series, the noise should be added for every single sample point.
• For single features, the noise should be added for each feature.

To address questions regarding Challenge 3 requires particular simulation
scenarios defined by the process experts, which can be hardly achieved by
pure data analysis using existent data.

2.2.5 Evaluation of Datasets

The manufacturing industry produces a huge volume of data. Considering
the number of cars produced every day, each car body with 3000 - 6000
welding spots, the amount of data generated even only from one plant of
one OEM is enormous. It is impossible to analyse all data in detail in ML
development as well as in application. Some methods are needed to eval-
uate the data and select the most interesting areas, where quality failures
are more likely to happen, or where the behaviour of quality indicators is
unstable. If any data area is deemed to constitute an abstract “dataset”,
identification of interesting data areas is to perform dataset evaluation, or
anomalous dataset detection. This is to evaluate the already collected data,
and is therefore an offline analysis. Dataset evaluation targets on analysing a
large dataset in these aspects: information summarisation and visualisation,
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identifying conspicuity, outlier detection, and subset selection for further
analysis.

Decomposition of data behaviour. The behaviour of quality indicators
is expected to be stable, e.g. the optimal Q-Values should be around the
optimal value “1”, but the actual Q-Values rise and drop in each dress cy-
cle (Figure 2.2). Depending on the granularity of analysis, the behaviour
of data can be decomposed into two or three components, as shown in
Equation 2.1, where X is the raw data array with temporal structures, and
XTrend ,XScattering,XOutlier are defined as follows.

X = XTrend +XScattering(+XOutlier) (2.1)

• Trend, denoted by XTrend , which describes the data behaviour excluding
local variances. Important to note is the XTrend here is to be understood as
a “shape” of the data, not the general rising or dropping tendency of the
time series. If XTrend is to indicate the general tendency, Equation 2.1 can
only hold if the time series contains no periodical components, as which
has been extensively studied in energy forecasting [167]. Multiple ways
to estimate the Trend will be elaborated later in this section. The decom-
position of data behaviour can also be done by seasonal decomposition,
since the data possess obvious seasonality (Figure 2.12). Yet the period of
the data may vary from dataset to dataset due to user configuration of the
welding system.

• Scattering, denoted by XScattering, characterising the local statistic vari-
ances. It can be calculated by XScattering = X−XTrend .

• Outliers, denoted by XOutlier, are large local deviations from the Trend.
They are a special type of scattering, and therefore are in an optional
bracket in Equation 2.1. Outliers are caused by unusual local disturbances.
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Figure 2.12: Q-Values, Trend, and Scattering across multiple dress cycles. The Trend of Q-
Values usually resets to a low level at the start of each dress cycle, rises as wear
effect intensifies, and reaches a stable level at the end of each dress cycle. The
pattern of Scattering of Q-Values is not distinctively visible.

Detection of outliers. Outliers can be detected using a statistic method
similar to the Interquartile Range rule [168]. X [k] ∈ XOutlier if:

X [k]≤ Q1−1.5× IQR | X [k]≥ Q3 +1.5× IQR (2.2)

where k indicates a time step of any temporal structure feature listed in
Table 2.1, Q1 stands for the first quartile, Q3 stands for the third quartile,
and IQR = Q3−Q1. The calculation of quartiles depends on the method of
Trend estimation (explained later in paragraphs of estimation of Trend).

This work also proposes an adjusted method for outlier detection, to take
into account the “shape” of the data:

X [k]≤ XTrend [k]−2× IQR | X [k]≥ XTrend [k]+2× IQR (2.3)

in which XTrend [k] is used instead of Q1 or Q3, and therefore the coefficient
of IQR is adjusted to 2 since XTrend [k] can be seen as approximately Q3−Q1.
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Estimation of Trend. Three types of methods are to estimate the Trend.

• Local Trend, which is obtained by using an acausal sliding window to
calculate the moving average (median) of data points belonging to the
same welding program (Equation 2.4, 2.5). The sliding window has a
length of tP, where P means only the points that belong to the program P

are included in the window, and XP denotes the sub-time-series of X that
belong to the same Prog. The calculation can be acausal because this is an
offline analysis. Median filter is less sensitive to local outliers compared
to mean filter. If the local trend is used for outlier detection, the quartiles
can be calculated within the sliding window.

XTrend [k] =
1

tP +1

k+tP/2

∑
i=k−tP/2

(XP[i]) (2.4)

XTrend [k] = median(XP[k− tP/2], ...,XP[k+ tP/2]) (2.5)

If the sliding window approaches the start or end of a dress cycle, the win-
dow should be shortened, only to include the data points within the same
dress cycle, because the data behaviour of end of the previous dress cycle
differs from the start of the next dress cycle significantly. This can be ob-
served from data and reasoned from the wearing effect of electrodes using
domain knowledge. It should be noticed, the selection of window length
tP is not trivial. Especially in case where a welding machine performs
many welding programs, or where a dress cycle is very short because of
e.g. manual interference, the data points belonging to the same welding
program in one dress cycle become very few, the estimation of the Trend
using very few points becomes unreliable. Appendix A.4 derives the min-
imal number of data points (often referred to as data tuples in this work to
avoid confusion) required for a reliable estimation.
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• Global Trend is an average (or median) of all Trends across all dress cy-
cles (or electrode cycles). For the k-th point, the global trend XTrend [k] is
calculated as the mean value (or median value) (Equation 2.6, 2.7) of all
data points with the same WearCount (NWCi) as the k-th point (denoted as
NWCi = NWCk ). The calculation should be also performed for each weld-
ing program separately. The calculation of Q1 and Q3 can use the global
data when the global trend is used for outlier detection.

XTrend [k] =
1
N

N

∑
i
(XP[i]), f or all i where NWCi = NWCk (2.6)

XTrend [k] = median(XP[i]), f or all i where NWCi = NWCk (2.7)

N denotes the number of all points XP[i] whose NWCi = NWCk . This calcu-
lation method assumes that the Trends of all dress cycles (or electrode cy-
cles) should be the same, as the different dress cycles (or electrode cycles)
should be nominally identical, according to domain knowledge. This is
partially correct, since the data behaviour in different dress cycles is some-
how similar for some welding machines (Figure 2.2 and Figure 4.15), but
more different for some other welding machines with change of produc-
tion plan (Figure 4.20).

• ML Model Trend is to use the model prediction of the target quality indi-
cator as the Trend. The ML models can be linear or non-linear, and should
only take the temporal structure features ({Ft}) as inputs (Equation 2.8,
2.9). Two examples are:

XTrend = LR({Ft}) (2.8)

XTrend = MLP({Ft}). (2.9)

Overall metrics and discrepancy metrics. The three components of data
behaviour can be quantified and reduced to six metrics.
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• The average value of Trend. This metric reflects the general level. The
difference of this metric across dress cycles or between welding programs
reflects the discrepancy between the dress cycles and welding programs:
Trendmean = mean(Trend)

• The degree of the change of Trend (the shape of the Trend is not ad-
dressed): Trendrange = max(Trend)−min(Trend)

• The average degree of Scattering: Scatteringmean = mean(|Scattering|)
• The degree of the change of Scattering:

Scatteringrange = max(Scattering)−min(Scattering)

• The number of outliers: #Outliers

• The mean value of the outlier deviations:
OutlierDevmean = mean({oi−bi}),oi ∈ Outliers,bi ∈ Trend

These six metrics can describe the data behaviour of each small data area,
e.g. dress cycles, electrode cycles, sub-time-series of different programs.
As can be seen in Figure 2.12, the data behaviour in different dress cycles of
RSW (electrode cycle in case of HS) could slightly be different. According
to domain knowledge, the degree of difference depends on the dressing op-
eration, or electrode properties. To characterise the overall data behaviour
and discrepancies between data areas, overall metrics are calculated as the
mean values of the six metrics across data areas to evaluate the overall be-
haviour, and the discrepancy metrics are calculated as standard deviations
to describe the difference across data areas. Table 2.6 gives details.

Table 2.6: Metrics to quantify data behaviour. std stands for standard deviation. Nt denotes a
data area prescribed by a temporal structure feature in Table 2.1.

Overall Metric Discrepancy Metric

Trendmean std(Trendmean,Nt )

Trendrange std(Trendrange,Nt )

Scatteringmean std(Scatteringmean,Nt )

Scatteringrange std(Scatteringrange,Nt )

#Outliers std(#OutliersNt )

OutlierDevmean std(OutlierDevmean,Nt )
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2.3 Data Preparation: Ontology-supported Data
Understanding and Integration

In order to perform data preparation in a way that can facilitate the subse-
quent machine learning, this work suggests to rely on semantic technolo-
gies, including ontologies, templates, reasoning, etc. The methodologies
in this section were developed in cooperation with Yulia Svetashova. The
author’s contribution is conceptualisation, co-design of the ontologies (in-
cluding the upper ontology, manufacturing templates, ML ontology, ML
templates, ML pipeline ontology), and design of mechanism for retrieving
information from ontologies for data preprocessing and ML modelling. Re-
lated publications include: [169, 170, 171, 172, 173]

Process and data understanding. Successful and efficient data preparation
requires necessary understanding of process and deep insights of data. Dif-
ferent types of manufacturing processes often involve complex physical or
engineering domain knowledge. However, to gain understanding of process
and data is often laborious and fallible for data scientists. The commu-
nication between data scientists, domain experts and measurement experts
can be time-consuming and error-prone due to their asymmetric knowledge
background and vocabulary discrepancy.

This work relies on semantic technologies to describe the process and data
with knowledge graphs. After a minimal training of knowledge of seman-
tic technologies, process experts, measurement experts and data scientists
can work together to encode knowledge (Figure 2.13) in domain ontolo-
gies by filling in fields of Manufacturing Templates, based on an upper on-
tology (named as Core Ontology, or shortly core) for manufacturing. The
core models the discrete manufacturing process [174] as entities connected
to each atomic operation that produces a product, and allows extension to
various specific domain ontologies for many variants of welding processes.
After that, they can use the ontologies as a “lingua franca” for process and
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Figure 2.13: Overview of ontology-supported machine learning development, where the
Core ontology is an upper ontology, ML ontology is a task ontology, and the
ML pipeline ontology is an application ontology (Figure 1.7).

data understanding. The domain ontologies constrain the process and data
description with formal language in a pre-defined way, so that the descrip-
tion becomes unambiguous, high-quality, easy to understand, and machine
processable.

Data integration. For the same manufacturing process, data collected from
different conditions and sources (Section 2.1.4) can have discrepancies due
to software versioning, individualisation for customers or specific engineer-
ing solutions. Data collected from different processes can have much com-
monness from the view of data science, e.g. similar mathematical structures
or semantic patterns.

By annotating data with uniformly defined structures and feature names
from ontologies, data collected from different conditions, sources or even
different processes with similarity can be integrated into a Uniform Data

Format. This simplifies the subsequent data analysis practice.

ML generalisability. Extensibility of machine learning approaches is very
desired in manufacturing industry. There exist numerous types of manu-
facturing processes and their variants. If some groups of processes can
be abstracted to common knowledge structures, so that machine learning
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approaches developed on one process can be extended to other processes
with acceptable amount of adaptation effort, progress of Industry 4.0 can be
largely accelerated.

This is possible with semantic technologies. After semantic annotation,
different datasets can be integrated into one Uniform Data Format (UDF).
The features in UDF are connected to common terms in core. The terms in
core are then linked to ML Pipeline Ontologies, which encode the knowl-
edge of some pre-designed ML Pipelines. By doing so, ML development
is facilitated significantly. A set of efficient ML pipelines needs to be de-
veloped beforehand, and then these pipelines can be configured, and gen-
eralised to other datasets through data preparation. This saves effort and
costly greatly, compared to developing individual ML pipelines for a vari-
ety of similar work for each dataset with even slight discrepancy.

This section introduces the mechanism of ontologies for Knowledge En-

coding and Data Integration. ML Generalisability will be elaborated in Sec-
tion 2.4.

2.3.1 Ontology-supported Process & Data Understanding

In the following, the upper ontology, manufacturing templates and domain
ontologies will be introduced.

Upper ontology: core. To provide a common knowledge architecture that
should be general for manufacturing processes, the upper ontology is de-
veloped. Manufacturing processes can be largely divided into discrete pro-
cesses and continuous processes [174], among which discrete processes are
comprised of single operations, each producing a distinct, countable item,
e.g. a welding spot on a car-body. Products of such manufacturing are easily
identifiable and differ greatly from continuous processes where the products
are undifferentiated, e.g. salt, oil, petrol. This thesis only discusses discrete
processes, for they are more relevant to electric resistance welding.
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In discrete manufacturing processes, there exist the following entities or
concepts:

• Physical entities and their organisation: machines, machine parts, produc-
tion lines, raw products, resulting products, product parts, sensors, etc.

• Processes: manufacturing processes, maintenance processes, and sequen-
ces of operations that comprise these processes.

• Software entities: manufacturing software such as control systems, func-
tional modules of software, pre-designed programs for manufacturing,
etc.

• Data or concepts to describe these entities and processes:

– Descriptive parameters of the physical entities, e.g. nominal and actual
measured geometry, material, surface and interaction properties of the
machines, machine parts, products, product parts, etc.

– Descriptive parameters of the processes, e.g. operation count, mainte-
nance count, etc.

– Prescriptive parameters of the processes, e.g. reference curves or set-
points of sensor measurements, control status, monitoring status, etc.

– Actual measurements of the processes or products, e.g. actual sensor
measurements, quality indicators, etc.

– Calculations or soft sensors of the software system, e.g. statistics of
sensor measurements, etc.

This work develops an upper ontology core to encode the general manu-
facturing knowledge. It is an OWL 2 ontology and can be expressed in the
Description Logics S(D). Currently, it has 1170 axioms, which define 95
classes, 70 object properties and 122 datatype properties. Of course, the core

allows further extension.
The main part of core is visualised in Figure 2.14, where the classes are

represented by rounded blue squares, object properties by black arrows, do-
main of object properties by starts of the arrows, and range of object prop-
erties by the ends of the arrows. This is an operation-centric view, intuitive
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Figure 2.14: Schematic illustration of the upper ontology core, serving as a common knowl-
edge architecture of manufacturing. Labels of object properties are omitted for
simplicity.

to process experts and convenient for data analysis, for manufacturing data
are often organised with operations as basic units. As is in Figure 2.14 il-
lustrated, an operation is the atomic process that takes raw product in and
produces a product, e.g. a RSW operation takes worksheets in and produces
a welding nugget. Operations have quality indicators. Some of them are
product properties, e.g. nugget diameter, and others are operation status,
e.g. Q-Value. Processes are sequences of operations.

The operations are performed by machines, which have machine parts.
Machines are controlled by software systems. Software systems have func-
tional modules. Functional modules can be measurement modules that con-
nect sensor measurements, modelled by observation collection reusing part
of sosa:Observation, or control modules that stores the control status and
pre-designed programs, etc. Programs prescribe the reference curves for
sensor measurement curves, and setpoints for other status or single-valued
measurements in adaptive control.

Manufacturing templates. Built on the Reasonable Ontology Templates
(OTTR) framework [93], manufacturing templates are fragments of knowl-
edge encoded in parametrised ontologies. By providing values (arguments)
for each parameter, even non-ontologists can easily instantiate templates to
consistent ontologies as instances of templates, which are then serialised as
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OWL axioms. The manufacturing templates contain 30 templates and are
connected to core. Templates use the same prefix core:.

Figure 2.15 schematically illustrates the physical entity templates, where
rdfs:subClassOf is represented by blue arrows, data type properties by dashed
black arrows, rdfs:Literals by black squares, and the rest follows the same
style of Figure 2.14. The physical entity templates can be used to create sub-
classes like core:Machine, core:MachinePart, and core:RawProduct. To create
a class using this template, the user needs to first select a super class, e.g.
core:Machine, and fills in fields of the template, like Name: RSWMachine,
and Performs operation: RSWOperation. After this, a series of classes and
properties will be automatically created for RSWMachine, including many
descriptive parameters, such as material, geometry and surface condition.
Each of them represents an “Form” [175], or super class and its proper-
ties. For example, core:Material is a super class of all materials. It can
have the name (core:hasName) xsd:"Steel", and many material properties
modelled with rdfs:Class. One example is core:EModulus, which has value
(core:hasEModulusValue), and unit (core:hasEModulusUnit).

The class Interaction is used to model interaction properties between
physical entities. For example, between the two worksheets of RSW, there
could exist adhesive; between any two contacting physical entities, the con-

Figure 2.15: Schematic illustration of the templates of physical entity, its properties, and
subclasses, including machine, machine part, raw product and product part.
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Figure 2.16: Schematic illustration of (a) the templates of observation collection. (b) the
templates of quality indicator.

tact properties like thermal or electric conductivity need to be described for
simulation data.

Figure 2.16a schematically illustrates the observation collection template
for creating classes of process curves (e.g. current curve, voltage curve),
which include sequences of measurements (observations) with value, unit,
and ordered with time stamps. The welding process is comprised of several
stages, e.g. in RSW there exist initial, start, welding, cooling stages. In
adaptive control mode, the process curves have reference curves (ideal curve
profiles). The observation has measurement contexts like the measuring
sensor, or the operator who performed the measurement, etc.

Figure 2.16b demonstrates the template mechanism in datatype property
level. The example here is NuggetDiameter, which is the product property
of the RSW process. The user needs to select a super class (product prop-
erty), give a name, select the more general property, link it to the product,
and check if it is a quality indicator. The datatype properties of a quality
indicator will then be created to the nugget diameter with the corresponding
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internationalised resource identifiers (IRI) changed, e.g. hasQualityIndica-

torUnit is changed to hasNuggetDiameterUnit.

Domain ontologies. With help of templates and core, domain ontologies
can be easily created. Figure 2.17a is an illustration of the domain ontol-
ogy for resistance spot welding rsw. All classes are subclasses of classes in
core. Their object properties and datatype properties “inherit” that of core

and templates. The rsw is also operation-centric, where an RSWOperation

takes chassis part in and produces welding spot. The chassis part consists
of worksheet top and worksheet bottom. These two worksheets have sheet-
sheet-interaction, where their interaction properties, like adhesive, contact
thermal conductivity, etc., are modelled. The welding spot has an important
product property, the spot diameter, which is a subclass of quality indicator.

Figure 2.17: Schematic illustration of the domain ontology rsw. Labels of object properties
are omitted for simplicity.
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As is illustrated in Figure 2.17, the RSWOperation is performed by an
RSWMachine, which has machine parts of welding gun, welding shaft top
and bottom, welding cap top and bottom, etc. The welding caps have system
component status of WearCount and DressCount, which are operation count
and maintenance count. The welding machine is controlled by the software
system WeldingControl, which has three functional modules. Measurement-

Module collects the process curves, ControlModule performs adaptive con-
trol and stores welding programs, prescribing the reference curves and set-
points and the MonitorModule that monitors the welding operation and cal-
culates operation status like Q-Value and ProcessStabilityFactor, which are
both quality indicators.

Figure 2.17b is an illustration of the domain ontology for hot-staking hs.
It is very similar to rsw when the domain knowledge is represented using
the common architecture core and templates.

After ontology construction, the domain experts, measurement experts,
and data scientists can talk using the visualised ontologies. Since they all
have understanding of the upper ontology core, it becomes very easy for
them to discuss the detailed entities, concepts and data in each welding pro-
cess. They can continue to expand the ontologies using templates when new
aspects of process or new data need to be considered. This greatly sim-
plifies process and data understanding and facilitates the machine learning
development process.

2.3.2 Ontology-supported Data Integration

The constructed ontologies do not only serve as a means for understanding,
but also for data integration. This section elaborates the issues and solutions
of data integration.

Variety of data. Following the same physical laws and engineering prin-
ciples, the three sources in the multi-fidelity data model (Section 2.1.4) are
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very similar in nature, but can be very different in format. The effort to unify
the data formats is non-trivial because of the variety of data:

• Variety in physical storage level: they are collected from different loca-
tions, and stored in storage devices.

• Variety in measurement technology level:

– They can have different features because different sensors are in-
stalled. For example, in simulation there exist a lot more (virtual)
sensors than in lab data or production data.

– The same features may have differences in physical meanings. E.g.,
the sensors may be installed at different positions. Reasons could be
that simulations do not model the complete machine so that some vir-
tual sensors in simulation need to be adjusted to realise their similar
functionality.

– Sensor signals can be collected with different measuring frequencies
due to e.g. different measuring devices.

• Variety in data level:

– Semantic difference: features representing the same or similar physical
meanings usually have different variable names. Reasons could be there
exist multiple versions of the same control system, or simulation data
follow another naming convention, etc.

– Format difference: The data can be stored in different formats, includ-
ing SQL databases, xlsx (Excel) tables, json files, xml files, and further
custom defined formats.

Raw data formats. Depending on the software system of welding pro-
cesses, raw data formats are very different. They are recorded by different
devices, sometimes partially merged in the software system. All of them are
recorded with time stamps (in normal cases). The main categories include:
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• SQL databases, which are essentially tables with data instances (of weld-
ing operations) in rows and features in columns [176]. For example, RSW
production data contain four protocols stored in SQL databases.

– main protocol: with data recorded by the welding software systems.
Each row records a welding operation, columns are features including
available welding quality, control information, system component sta-
tus;

– error protocol: with minor errors relevant to possible quality deteriora-
tion or inefficiency;

– failure protocol: with more severe quality failures;
– change protocol: with recorded manual interference by operators;

• Excel, csv, and txt files, which are still SQL-like relational databases.
Examples are: feedback curves database with sensor data of resistance,
pulse width modulation, force, etc., measured per millisecond during the
welding process; and meta settings database with general configurations
of welding sheet material, geometry, adhesive, etc.

• JavaScript Object Notation (JSON) is human-readable text to store and
transmit data objects consisting of attribute-value pairs and serialisable
values [177]. JSON is used for e.g. storing data collected from multiple
control, measurement and analysing systems of Hot-Staking.

• Extensible Markup Language (XML) [178], which is a both human-
readable and machine-readable. This is used for e.g. online changing
welding control configuration.

• Output database (ODB) files generated by simulation (e.g. using Abaqus).
These files are mainly the output of simulation data source, and need to
be post-processed and extracted to other formats.

• RUI files, a special format used by Bosch Rexroth for storing process
feedback curves and reference curves.

Feature types and unified file formats. A manufacturing process or an op-
eration can be described by many features. A Data Tuple (DT) [50] is used
to indicate a single data instance that contains all features fully describing
the instance. The common types of formats of these features are listed be-
low.
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1. Quality indicators: product quality indicators or operation quality

indicators, whose estimation is the central task of quality monitoring.
2. Identifiers: features to identify data tuples, e.g. unique IDs for each

manufacturing operation.
3. Single numeric features: single numbers for describing a welding

operation, corresponding to the ratio scale in level of measure [179],
e.g. actual welding time, temporal structure features (Section 2.1.2),
measurements statistics of feedback curves.

4. Single categorical features: these are distinct classifications and do
not involve a quantitative value or order, corresponding to the nomi-

nal scale [179], such as failure types, program numbers, etc.
5. Time series: sequences of numeric values with temporal structure,

e.g. the force measurement continuously collected by sensors.
6. Other types of data formats, e.g. images, videos, log-files.

Among which data of Type 1 should always be present, otherwise the
task of process monitoring has no target feature; then data of at least one
of Types 3–6 should be present, serving as the input features of ML model;
data of Type 2 is needed to provide correspondence between data items of
the Types 3–6 and between them and the ones of Type 1.

The Unified File Formats is a series of formats with pre-defined struc-
tures, and should allow transformation between each other. For example:
(1) csv files with Type 1-4 stored in one big csv table and Type 5-6 stored
in many csv tables in subfolders; (2) mat files with all types stored in MAT-
LAB structures; (3) JSON files with all types stored in nested attribute-value
pairs; and many other file formats.

Uniform data format. After data are transformed into unified file formats,
their feature names need to be changed to unified feature names. This is es-
sential for allowing any algorithms of data visualisation, data preprocessing
or ML modelling in the subsequent steps to access the features in a uniform
manner.
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The domain experts or measurement experts can inspect the raw feature
names, then map them to the domain feature names (datatype properties) of
the domain ontologies created by themselves, generating the raw-to-domain
mapping (Raw-to-DO). These domain feature names are then simplified to
unified feature names by dropping repeating terms like "has", "Value(s)",
resulting in a table with the example illustrated in Table 2.7. This table
maps the raw feature names from different datasets to the system of unified
feature names. The resulting data with unified feature names in unified file
formats are named as Uniform Data Format (UDF) in this work.

2.3.3 Linkage to Machine Learning Ontology

The next step is to connect the domain feature names with terms in ma-
chine learning ontologies, so that data analysis algorithms can access these
features through the machine learning feature groups. This is achieved by
first mapping the domain feature names (in domain ontologies) to core fea-
ture names (Table 2.8), which are then mapped to feature groups in machine
learning ontology ml (DO-to-Core-to-FG, or DO-to-FG) (Section 2.4.6).

The DO-to-FG mapping allows the subsequent data visualisation or analy-
sis to operate only with ML feature groups, without tailoring to specific fea-
tures or formats in different raw data, which greatly increases the reusability
of scripts of data visualisation and ML pipelines. Furthermore, the mapping
can also be configured by the users (domain experts, measurement experts,
data scientists, etc.). With a set of scripts established beforehand, these users

Table 2.7: The raw-to-domain mapping that maps raw feature names to terms in domain on-
tology rsw and the unified feature names.

Raw variable name Domain feature name Unified feature name

SimulationID rsw:hasRSWOperationID RSWOperationID

welding_diameter_top_max rsw:hasNuggetDiameterValue NuggetDiameter

Cap_wear rsw:hasCapWearStatusValue WearCount

EPOT_ShaftTop rsw:hasCurveVoltageValues CurveVoltage

TotalResistance rsw:hasCurveResistanceValues CurveResistance
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can directly perform data visualisation or data analysis without diving deep
into the scripts, which largely facilitates the accessibility and generalisabil-
ity of ML pipelines.

2.4 Data Preprocessing and ML Modelling: ML
Development for Quality Monitoring in ERW

Data preprocessing and ML modelling are deeply interdependent and can be
seen as the core activity of ML-based quality monitoring in ERW. To address
the OQ 5, Evaluation and Selection of ML Methods, literature attempted to
categorise machine learning methods into different groups (Section 1.4.1).
Similar to this approach, this work organises a wide range of suitable ML
methods into the machine learning pipelines illustrated in Figure 2.18. This
schema is adapted from the pipeline by Fayyad [44] and Mikut [48].

In the workflow, questions need first to be defined and raw data should be
prepared to Uniform Data Format (UDF). After that, the data are analysed
in two steps: preprocessing and ML modelling. The results are interpreted,
evaluated, and visualised, based on which decisions are made and a best
ML model is selected. The ML model is deployed in industrial application
and should be constantly monitored to cope with concept drift. During the
model deployment and monitoring, data are continuously collected, and new
questions are defined. These steps form a closed loop, and many of them
are iterative between each other, depicted by double-headed arrows.

Table 2.8: Example of the DO-to-FG mapping that maps domain feature names in rsw to ML
feature groups in ml

Domain feature name Core feature name ML feature group

rsw:hasRSWOperationId core:hasOperationID ml:Identifier

rsw:hasNuggetDiameterValue core:hasQualityIndicatorValue ml:QualityIndicator

rsw:hasCapWearStatusValue core:hasToolWearingStatusValue ml:SingleFeature

rsw:hasCurveVoltageValues core:hasObservationCollectionValues ml:TimeSeries

rsw:hasCurveResistanceValues core:hasObservationCollectionValues ml:TimeSeries
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Figure 2.18: Workflow of ontology-supported machine learning pipelines adapted from [44]
and [48]. Ontologies are optional for both data preparation and ML pipeline of
FE.

The methods of ML-based data analysis are organised into two types of
ML pipelines [51], including Feature Engineering (FE) and Feature Learn-
ing (FL, or representation learning). Two traditional ML pipelines are

Feature Engineering (FE) - Classic Machine Learning (CML)
Feature Learning (FL) - Neural Networks (NN)

Moreover, these four components are not mutually exclusive. Instead,
they can also be combined as FE-NN and FL-CML.

The outputs of machine learning methods can have the following formats:
categorical values (for classification problems), numerical values (for re-
gression problems), time series (for regression with temporal structures,
e.g. forecasting), images (for regression with spatial structures, e.g. im-
age de-noising, repairing, generation, etc.), etc. These outputs need to be
interpreted using domain knowledge. Only after this step, the results can be
used to support decision-making.

The following subsections will dive deep into particularities of data pre-
processing and ML modelling for quality monitoring in ERW.
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2.4.1 Data Preprocessing: Handling Data with
Hierarchical Temporal Structures

Hierarchical feature extraction. There exist several time levels in the hi-
erarchical time structures (Figure 2.19). Features extracted from the time
series on the welding time level are vectors containing compressed informa-
tion from the time series. These time series extracted features are on the
welding operation level, i.e. each welding operation corresponds to a set
of time series extracted features. The time series extracted features can be
concatenated with other features of the welding operation level, e.g. single
features, and the consecutive concatenated features form another time series
on the welding operation level. These concatenated features can be further
extracted to features on the same time level or on the next time level, e.g.
welding program level or dress cycle level. The final achieved level depends
on the desired granularity of time levels.

In the FE pipelines (Figure 2.18), different types of features in UDF are
processed by corresponding feature engineering algorithms. They are then
concatenated for further feature engineering. This procedure can continue
to repeat in a cascading manner. Similarly, in the FL pipelines, different
types of features in UDF are preprocessed to adapt their format (e.g. ma-

Figure 2.19: An example of hierarchical feature extraction on single features and process
curves (time series). Feature extraction can be performed with feature engineer-
ing or feature learning, resulting in two types of ML pipelines in Figure 2.18
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trix dimension) for corresponding feature learning neural networks. They
are then concatenated and can go through further preprocessing and feature
learning. This procedure can continue to repeat in a cascading manner.

At the end, the extracted features (or latent variables) can be modelled by
further neural networks or classic ML methods after feature reduction, for
solving classification or regression tasks.

Data reshaping to accentuate short-time dependency. For predicting
quality of the future welding operations (typically one time step in the fu-
ture, i.e. the next welding operation), the input features, extracted features
or latent features need to be reshaped to small time snippets of a certain
look-back length.

If the consecutive welding operations are assumed independent, the look-
back length should be one and the output feature will be at the same time
step as the input features. Since the temporal dependency of welding opera-
tions is assumed in this work, the look-back length will be normally greater
than one.

The look-back length cannot be infinite or varying. This is because, on
the one hand, most machine learning algorithms require the input features
to have a fixed length, and on the other hand, the data just before the next
operation are assumed to be more influential for the next operation. There-
fore, only a certain number of welding operations before the next welding
operation will be taken into account for predicting the quality of the next
operation.

Figure 2.20: An example of data reshaping to handle data of hierarchical temporal structures
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In this way, the data are reshaped to accentuate short-time dependency
(Figure 2.20). The extracted features are represented by N×s matrix, where
N is the number of data tuples in the dataset to be preprocessed and s is the
number of features. The matrix will be folded to a three dimensional matrix
with the extra dimension l for the number of previous welding operations
to be considered. If the subsequent machine learning algorithm is a classic
machine learning method that can only handle data in flat table format (con-
sisting of rows and columns based on relational models [176], often can be
queried with SQL), the 3D matrix will be flattened to a flat table and fed
into classic machine learning methods. If the subsequent machine learning
algorithm is a method that can handle temporal structure, e.g. RNN, the 3D
matrix will be directly fed into the ML method.

Data splitting according to temporal structures. Data splitting also needs
to take the temporal structures of data into consideration. The data are split
into training, validation and test set according to some complete units of
a time level. Figure 2.21 illustrates data splitting of Q-Value according to
complete dress cycles. According to domain knowledge, the application
scenario will only be to test the developed machine learning methods on
complete dress cycles. It is therefore more meaningful to split the data also
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Figure 2.21: Example of data splitting rounded to complete dress cycles
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in this way, to test the generalisability of the methods on complete dress
cycles.

There exists an issue about data overlapping. For example, a dataset is
split into trainingx set (including training and validation data) and test set
according to the output variable QI (Figure 2.22). Quality prediction of
the first operation in the test dataset (QIi+1) would need its input features
of previous l time steps (from Inputsi−l+1 to Inputsi), among which l− 1
data tuples overlap with the input features (from Inputsi−l to Inputsi−1) for
quality prediction of the last operation in the trainingx dataset (QIi).

It is arguable whether this issue of data overlapping would cause informa-
tion leakage since the input features of different time steps possess different
temporal meanings for predicting the output. This work will strictly avoid
data overlapping, resulting that the first l output in the test dataset cannot be
predicted, as is the same case for the trainingx dataset. The data overlap-
ping between training dataset and validation dataset is not critical since the
information of validation dataset is used anyway for model selection.

2.4.2 Data Preprocessing: Domain Knowledge Integrated
Feature Engineering

FE on TS: Unifying time series lengths. The Time Series (TS) in UDF
need to be unified to the same length before further processing. Possible
methods [180] include Truncation, Padding, and Resampling.

• Truncation is to cut all time series to the same length, often the minimal
length in the dataset. This causes loss of information.

• Padding is to elongate the time series to the same length, often the maxi-
mal length in the dataset, with different values that are physically mean-
ingful. For example, current, voltage and pulse width modulation can
be padded with zero, since after welding they are de facto zero, while
resistance should be padded with the last value, for resistance is the in-
trinsic property of matter and does not disappear after welding. This does
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2 A Framework of Machine Learning in Electric Resistance Welding

not cause information loss, and is the most physically meaningful, but
padding will create artificial information if e.g. the subsequent data pre-
processing is PCA (See the sudden jumps of the principle components in
Figure 2.23a after padding).

• Resampling is to scale the time series to the same length. This preserves
all information and does not create artefacts, but it will destroy some pat-
terns in data. For example, the time point between the initial stage and
start stage in the raw data will be always at t0 ms. After resampling, this
time point for time series of different lengths will be moved to different
places.

FE on TS: Feature extraction. After unifying the lengths, various feature
extraction strategies can be adopted [56, 57, 58, 125, 135, 141], depending
on the application scenario. Some are discussed below:

• Statistics: eight statistic features of minimum [135], maximum [38], min-
imum position, maximum position [125], mean [135], median, standard
deviation [135], and length (welding time [139]) are the most basic de-
sign. A minimal understanding of domain knowledge is required.

Figure 2.23: (a) Artefacts in principle components caused by padding current curve with zero.
(b) Example of domain knowledge integrated feature extraction for resistance
curve [38, 135, 36, 125]
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• Domain knowledge integrated feature extraction: as Figure 2.23b illus-
trates, features like slope (slope = (max−min)/(mxpo−mnpo) [126]),
drop, end value, root mean square, skewness, etc., can be of interest, de-
pending on the domain knowledge and application scenario.

• Segmentation [180]: time series can be divided into segments according to
the welding stages. Feature extraction can be performed on each segment
to provide more detailed information.

• Principle component analysis (PCA) [181]: time series can be aggregated
to several principle components and to preserve the desired variance level
by selecting the number of components. With PCA, the original time
series can be reconstructed from the components. This is especially de-
sired for application of e.g. optimisation of future process curves which
requires inverse calculation of the optimal time series.

The feature extracted from time series using feature engineering will be
referred to as Time Series Features Engineered (TSFE) in this work.

FE on SF: Processing temporal structure features. Strategies for feature
engineering on single features are designed based on the meaning of features
in domain knowledge, changing the representations of the raw features. The
extracted features are denoted as Engineered Single Features (EngSF). One
proven strategy [170] is to generate new features based the temporal struc-
ture features to highlight some temporal relationships. Three examples are
listed:

• WearDiff is calculated as the difference between WearCount of two con-
secutive data tuples, characterising the degree of change of wearing effect.
The value is normally ONE if the data are continuous; if some data tuples
are missing, the value will be other numbers that correctly describe the
wearing effect; and the value will be a large negative value after each
fresh dressing.

• NewDress will be ONE after each dressing, and ZERO for other welding
operations.
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• NewCap will be ONE after each Cap Change, and ZERO for other weld-
ing operations.

One advantage of these features is that before the next welding operation
happens, the WearCount, DressCount, and CapCount of the next operation
are already known, since they are artificially designed incremental features.
The EngSF based on them are therefore also known. These features corre-
sponding to the next welding operation can therefore be used for forecasting
quality of future welding operations.

FE on SF: Encoding categorical features. Categorical features are fea-
tures with non-numerical values (e.g. material type is steel or aluminium)
or features whose values are numerical but they can not be treated as ordinal
numbers (e.g. failure type I, II). Most machine learning algorithms can only
deal with numerical values (except for a few exceptions, such as Random
Forests). The categorical features therefore need to be first encoded as nu-
merical features. Common methods include Ordinal Encoding and One-Hot

Encoding [182].

• Ordinal Encoding is to simply transform the categorical feature to a series
of integers. For example, steel can be encoded as 1, aluminium as 2,
copper as 3, etc. The advantage is its simplicity, while the disadvantage
is the misrepresentation of relationships between the encoded values, e.g.
aluminium (2) is not twice “big” as steel (1).

• One-Hot Encoding is to encode categorical features as a “switch” between
models. For example, steel can be encoded as a vector [1, 0, 0], aluminium
as [0, 1, 0], and copper as [0, 0, 1]. The advantage is that there exists no
misrepresentation of relationships between the encoded values. The dis-
advantage is the length of the vector is determined by the possible values
of the feature. The consequence is, e.g. a model trained on a dataset with
three material types cannot be transferred to another dataset with four ma-
terial types, if the newly added feature value has not been foreseen in the
encoding.
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These two methods all have their disadvantages, and are not suitable for
encoding the feature “Welding program" (Prog1, Prog2, etc.), which is a
very important feature in welding. According to domain knowledge and
observing from Figure 2.2b, Q-Values with different welding programs
have different behaviours, but this work does not consider Program Number
(ProgNo) as a good feature for machine learning modelling. The same value
of ProgNo would have different meanings for different welding machines
in case of using raw values of ProgNo for modelling, and the number of
features may change in case of One-Hot Encoding. Therefore, this work
creates another type of features to incorporate the information of ProgNo
implicitly, avoiding using the feature ProgNo (Figure 2.24).

Further FE: Incorporating welding program information. Firstly, all
single features that form time series on the welding operation level will be
decomposed into sub-time series, each only belonging to one ProgNo. Sec-
ondly, the aforementioned EngSF are extracted separately from each sub-
time series. We give a name to this group of features: Engineered Single

Features considering ProgNo, (EngSF_Prog). For example, WearDiff_Prog

is calculated as the difference between consecutive WearCounts that belong
to the same ProgNo. NewDress_Prog and NewCap_Prog are calculated sim-
ilarly.

Figure 2.24: Example for generating EngF_Prog with data of Welding Machine 1, modified
from [170]. Each dot indicates a welding spot and its data. Purple dots belong
to Welding Program 1 and yellow dots belong to Welding Program 2. All single
features that form time series on the welding operation level are decomposed
into sub-time series, each only belonging to one ProgNo. The Engineered Fea-
tures considering ProgNo (EngF_Prog) are extracted separately from each sub-
time series.
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Moreover, the following features are also created to incorporate the infor-
mation of welding program implicitly.

• RawSF_Prog indicates the features generated by decomposing the raw

single features of the data points belonging to the same ProgNo.
• TSFE_Prog indicates the features generated by decomposing the time se-

ries features engineered of the data points belonging to the same ProgNo.

EngSF_Prog, RawSF_Prog, and TSFE_Prog are grouped under the name
Engineered Features considering ProgNo (EngF_Prog).

Other feature engineering strategies on welding operation level are pos-
sible, depending on the domain knowledge and application scenarios, e.g.
creating polynomial features (I2), interaction features (I×U), exponential
features (et ), logarithmic features (ln(F)), etc.

2.4.3 Data Preprocessing: Feature Reduction

Feature reduction is crucial for applying classic ML methods on manufac-
turing data for many reasons: (1) Too many features can lead to over com-
plex machine learning models, which tend to overfitting; (2) Sometimes the
number of features even exceed the number of data tuples when data col-
lection is costly; (3) Too many features also lead to long computation time,
which is not desired in an industrial application; (4) Not all features contain
necessary information of building a successful model; (5) Many features
in manufacturing data contain information redundancy, e.g. resistance can
be derived from current and voltage, and high collinearity between input
features are therefore prevalent.

This work suggests using step-wise forward feature selection [48] (SFFS)
for feature reduction in ML pipelines of FE-CML, which is efficient and ef-
fective. Other feature selection methods, e.g. recursive feature elimination,
univariate F-Test, normally yield worse performance than SFFS in experi-
menting. Highly correlated features will cause problems in feature selection
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and regression. Step-wise forward feature selection is relatively insensitive
to high collinearity problem.

For ML pipelines of FL-NN, feature reduction is automatically handled
by neural networks.

2.4.4 Data Preprocessing: Normalisation

Normalisation is necessary to make data analysis scale-independent, espe-
cially important for calculation of distance (dissimilarity) or for ML meth-
ods that assume a zero-average, e.g. MLP. Normalisation methods used in
this work include:

• Min-Max normalisation [183] (also called One-Zero normalisation) is to
scale the data into a range of (0,1) (Equation 2.10, where xn is the nor-
malised data).

xn =
x−xmin

xmax−xmin
(2.10)

• Z-score normalisation [183] (also called standard-score normalisation) as-
sumes the data conform to a Gaussian distribution and sets the mean value
of data to zero and standard deviation to 1 (Equation 2.11), where µx is
the mean value of xn and σx is the standard deviation.

xn =
x−µx

σx
(2.11)

For input features of ML models, normalisation should always be per-
formed. For output features, if their scale is fixed to a level, sometimes it’s
possible or even better to not perform normalisation. For example, when
mape is used as the performance metric, z-score normalisation would turn
many target values to zero and mape becomes inapplicable. In this case,
mape should be calculated after “de-normalisation", that is to rescale the
prediction results back to the original scale of the prepared data. The nor-
malisation parameters (e.g. xmin, xmax, µx, σx) are learned from the training
data, when the data are split into training data and test data), or from the
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trainingx data (including the training data and the validation data), when the
data are split into training data, validation data and test data.

2.4.5 ML Modelling: Classic Machine Learning Method
Selection

Classic machine learning methods require the input features to be reshaped
to a flat table-like data format (consisting of columns and rows similar to a
SQL relational table), and normally assume these input features are indepen-
dent from each other. Linear regression (LR) is suggested to begin with for
solving every problem, according to the principle of Ockham’s razor [184].
The performance of LR models provides a first estimation of problem com-
plexity. Polynomial regression (PolyR) is suggested to be tested after lin-
ear regression, for it provides insights into degree of data non-linearity and
feature importance when interpreted with domain knowledge. Multi-layer

perception (MLP) with one hidden layer is recommended for data with rel-
atively high complexity or high non-linearity. K-nearest neighbour (kNN)
is recommended for small datasets and locally linear data.

If classic methods do not yield satisfactory performance, testing feature
learning methods becomes more interesting (Section 2.4.7).

2.4.6 Data Preprocessing and ML Modelling:
Ontology-enhanced Machine Learning for FE-CML

Semantic technologies like ontologies and ontology templates allow con-
structing semi-automated and configurable machine learning solutions. The
pre-requisites are: (1) ML solutions comprised of modularised machine
learning components, and (2) a set of ontological models, including a pre-
designed (and extensible) ML ontology, ML templates, and ad hoc designed
ML pipeline ontologies (Figure 2.13). The intuition is to parametrise ML
solutions with ontological models. In particular, the ML ontology prescribes
the allowed solution space for constructing ML pipelines; ML templates are
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the parametrised ontology fragments to instantiate modularised ML com-
ponents; and ML pipeline ontologies encode knowledge of concrete ML
solutions for specific questions. With these ontological models, users like
data scientists, engineers and process experts, can configure, extend and
construct ML pipelines without diving into details of ML scripts. Instead,
based on a set of pre-designed ML solutions, the users only need to adapt
ML solutions to new datasets by annotating raw data with domain ontology
terms or feature groups for the new dataset; and configure or design new
ML solutions by constructing ML pipeline ontologies using ML templates.
This thesis discusses ontology-enhanced Feature Engineering-Classic Ma-
chine Learning (FE-CML) solutions. Ontology-enhanced ML solutions for
FL-NN awaits future research.

ML ontology. Following the same principles of process description using
ontologies, ML knowledge is encoded beforehand into formal language in
the ML Ontology, (ml, Figure 2.13). ML Ontology is a Task Ontology (Fig-
ure 1.7b), which prescribes the general knowledge of the task of machine
learning analysis, such as the general workflow of ML pipelines, feature
groups, their applicable processing algorithms, resulting processed features,
and ML algorithms. ML Ontology will be combined with ML templates

to create ML pipeline ontologies (application ontology in Figure 1.7b) for
specific application scenarios.

Figure 2.25 schematically illustrates ml for describing a general work-
flow of ML pipelines in Figure 2.18, in which the visualisation techniques
follow that of Figure 2.14. An ML pipeline starts from the prepared data
(modelled in feature prepared layer), goes through a series of data prepro-
cessing steps (feature processing layer and feature processed layer) and fi-
nally reaches the ML modelling steps, including specifying the input and
output features (ML feature layer), choosing ML modelling algorithms (ML

modelling layer), resulting in ML models (ML model layer). The prepared
data are annotated with FeatureGroup in feature prepared layer, which can
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be reasoned from the DO-to-FG mapping (Table 2.8) and allows manual
configuration. Feature processing algorithms are linked to suitable/allowed
input Feature Groups and output Feature Processed Groups. The feature
processing and ML modelling can be better understood with examples of
ML templates in the following text.

ML templates. Figure 2.26a illustrates ontology-supported feature pro-
cessing with the example of the algorithm: GetTSStats. To instantiate the
GetTSStats into an ML pipeline ontology, the user needs to select the su-
per class, give a name, and choose the input feature group from a list of
allowed feature types encoded in ml. If FG-TimeSeries is chosen, it means
all its subclass features (e.g. time series of current, voltage, resistance) will
be processed by GetTSStats. The output from FPG-TSStats are reasoned
from ml, and all subclass names (i.e. feature names) are also reasoned using
a pre-defined naming convention. More fine-granular manual configuration
on feature level and naming is also allowed.

Figure 2.26b schematically illustrates some example templates of feature
processing algorithms for FG-Wear, FG-Count, FG-SingleFeature and their
resulting feature processed groups. Apart from feature engineering to gen-
erate WearDiff, NewDress and NewCap introduced in Section 2.4.2, some

Figure 2.25: Schematic illustration of part of the machine learning ontology ml.
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common feature engineering strategies to generate polynomial features, re-
ciprocal features, etc. are also illustrated in the figure.

Figure 2.27 schematically illustrates the template for ML modelling, in
which the user needs to choose some Feature Processed Groups (FPG) as
the input ML features (MLF-Input) and output ML features (MLF-Output).
The model class will be reasoned.

ML pipeline ontology. ML pipeline ontologies are instantiated using ml

and ML templates. Figure 2.28 schematically illustrates a simple ML
pipeline ontology, where statistic features are extracted from time series,
and concatenated with single features and used as the input features to pre-
dict the output feature, quality indicator, using linear regression.

Ontology-enhanced machine learning. The ML pipeline ontologies en-
code knowledge of ML solutions, which are ML pipelines starting from
Feature Groups (FG), through Feature Processing Algorithms (FPAlg) and
Feature Processed Groups, to ML Algorithms (MLAlg). With the domain

Figure 2.26: Schematic illustration of the templates for feature processing
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Figure 2.27: Schematic illustration of the template for ML modelling.

ontology, the core ontology, the ML ontology and an ML pipeline ontology,
three mappings (Figure 2.13) can be inferred via e.g. SPARQL queries: Do-
main feature names to Feature Group mapping (DO-to-FG), Feature Group
to Feature Processing Algorithm to Feature Processed Group mapping (FG-
FPAlg-FPG), and Feature Processed Group to ML Feature to ML Algo-
rithm mapping (FPG-MLF-MLAlg). Figure 2.29 illustrates the complete
ontology-enhanced ML pipeline with the simple example pipeline in Fig-
ure 2.28 in the following steps:

1. The raw feature names are retrieved from raw data and features are re-
named to domain feature names using the Raw-to-DO mapping (Sec-
tion 2.3.2);

2. All features are assigned with FG based on the DO-to-FG mapping (Sec-
tion 2.3.3);

3. Based on the FG-FPAlg-FPG mapping, the corresponding FPAlg for each
FG is retrieved. All FPAlg are connected with ML script modules to

Figure 2.28: Schematic illustration of an example ML pipeline ontology.
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2 A Framework of Machine Learning in Electric Resistance Welding

process the features. The processed features are annotated with FPG. For
example, the GetTSStats is retrieved for FG-TimeSeries. Thus, the ML
module GetTSStats processes all time series features and generate the
time series statistic features, like VoltageMean, ResistanceMinimum, etc.
The time series statistic features are annotated with FPG-TSStats;

4. Feature processing can have multiple sub-steps, where the newly gen-
erated features are further processed by FPAlgs to output new FPGs.
In the example, the time series statistic features (annotated with FPG-

TSStats) are concatenated with the unchanged single features (anno-
tated with FPG-SFMaintained). The OperationID (annotated with FG-

Identifier) is used for finding the correspondence between them so that
they can be correctly concatenated.

5. According to the FPG-MLF-MLAlg mapping, some FPGs are selected
as the input for ML modelling, and some other FPGs (also FGs are possi-
ble) as output. In the example, the concatenated features (annotated with
FPG-SFConcatenated) are selected as MLF-Input and the NuggetDiame-
ter (annotated with FG-QualityIndicator) as the MLF-Output;

6. The MLAlg trains a model on the input and output data pairs. In the
example, linear regression is used to take in the concatenated features to
predict the diameter, and generate a LRModel.

The execution of the described pipeline is possible due to the knowledge
encoding with ontologies for 1) domain knowledge, 2) ML feature process-
ing strategies and 3) classic ML algorithms and order of their application.
Semantic enhancement enables users to start with the initial (Raw-to-DO)
mapping and execute these ML pipelines with small adjustments and adap-
tations to new datasets and new questions. The generated four mappings
during data preparation, data preprocessing and ML modelling can also be
used to inspect the resulting models and the underlying data, to explain the
feature importance and to interpret the best model.
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2.4.7 Data Preprocessing and ML Modelling: Hierarchical
Feature Learning

An alternative ML pipeline to the hierarchical feature engineering intro-
duced in Section 2.4.2 is hierarchical feature learning. The general schema
is already illustrated in Figure 2.18. Preprocessing is required to make the
data suitable for feature learning, e.g. align the data matrices dimensions
by reshaping, padding, truncation, etc. Feature learning (FL) for single
features can be performed with MLP. FL for time series (sequences with
temporal dependencies) can be performed with RNN, FL for images (ma-
trices with spatial dependencies) can be performed with CNN, and FL for
features with temporal and spatial structures (e.g. videos) can be performed
with a combination of RNN-CNN. After the initial feature learning on dif-
ferent feature types, the resulting latent features can often be concatenated
for further feature learning. After all feature learning layers, some neural
network layers are followed to perform ML modelling. Note that there ex-
ists no clear boundaries between feature learning and ML modelling. This
separated description is only of philosophical meaning.

Figure 2.30 illustrates an example of the ML pipeline of FL-NN for pre-
dicting the Q-Value of future welding operations. Process curves padded to
length k form time series on the welding time level. A total number of sz of
these curves of l previous welding operations are first reshaped and fed into
a time distributed LSTM (it is a RNN) network for feature learning. The re-
sulting Time Series Features Learned (TSFL) are on the welding operation

Figure 2.30: An example of hierarchical feature learning pipeline with LSTM (Use Case 4.3).
PaddedTS: time series padded to the same length. RawSF: raw single features.
TD(MLP): time distributed MLP. TSFL: time series features learned.
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level, and are concatenated with the raw single features. The concatenated
features form time series on the welding operation level, and are fed into
a time distributed MLP network for a further step of feature learning. The
resulting features are latent features that contain compressed information of
the previous l welding operations. A further LSTM network is followed to
aggregate the latent features to predict the Q-Value. The complete neural
network is trained together using back-propagation.

2.4.8 Evaluation: Discussion of Performance Metrics

Prediction accuracy of ML models is the classic performance metric in
the ML community. However, to ensure that ML approaches have a good
chance to be widely adopted in manufacturing industry, not only prediction
accuracy is important, but also many other performance metrics that influ-
ence the adoptability of ML approaches.

Prediction accuracy. In this work, prediction accuracy is defined in the
following way:

• rmse (or mse) [137, 142] stands for root mean squared error (or mean
squared error) between the target values and estimations. The disadvan-
tages of rmse are that it is scale-dependent [185], and not particularly
intuitive for domain experts, compared to other measures.

• mae stands for mean absolute error between the target values and estima-
tions. It is less sensitive to outliers, compared to rmse.

• mape stands for mean absolute percentage error. It is scale-independent
and intuitive for domain experts. The disadvantage is this becomes inap-
plicable when there exists zeros in target values.

• Correlation Coefficient (or another similar metric, the coefficient of deter-
mination R2) [186] is good for judging the ability of ML models to predict
the general trend of the training data.

• The most intuitive measures for process experts are perhaps User-Defined

Errors (UDE) [142]. These are more suitable for helping to set the safety
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factor, thus closer to the goal of minimising product failures. Two com-
mon UDEs are Error Within 5%, which means the percentage of predic-
tions with relative errors smaller than 5% of the target value (In welding
5% error is fairly good performance). Error Within 10% is likewise.

Adoptability metrics. Machine learning in manufacturing has more re-
quirements than prediction accuracy. Many other factors, e.g. the time and
effort for development of ML approaches, data collection, and implementa-
tion, should also be taken into consideration. This work suggests using the
following performance dimensions for a more comprehensive evaluation of
adoptability of ML approaches.

• Domain understanding reflects the effort and time for data scientists or
engineers to understand the domain to enable successful ML approaches.
This can be measured by questionnaires or time spent for understanding.

• Feature understanding measures the time required for detailed under-
standing of features for successful data preprocessing. This can be mea-
sured by questionnaires of cognitive difficulty or time spent for under-
standing.

• Data preparation measures how efficient or generalisable the merging and
integration of data from different sources are. This can be measured by
questionnaires or time spent for adapting developed ML pipelines for new
datasets.

• Hyper-parameter tuning measures the effort required for tuning hyper-
parameters of ML models. This can be measured by questionnaires, num-
ber of tuning experiments, or time spent for tuning.

• Required training data amount indicates the minimal data amount neces-
sary for training a machine learning model with acceptable performance.
This is especially critical, as the data collection in manufacturing can be
very time-consuming and expensive. This can be directly measured by
the number of necessary training data tuples, or by time spent on data
collection.
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• Average training time and test time measures the mean value of training
time of ML models, including data preprocessing. Training time influ-
ences the time delay resulted from model adaptation when new Trends are
detected in the data so that existing models are no longer successful. Test
time determines whether the approach is suitable for online implementa-
tion in hardware. This is measured by time with description of computing
hardware.

• Model explainability measures whether the selected features, ML model
and prediction results are easy to understand, especially for non-ML-
experts. This can be measured by questionnaires or time spend for model
explanation.
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This chapter concisely describes the implementation of the proposed frame-
work in Chapter 2. The framework is implemented with two programming
platforms: (3.1) Python [187] language, including various libraries for ma-
chine learning like scikit-learn [188], tensorflow [189], and keras [190];
(3.2) the SciXMiner [191] data analysis toolbox based on MATLAB [192].

3.1 Implementation with Python

Data collection is done by process experts in production, measurement ex-
perts in laboratory, or simulation engineers. This work implements the ML
pipeline from data preparation, through data preprocessing, and ML mod-
elling (Figure 3.1).

Data preparation. This step is the process of extract-transform-load.

Extract. Various Bosch internal tools were used to extract data from raw for-
mats of SQL database, RUI files, control backup files etc., and store them in
text/csv, mat (MATLAB format) or json formats. For all three data sources
(production, lab, simulation), the extracted data have two major groups. If
the data are stored in text/csv format, these two groups are: (1) A set of re-
lational tables of single features, with each row corresponding to one weld-
ing operation, and each column corresponding to one feature; (2) A large
number of relational tables. In each table, the process curves (time series)
corresponding to one welding operation are stored. In case of json or mat,
the two groups are stored in lists of dictionaries or structures, in which each
field is a single feature or time series feature.
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Figure 3.1: Architecture of implementation scripts. The three modules in Data Preprocessing
are called in Feature Processing. The three modules in ML Modelling are called in
ML Modelling.

Transform. Data need to be transformed to Uniform Data Format with seven
procedures: combining headers and values, splitting, sorting, matching,
padding, merging, and feature renaming. Some procedures are not manda-
tory under certain circumstances.

• Combining headers and values. It is necessary in the case when headers
and values are stored separately, e.g. text/csv data or prjz data.

• Splitting. A dataset is normally comprised of data of dozens of welding
machines. In most analysis, these welding machines are analysed inde-
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pendently. Therefore, the big dataset needs to be split into smaller sets,
with each only containing data of one welding machine.

• Sorting. Welding operations are sorted using the logical-temporal order
of WearCount-DressCount-CapCount. Time stamps are not always reli-
able, because manual interference of operations will cause time stamps
renewed. CapCount is missing for some datasets and therefore an ad hoc
CapCount needs to be added.

• Matching. The various features types (Section 2.3.2) of data are normally
stored in different files. Sometimes there exist no Identifiers to find the
correspondence between data, especially for the two groups, single fea-
tures and time series. Due to software settings of the welding control, the
time stamps of data entries are not perfectly aligned. After various testing,
this work suggests to use WearCount, DressCount as the logical-temporal
order to match data. These two features exist in files of both groups.
Note these two features cannot identify data entries uniquely, because the
WearCount-DressCount combination will repeat when a new electrode

cycle begins. CapCount is missing for some datasets, and therefore it
cannot be used for matching. A dynamic matching algorithm is needed:
(1) narrowing down the search area using time stamps, allowing e.g. one
day tolerance as the search area; (2) finding the matching WearCount-

DressCount combination within the search area for the two groups.
• Padding with NaN. For single features without values, NaN (not a num-

ber) is filled. For time series with different lengths, NaN is padded to
normalise the lengths. The NaN-padding avoids errors caused by dimen-
sion inconsistency.

• Merging. Now the correspondence between different feature types is
present, and dimension inconsistency is eliminated. Data can be merged
into a single dictionary and stored in numpy array or pickle. Data can also
be logically merged by adding Identifiers in all files and storing them in
a pre-designed manner. A typical style for text/csv format is (similar to
merge SQL table): (1) All single features are stored in one relational table,
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adding one column for the identifier. Some feature values need to be repli-
cated. For example, the meta configurations of all welding programs were
stored separately in a small relational table, with each row correspond-
ing to one welding program. It will be repeatedly filled into the merged
single feature table of welding operations, since each welding program
is executed by a large number of welding operations. (2) All time series
features are stored in a series of relational tables in a sub-folder, with all
time series files named as the identifier.

• Feature renaming. All feature names will be changed to the Unified

feature names using the Raw-to-DO mapping (raw to domain ontology
terms) to simplify the subsequent scripts.

Load. Data in UDF can be easily loaded by reading the json or pickle files
or reading the text/csv files using pandas.

ML modules. Uniform data format allows the subsequent scripts to be
standardised and repeatedly used. This work implements frequently used
functions in seven modules. Modularisation of ML scripts are essential for
readability and ontology-enhanced ML pipelines.

• ModuleTimeSeriesFeatureExtraction is written in three levels:

– (1) The TS feature extraction for a welding operation. The input
is a 2D-matrix with shape [len,sz], where k is the TS length after
dimension-normalisation and sz is the number of TS features. The
exact algorithm can be various: statistic features, geometrical features,
segmentation, PCA features, etc.

– (2) The corresponding feature name generation function for (1).
– (3) The TS feature extraction for a dataset. It takes a 3D-matrix with

shape [n,len,sz] as input, where n is the number of data tuples in the
dataset. The output is a 2D-matrix of shape [n,sts], where sts is the
number of extracted time series features. Different algorithms written
in (1) can be used as plug-in in (3). New algorithms in level (1) can
also be easily added.
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• ModuleFeatureSelection implements a stepwise forward linear regression
algorithm using Dynamic Programming. In each iteration, it selects one
best feature using wrapper method from the appointed dataset, and deliver
the rest sub-dataset into the next iteration, and solve the sub-problem re-
peatedly. The return is an array of the order of selected features and the
corresponding feature scores evaluated using correlation coefficient.

• ModuleNormalisation implements Z-score normalisation and Min-Max

normalisation, and provides functions of fit, transform, inverse-transform

for single feature and fitts for time series.
• ModuleMLPPipeline implements all functions for a complete MLP

pipeline, including loading data, normalisation, denormalisation, con-
structing MLP architectures according to input, training and testing the
models, hyper-parameter tuning, performance evaluation and saving re-
sults.

• ModulePerformanceMetric implements the metrics of prediction accuracy
discussed in Section 2.4.8.

• ModuleVisualisation implements frequent visualisation functions in mat-

plotlib and bokeh, e.g. line-plot and scatter-plot along welding operations
or WearCount for quality indicators, row-wise independent heatmaps for
dataset evaluation.

• ModuleOntologyCommunication implements the mechanism of ML
pipeline communicating with ontologies. Details please see the next para-
graph.

Information retrieval from ontologies. Ontology-enhanced ML pipelines
need to communicate with the ontologies to retrieve information encoded in
ML pipeline ontology. This is realised by sending SPARQL queries to query
ontologies. These scripts are capsuled in the ModuleOntologyCommunica-

tion.
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• Load graph. The ontologies serialised in Turtle [193] can either be loaded
into memory from a URL using the rdflib package, or be queried online
using the stardog package.

• Query. All encoded information are retrieved using queries. For example,
to retrieve the stored ML pipeline ontology, a query
SELECT * WHERE ?s a :MLPipeline. is sent to the loaded graph. The
return will be processed to extract the label of the class or the string of
literal. The return of the example is the label of the ML pipeline stored in
the graph: [’MLPipeline’]. Further examples include:
(1) SELECT ?FG WHERE:FeaturePreparedLayer :hasMemberFG ?FG

with the return: [’QualityIndicator1’, ’SFGroup1’, ’TSGroup2’]

(2) SELECT ?FPAlg WHERE:SingleFeatureGroup1 :hasFPAlg ?FPAlg

with the return: [’Maintain’].

Exploratory data analysis. In this step the data are visualised, con-
spicuities are examined, and benchmarks can be calculated.

• Visualisation. There exist two important types of visualisation. (1) Three
features, WearCount, DressCount, and CapCount, are visualised using
line-plot with matplotlib or bokeh. The left y-axis will be WearCount and
the right y-axis will be DressCount and CapCount. The x-axis can be time
stamps or number of welding operations. With this visualisation, it is easy
to obtain an overview of all dress cycles and electrode cycles. Incomplete
cycles are obvious. (2) Any single feature of interest can be visualised
using line-plot or scatter-plot. Conspicuities can be detected. A typical
example is the Q-Value, as discussed in detail in Use Case 4.2.

• Conspicuity and Benchmark. For calculation of trends or benchmarks, the
most efficient solution is to use nested dictionaries to store the calculated
values, e.g. the trend value of WM1, Prog1, Cap2, Dress2, Wear120 is
stored in trend[’WM1’][’Prog1’][’CapDress202’][’Wear120’].

Data preprocessing. It includes cleaning, dimension-normalisation, feature
extraction, normalisation.
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• Cleaning is to delete features (columns) or data entries (rows) with NaN

that exceed a threshold.
• Dimension-normalisation for time series is to make the TS lengths equal

by truncation (deletion), padding (with physically meaningful values, see
Section 2.4.2) or resampling (using e.g. numpy.interp).

• Feature extraction includes various feature engineering strategies imple-
mented in ML modules, or feature learning, discussed together in ML
modelling.

• Normalisation is implemented using ModuleNormalisation for Z-score

normalisation and Min-Max normalisation.

ML modelling. All modelling is implemented in four levels.

• ML architecture construction: For classic ML, this level is simply to use
a function written in established packages, e.g. scikit-learn. For feature
learning, this level constructs the designated network architecture and re-
turns the constructed architecture.

• Training and test: This level capsules one round of training and test in
a function. It takes preprocessed data and ML architecture as input, and
outputs the ML prediction results for both training and test data.

• Performance evaluation: This level takes the prediction results as input,
and uses the ModulePerformanceMetric to calculate all performance met-
rics and returns a DataFrame of performance summary.

• Saving results: This level takes the prediction results and performance
summary as input, saves all these results, and visualises the prediction
results using line-plot and scatter-plot in ModuleVisualisation.

3.2 Implementation with SciXMiner

ML pipeline with SciXMiner. A ML pipeline in MATLAB can execute a
series of ML experiments that are designed to achieve one goal. For exam-
ple, the same scripts run on a series of datasets with different training sub-
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sets/feature subsets to analyse the influence of training data amount/feature
sets on model performance. The architecture of ML pipeline scripts is or-
ganised in three levels: a batch file, experiment instances, and several script
components.

Batch file. In this file, the project directory and script directory are specified
for SciXMiner to find data and scripts.

Experiment instance. After specification of directories, a series of experi-
ment instances are executed. For each there exist (1) a prjz file (SciXMiner
project), (2) a configuration script and (3) a master script.

• Prjz file. This is the SciXMiner project that stores the data. The prjz file is
similar to a MATLAB structure, which has fields and values. The values
can be a single string or float, or matrices, or nested structures.

• Configuration script. In this script the number of CPU cores are specified
to help the system allocate computing resource. A new directory for the
current experiment instance is created with a unique name, by e.g. using
the current time in the folder name. A directory (usually the project direc-
tory) needs to be assigned to a variable, working directory. The working
directory is important for execution of script components.

• Master script. This script has two parts. (1) Part I prescribes the hyper-
parameters, the target output feature, and creates sub-directories for sub-
experiments of e.g. cross-validation. (2) Part II contains all script compo-
nents from data preprocessing, ML modelling, to saving results. The ML
algorithms coded in SciXMiner can only access global variable names-
pace, i.e. cannot process data passed into a function internally. Therefore,
all script components are directly executed in global variable namespace.

Script components. These are modularised components with different func-
tionalities for data preprocessing and ML modelling. In particular, there
exist the following types of components:
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• Creating project backup. Since all script components are executed in
global variable namespace, a backup of the project data needs to be cre-
ated before any experiments. The backup includes single features (d_org),
single feature names (dorgbez), time series (d_orgs), time series feature
names (bez_code), output class encodings (code_alle), output class fea-
ture names (var_bez), and output class terms (zgf_y_bez).

• Data preprocessing. These components include data splitting into training
and test sets, deletion of irrelevant features, feature extraction (sometimes
this can be omitted if the features are already extracted by Python scripts),
univariate or multivariate feature selection. If wrapper method is adopted,
the feature selection is coupled with ML modelling.

• ML modelling. These components include ML model configuration using
the hyper-parameters prescribed by the master script, or selected from
the hyper-parameter list in case of sub-experiments for hyper-parameter
selection. After that, the model training and testing are executed.

• Visualisation and saving results. These components include visualisation
of prediction results in line-plot or scatter plot, performance evaluation,
and saving all these results in the sub-directory for the current experiment
instance.

• Restoring project backup. When all components are executed, the project
data need to be restored from the backup, so that the next experiment
instance can be executed.

• Hyper-parameter selection. This component is to visualise and evaluate
all performance after all sub-experiments are executed. It is needed when
the goal of the experiments is to find the best hyper-parameters.
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This chapter will demonstrate use cases, validating the methods proposed
in Chapter 2 on data collected from simulation, laboratory and production.
Relevant rows of the overview table (Table 2.3) are separately displayed
again for each use case.

4.1 Spot Diameter Estimation and Guidance for
Simulation Data Collection

Overview: This use case studies estimation of welding quality for resis-
tance spot welding process. The target feature of the ML models is the
welding nugget diameter. The data are collected from a validated Finite
Element Method (FEM) simulation model [158]. This is a supervised re-
gression problem. Since the classification of welding quality into good/bad
categories depends on specific welding configurations, the study of regres-
sion is more general than classification, and can provide more insights to
process experts. Besides, the classification can still be made after regres-
sion.

Strategies of data preprocessing are extracting statistic features from time
series and feature selection. The ML methods are three classic methods:
polynomial regression, “shallow” multi-layer perceptron (with only one hid-
den layer), k-nearest neighbours. Analysis of the influence of feature sets
and amount of training data on prediction accuracy is conducted to gain in-
sights for preparing costly data collection from laboratory and production.
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The related publication is [29]. An overview of the corresponding applica-
tion questions, open questions and methods is listed in Table 4.1.

Table 4.1: Overview of application questions (AQ), open questions (OQ) and methods (M)

AQ OQ Methods
AQ2, AQ3, AQ4 OQ1, OQ5 M2.1.1, M2.1.2, M2.1.3,

M2.2.4, M2.4.2, M2.4.5,
M2.4.8

4.1.1 Question Definition

An enormous amount of data is generated every day in automatic manu-
facturing. Yet the acquired data do not always contain relevant information
(e.g. labels) and thus are sometimes not suitable for data analysis [94]. In re-
sistance spot welding, the level 2 quality indicators (QI2, see Section 2.1.1),
such as weld nugget diameter data, are often scarce and can only partially
cover quality monitoring. Moreover, additional sensor data, such as welding
force and temperature, are not always available because of sensor installa-
tion cost and accessibility.

Machine learning enables data-driven methods for more reliable and all-
covering quality monitoring for RSW, by replacing QI2 with QI5 generated
by ML models. In most cases, the more data are used for training, the higher
the chance is to obtain accurate models. However, the cost of data collection
in manufacturing is extremely high. It would be optimal to gain some in-
sights of the RSW process before starting a costly data collection plan from
laboratory or production, so that data collection can have some references.
Interesting questions include, e.g. how many data are necessary for success-
ful machine learning modelling? What features are more informative?

This section uses physics-based simulation data generated with a verified
Finite Element Method (FEM) model [158] to address the insufficient data
problem and the three data challenges (Section 2.1.3). Concretely, three

questions regarding the first two data challenges in collecting costly labelled
data will be studied:
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• Q1: How many labelled data to collect first? (Challenge 1)
• Q2: Which sensors should be installed first? (Challenge 2)
• Q3: Which precision level should the sensors and measurements of weld-

ing spot diameters have? (Challenge 2)

4.1.2 Data Description

Simulation scenario. The most normal conditions in production, i.e. only
random variation without spatter or other disturbances, are selected as the
simulation scenario for the data studied in this use case. This simple sce-
nario consists of one welding machine, one type of worksheet pair with
identical nominal sheet thickness and material, and three welding programs
for three different target spot diameters (Figure 4.1). A total of 13,952 weld-
ing spots with diameter measurements are simulated, which contain 14 elec-
trode cycles.

The FEM simulation models mechanical effects (elastic-plastic deforma-
tion and thermal expansion of chassis parts), thermal effects (temperature
change and heat transfer) and electrical effects (electric current density and
electric potential field), taking into account non-linear changes of material
and contact properties (such as electrical and thermal contact conductivity).
Strong interactions between all three fields result in a very dynamic process
behaviour and a multi-field coupled simulation.

Features. For each weld spot, there are two types of data:

• Time series (or process curves): In total, 20 time series were simulated,
including two types.

– Process input curves are input time series of the FEM simulation model,
such as electric current (I), and force applied on the electrode (F).

– Process feedback curves are output time series of the FEM model, such
as voltage (U), resistance (R) , displacement (s) of the electrode, tem-
perature (T ) of certain measuring positions, etc.

• Single features: They are nominal and measured geometry or material
properties of the caps and worksheets, the number of spots welded, posi-
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tions of the welding spots, temporal structure features (Section 2.1.2), etc.
There exist up to 235 single features in the simulation dataset.
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Figure 4.1: (a) Process curves for the three welding programs. ProgNo indicates the pro-
gram number. The welding programs prescribe the way the welding process is
performed, by specifying the process curves and some additional welding parame-
ters [29].
(b) Boxplot of the diameters for the three welding programs [29].

4.1.3 Experiment Settings

The approach for exploring answers to the three questions centres on train-
ing machine learning models with different data subsets and comparing their
performance.

Data splitting according to temporal structure. As mentioned in Section
2.4.1, data splitting should be performed according to some complete units
of a time level. In this study, the electrode cycle level will be used as com-
plete time units. Data generated with 9 electrode caps (7973 data points)
are used for training and selecting hyper-parameters, denoted as “trainingx
data”. Data from the remaining 5 electrode caps (5979 data points) are used
for testing.

Data splitting into subsets of different training data numbers. ML mod-
els are trained with different number of data tuples to study how the number
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of training data influence the model performance (Section 2.2.4), for an-
swering Question 1 in Section 4.1.1. The trainingx dataset is split into seven
subsets (Table 4.2), with the condition that the larger subsets always contain
the smaller subsets to avoid the random effect of data on model performance,
e.g. D2 contains all data in D1, D3 contains all data in D2.

Table 4.2: Data splitting into seven subsets of different training data number

Dataset name D1 D2 D3 D4 D5 D6 Dall

#Trainingx data 100 250 500 1000 2000 5000 7973

#Test data 5979 5979 5979 5979 5979 5979 5979

Data splitting into subsets of different feature sets. For answering Ques-
tion 2, ML models are trained with different feature subsets to investigate
the influence of each feature subset on the performance (Table 4.3). As in-
troduced in Section 2.2.4, the features are split into Feature Set available in
production, in the lab with low cost, in the lab with high cost, and all features
in simulation. The feature set splitting is applied to each of the seven subsets
of training data number, resulting in a total of 28 subsets (7×4 = 28).

Table 4.3: Data splitting into four subsets of different features

Feature set FeatSetprod FeatSetlablow FeatSetlabhigh FeatSetall

#Features 15SF, 4TS 16SF, 10TS 29SF, 14TS 235SF, 20TS

Generating additional noisy datasets. For answer Question 3, noise is
added to the 28 subsets, resulting in an additional set of 28 noisy datasets.
The noise levels are a best engineering guess derived from discussions with
process experts and measurement experts (Table 4.4). In total, 7×4×2= 56
subsets are used to train and test machine learning models and compare their
performance.

Feature engineering and selection. The feature engineering strategies ap-
plied to the time series are extracting 8 statistic features, including min-
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Table 4.4: Data splitting into four subsets of different features

Features Added noise

Sensor data (time series and single
features)

Gaussian noise with 2% standard deviation for
every single sample point

Diameter measurements Gaussian noise with 0.1 mm standard deviation

imum, maximum, minimum position, maximum position, mean, median,
standard deviation, and length.

These extracted features combined with all other single features are then
evaluated and selected using step-wise forward selection (Section 2.4.3),
starting with the evaluation of each single feature, and incrementally adding
more features. The features resulting in models with the best regression ac-
curacy (RMSE) for the prediction of spot diameters are selected. Results
show that in most cases, the model performance increases as the number of
selected features increases. For some models the performance does not in-
crease any more from about 10 features. For some models the performance
does not improve any more up to 20 selected features. To make the com-
parison fair and reduce computation time, all models are trained with 20
selected features.

ML methods and hyper-parameter tuning. Three machine learning meth-
ods, polynomial regression, neural networks and k-nearest neighbours are
studied. The hyper-parameters are chosen with 5-fold cross validation
with the largest trainingx data (training set of Dall with 7973 training data
points) and the Feature Set of Production (FeatSetprod). The resulting hyper-
parameters are shown in Table 4.5.

4.1.4 Results and Discussion

Figure 4.2 illustrates the performance on test set of best polynomial models
(Polynomial1) trained on non-noisy subsets of different training data num-
ber and feature sets, evaluated with four performance metrics.
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Table 4.5: ML models and hyper-parameters selected through 5-fold cross validation. Note
that some polynomial models with higher degree than 1 do not show statistically
significant improvement than first order polynomial models. According to the
principle of Ockham’s razor, polynomial order of 1 is selected.

Machine learning model Hyper-parameter Value

Multivariate polynomial regression Polynomial order 1

Multi-layer perceptron (one hidden layer) #Neurons in the hidden layer 16

K-nearest neighbours k (#Neighbours) 3

Feature sets. Comparing models trained on different feature sets reveals,
as expected, when more features are available for training, the models also
have better performance in testing in most cases: Pall > Plabhigh > Plablow >

Pprod (P indicates performance).

Training data number. Comparing models trained on different training
data subsets shows that, when the training data number is greater than 250,
the performance improves insignificantly as the training data number further
increases.

Performance metrics. Comparing the performance represented by differ-
ent metrics, it can be seen that RMSE, Correlation Coefficient and Error
Within 5% have similar trends. This is also the case for the multi-layer per-
ceptron models (Figure 4.3) and k-nearest neighbour models (Figure 4.4).
Error Within 10% cannot differentiate the models trained with different data
number and feature sets, since they always show very good results. There-
fore, only Error Within 5% will be compared in the following discussions.

ML methods. Comparing models trained using different machine learn-
ing methods can be made by comparing Figure 4.2c, Figure 4.3, and 4.4,
or in Figure 4.5. These figures reveal that the performance of the mod-
els built with three machine learning methods is: Polynomial ≈ MLP >
KNN. Figure 4.3 shows that MLP16 tends to overfit for the FeatSetlablow

and FeatSetlabhigh. In this regard, Polynomial1 is more advantageous.
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Figure 4.2: Comparison of performance on test set of Polynomial1 models trained on non-

noisy subsets of different training data number and feature sets [29]. Note that
in (d) Error Within 10% cannot differentiate the models, since all models are
extremely good and have more than 99% predictions with less than 10% errors.

Noise in data. Comparing models trained with non-noisy data and noisy
data can be made by contrasting Figure 4.2 c and Figure 4.6. The compari-
son suggests the performance deteriorates strongly with noisy data. Gener-
ally speaking, the difference between models trained on these three feature
subsets, FeatSetprod , FeatSetlablow, and FeatSetlabhigh is insignificant.

4.1.5 Conclusion and Outlook

Conclusion. Simulation data can provide a large amount of economically
generated labelled data, and features that would be otherwise unavailable.
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Figure 4.3: Testing results MLP16 on
non-noisy datasets [29]

Figure 4.4: Testing results KNN3 on non-noisy
datasets [29]
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Figure 4.5: Testing models trained on
non-noisy Production Set [29]

Figure 4.6: Testing Polynomial1 on noisy
datasets [29]

These data contain no or low measurement error. As a result, it is possible
to guide the collection of costly data from production or laboratory with
the insights gained from analysing simulation data. Reviewing the starting
point of the three questions, the following insights can be interpreted from
the analysis results.

• Answer to Question 1: Starting with a collection of 250 labeled data
points.

• Answer to Question 2: Features available in Production can already be
useful.

• Answer to Question 3: Measurement uncertainty can lead to significant
deterioration of the prediction performance. In our case, precision better
than Gaussian errors of 2% standard deviation for sensors and 0.1mm
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standard deviation for diameter measurements, respectively, is recom-
mended.

It is important to note that the conclusions regarding the necessary num-
ber of data points and features are highly dependent on the dataset, and the
simulation scenario from which the data are collected. It is therefore safe to
say that the results can be generalised over the simulated situations. They
can serve as a first guidance for data collection, but should NOT be assumed
as valid in general. Since the selected simulation scenario of one welding
machine and three welding programs is a simple scenario, these conclusions
may not hold for other scenarios or for complex production data. The opti-
mal data collection plan may vary depending on the complexity of the actual
situations compared to the simulated situation.

Outlook. In future research, several topics can be explored for combining
the simulated data and laboratory or production data.

• The first option is to use laboratory data or production data to further
improve and fine-tune the simulation model so that realistic physical ef-
fects and authentic variance of influencing factors can be rebuilt in the
simulation. This realistic simulation data can be used for further data
analysis.

• A further step is to apply the model trained on simulated data on labora-
tory or production data to see the generalisability of the models.

• A third option is to transfer learning, i.e. to pre-train a model on simu-
lated data, then to fine-tune the model on laboratory data or production
data, and to see how much improvement in performance can be gained.

• The improved simulation model and generated data can be used for pro-
duction condition evaluation before a real production process begins, so
that the influence of welding parameters changes, such as welding gun
properties, material properties, distance between the worksheets, can be
systematically evaluated.
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• Alternative feature extraction methods (such as features based on do-
main knowledge or Principal Component Analysis) can be analysed to
evaluate the difference of prediction accuracy using different feature ex-
traction methods.

• As actual production conditions may change due to a change in supplier,
new engineering design, etc., it is always questionable to what extent a
model trained on historic or lab data can be deployed on production data
in the future, which constitutes a general problem in manufacturing. This
issue of concept drift remains an open question.

This use case strives to gain insights from data analysis for guidance of
data collection. The iterative process data-collection → data analysis →
data-analysis guided data collection→ data analysis is an attempt to com-
bine data collection and analysis (Figure 2.9). A similar practice would be
particularly necessary in fields where limits on the amount of labelled data,
features, and covering situations is a problem of interest.
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4.2 Evaluation of Production Datasets

Overview: This use case demonstrates using multiple metrics and vi-
sual analytics techniques to gain a quick overview of large manufacturing
datasets, including categorical features (ProgramNumber), numerical fea-
tures (Q-Value), features with multi-level temporal structures (time series,
WearCount, DressCount, etc., Section 2.1.2). In this example, the data are
collected from various welding machines and their Q-Value behaviour is
inspected for each machine. Similar practices can be done for other units
(e.g. chassis part types, worksheet thickness combination types STC), and
other quality indicators (e.g. process stability factor, spatter occurring time).
Visual analytics is used to identify conspicuous welding machines, weld-
ing programs, or dress cycles that are subject to risks of quality failures.
Visual analytics refers to methods and practice of information visualisa-
tion for analytical reasoning [194], and has found a wide range of applica-
tions [195, 196]. An overview of the corresponding application questions,
open questions and methods is listed in Table 4.6.

Table 4.6: Overview of application questions (AQ), open questions (OQ) and methods (M)

AQ OQ Methods
AQ1 OQ3, OQ4 M2.2.5

4.2.1 Question Definition

ERW processes produce a large volume of data. It is therefore very de-
sired for process experts to gain a quick overview of the data collected from
all welding machines, to identify which welding machine, which welding
program or which dress cycle are conspicuous and may subject to risks of
quality failures. These conspicuities include deviation from the expected
behaviour, large scattering or outliers (Section 2.2.5).

The users can choose any single feature as the criteria, e.g. Process Stabil-

ity Factor, Resistance Mean. Among these, Q-Value is especially important,

114



4.2 Evaluation of Production Datasets

and will be used as the criteria in this use case for identifying conspicuities.
Q-Value, developed by Bosch Rexroth through engineering know-how and
long-time experience, is calculated after each welding operation, based on
statistic features (e.g. mean, maximum) from sensor data. The optimal
Q-Value is one and any value that deviates from one indicates quality dete-
rioration or inefficiency.

In dataset evaluation, an overview of the general information (e.g. #weld-
ing operations, #welding programs), and the behaviour of Q-Value should
be presented to the users (e.g. process experts, data scientists), to iden-
tify potential problematic welding machines. These problems should then
be attributed to specific welding programs or dress cycles, to narrow down
the search realm for root causes of problems. Appropriate visualisation of
the general information and Q-Value behaviour should be illustrated in an
condensed and intuitive way to enable comprehensive evaluation of datasets
(i.e. welding machines in this use case) and conspicuity (outliers in some
cases).

In this use case, the general information of a sample welding produc-
tion line is summarised in heatmaps by using the metrics proposed in Sec-
tion 2.2.5. The heatmaps then serve as a guidance to identify potentially
problematic welding machines, welding programs or dress cycles. Illus-
tration of the Q-Values of the area after narrowing down confirms that the
located data snippet is indeed subject to risks of quality failure.

4.2.2 Data Description

The sample dataset has two welding production lines, which consist of 22
welding machines, responsible for 195 unique welding programs (welding
spot types), including 263 fields, 53.2 million records and 1.4 billion items
in total. In the use case, a data tuple (Section 2.3.2) corresponds to a welding
operation, and contains Single Features and Time Series.
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4.2.3 Experiment Settings

The information in different protocols, databases, and files are transformed
into the Uniform Data Format (UDF) (Section 2.3) before evaluation.

Firstly, a general information overview will be given to the 22 welding
machines, including #welding operations, #welding programs, #electrode
caps and #dress cycles.

Secondly, the six overall metrics of trend, scattering and outliers of Q-
Value (Table 2.6) of these 22 welding machines will be visualised by
heatmaps, using colour contrast to help the users to identify conspicuity
quickly. Moreover, the discrepancy metrics with respect to welding pro-
grams and dress cycles (and electrode caps for welding machines with many
electrode cap changes) will be illustrated also by heatmaps, to give users
further information of whether there exist obvious discrepancies between
welding programs or dress cycles. This use case adopts the global trend in
Section 2.2.5 for calculation of the metrics, assuming that the data behaviour
of Q-Values should be independent from DressCount. The assumption is
based on the domain knowledge that nominally welding quality in different
dress cycles should be the same.

After that, the users dive into specific welding machines where the dataset
metrics are conspicuous, which indicate these machines may be subject to
risks of quality failures. The six overall metrics of trend, scattering and
outliers of Q-Value (Table 2.6) are then visualised by heatmaps for each
welding program, each dress cycle, and electrode cap. Thus the users can
narrow down the search area to specific welding programs or dress cycles.
The colours in the heatmaps adopt the “plasma” colour map [197], with
a pleasant smooth continuum through yellow (conspicuously large values),
purple (middle values), and blue (small values) hues. In the next step, the
Q-Values, trend, scattering and outliers of noticeable welding programs are
visualised using scatter plots and line plots. Two types of such Q-Value
plots exist (both types of such plots are overlapped with line plot of trend):

117



4 Use Cases

(1) scatter plot of Q-Value along welding operations, which is suitable for
identifying conspicuous dress cycles, and (2) scatter plot of Q-Value over
WearCount, which is suitable when there exist too many data tuples.

4.2.4 Results and Discussion

The visualisation results show that WMB, WMI , and WMR are conspicuous
and will be discussed in this section. WMO and WMT are also conspicuous
and are discussed in Appendix A.3 due to space limit.

General information overview. An overview of the production line data
is illustrated in a heatmap in Figure 4.7a. Note each row is an indepen-
dent heatmap with its own colour scale. The bottom row “num_data” sum-
marises the #data tuples, with each data tuple corresponding to a welding
operation. The row “num_prog” indicates #welding programs of each weld-
ing machine. Welding programs are designed for different worksheet com-
binations and spot positions on the chassis. Different welding programs
therefore have distinctive dynamics. The number of welding programs can
therefore be used as an indicator for data complexity. It can be observed that
the number of data tuples correlate with the number of welding programs.
This is caused by the settings of data collection, that 999 data tuples were
collected from each welding program. The row “num_cap” is #electrode
caps in the dataset. The row “num_capdress” is #dress cycles in the dataset.
In summary, the most complex datasets are collected from WMA (Welding
Machine A), WMB, WMC, WMD, WME , and WMF .

Metrics on the welding machine level. The six Overall Metrics of all
welding machines are illustrated in Figure 4.7b. These six metrics from
bottom to top are mean values of the trend Trendmean (“trend_mean”),
range of the trend Trendrange (“trend_range”), mean values of the scattering
Scatteringmean (“scattering_mean”), range of the scattering Scatteringrange

(“scattering_range”), #outliers (“outliers_num”), and mean values of the
outlier deviation OutlierDevmean (“outliersdev_mean”).
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outliersdev_mean_capdress_std 0.093 0.0923 0 0.0797 0 0.118 0 0.0429

outliers_num_capdress_std 0.32 0.85 0 1.96 0 0.729 0 15

scattering_range_capdress_std 0.0738 0.0497 0.057 0.0602 0.0845 0.0866 0.0833 0.0466

scattering_mean_capdress_std 0.0528 0.00273 0.00741 0.00524 0.0111 0.00416 0.00677 0.00758

trend_range_capdress_std 0.0791 0.0563 0.0332 0.0607 0.104 0.0398 0.0711 0.0773

trend_mean_capdress_std 0.0242 0.0143 0.0134 0.00696 0.0616 0.00744 0.0479 0.052

outliersdev_mean_prog_std 0.242 0.078 0 0.0818 0 0.129 0 0.00188

outliers_num_prog_std 0.416 6.56 0 18.6 0 2.6 0 31

scattering_range_prog_std 0.216 0.0863 0.0777 0.132 0.00118 0.0966 0.058 0.00833

scattering_mean_prog_std 0.0123 0.00987 0.00873 0.0123 0.00482 0.00645 0.00728 0.00725

trend_range_prog_std 0.0832 0.0809 0.133 0.116 0.0373 0.0598 0.0919 0.0147

trend_mean_prog_std 0.0629 0.034 0.0593 0.0531 0.0331 0.0472 0.0669 0.00177
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Figure 4.8: Discrepancy metrics of conspicuous welding machines. Yellow: conspicuously
large values, purple: middle values, blue: small values with de-emphasised text.

It can be observed that WMB, WMF , WMI , WMK , WMO, WMP, WMR

and WMT have high values in some metrics and may be subject to risks
of quality failure. In particular, WMB has a high level of Scatteringrange

and OutlierDevmean. WMF , WMK , WMN , and WMT have a high level of
#Outliers, indicating large local deviation, which could be caused by prob-
lematic chassis parts or unstable process settings. WMI , WMO, WMP and
WMR have a high level of Trendmean (recall that the optimal Q-Value is 1),
indicating more energy was spend on welding than the optimal setting, be-
cause Q-Value is positively correlated to energy input, according to domain
knowledge. WMO has a high level of Scatteringmean, indicating complex
Q-Value behaviour, which could be caused by unstable process settings or
control behaviour. WMR has a high level of Trendrange, indicating a rela-
tively large trend variation, which could be caused by strong wearing effects.

The six Discrepancy Metrics with respect to electrode dress cycles
and welding programs are illustrated in Figure 4.8. The bottom row
“trend_mean_capdress_std” in Figure 4.8a is the standard deviation of the
Trendmean calculated for each electrode cap, reflecting the discrepancy
of Trendmean across different dress cycles. The other metrics are de-
fined similarly, to reflect the discrepancies of Trendrange, Scatteringmean,
Scatteringrange, Outliersnum, OutliersDevmean across dress cycles. These
metrics together reflect the discrepancies of Q-Value behaviour across dress
cycles. Metrics to reflect discrepancies of Q-Value behaviour across weld-
ing programs are defined similarly and visualised in Figure 4.8b.
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outliersdev_mean 0 0 0 nan nan nan 0.57 0 0 0 0.593 0
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Figure 4.9: Overall metrics of WMB. Yellow: conspicuously large values, purple: middle
values, blue: small values, thus with de-emphasised text. For Prog4, Prog5 and
Prog6 there exist not enough data tuples to estimate the trend (see paragraph of
Estimation of Trend in Section 2.2.5).

Identifying conspicuity of Welding Machine B. WMB has the highest level
of Scatteringrange and OutlierDevmean, while a very low Scatteringmean. Re-
call that outliers are a special type of scattering with large deviations (Sec-
tion 2.2.5). WMB therefore may have actually low level of scattering, but
the high Scatteringrange is caused by the two outliers. Figure 4.8 shows
the discrepancies of Scatteringrange between welding programs are more
pronounced than that between dress cycles, and supports this postulation.
Diving into the metrics of WMB in Figure 4.9, it can be seen that there exist
only two outliers in Prog7 and Prog11, whose Scatteringrange are very high.
To interpret from the domain view, WMB should be working in a relatively
stable condition. The two local outliers should be attributed to anomalous
chassis part or welding spots, not the welding machine. Note that for Prog4,
Prog5, and Prog6 there exist so few data tuples (60 for each) that a reliable
estimation of trend is not possible (see paragraph of Estimation of Trend
in Section 2.2.5). The metrics for these three programs are therefore not
calculated and shown as nan (not a number). In a later machine learning
analysis, the dynamics of these programs will more be extrapolated from
other welding programs.
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Figure 4.10: Q-Value along welding operations of WMB for Prog7 (a) and Prog11 (b). Note
in (a) the trend is missing for some points at the beginning due to too few data
tuples, and therefore is replaced by a straight line.

After narrowing down the search area for conspicuity on Prog7 and Prog11,
the Q-Value along welding operations can be visualised and presented to the
users in Figure 4.10. It is quite clear that WMB is relatively stable except
for the two outliers at the starting dress cycles. The postulation is finally
confirmed. Note that the data tuples in Figure 4.10b are much sparser than
that in Figure 4.10a because Prog11 has only 255 data tuples in the collected
dataset. In Figure 4.10a there also exists a small area of the starting dress
cycles, where there are no scattering plotted. The reason is also too few data
tuples for a reliable estimation of the trend.

Identifying conspicuity of Welding Machine I. WMI has a high level
of Trendmean (Figure 4.7b). A closer view on the metrics of WMI (Fig-
ure 4.11a) reveals that the high levels concentrate on Prog1 and Prog5. After
narrowing down the search area on Prog1 and Prog5, the Q-Value plots of
these two programs in Figure 4.11b and Figure 4.11c show that almost all Q-
Values of these two programs are above one (the optimal value), which could

Trend Q-Value Scattering OutlierProg1 Prog5

b c

outliersdev_mean 0 0 0 0

outliers_num 0 0 0 0

scattering_range 0.406 0.203 0.239 0.318

scattering_mean 0.0407 0.0257 0.0253 0.0448

trend_range 0.339 0.144 0.089 0.41

trend_mean 1.22 1.14 1.08 1.22

prog1 prog2 prog4 prog5

num_data 999 999 999 999

a
Figure 4.11: Metrics and scatter plots of Q-Values of WMI . Yellow: conspicuously large

values, purple: middle values, blue: small values, thus with de-emphasised text.
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indicate energy inefficiency or higher security assurance, since the more en-
ergy flows into welding, the stronger the connection will likely be. Among
which, some Q-Values are exceptionally high in the middle dress cycles, af-
ter a very short dress cycle, which indicates that the electrode cap is changed
before the WearCount reaches the normal dress cycle length (around 220).

Identifying conspicuity of Welding Machine R. WMR has a high level of

outliersdev_mean 0 0 0 0 0 0

outliers_num 0 0 0 0 0 0

scattering_range 0.299 0.428 0.476 0.372 0.358 0.339

scattering_mean 0.0364 0.0359 0.0558 0.0424 0.0372 0.0348

trend_range 0.354 0.324 0.534 0.562 0.528 0.482

trend_mean 1.12 1.11 1.19 1.24 1.08 1.25
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Figure 4.13: Metrics of WMR. Yellow: con-
spicuously large values, purple:
middle values, blue: small values,
thus with de-emphasised text.

Trendmean and the highest
Trendrange. The overall metrics
with respect to welding programs
in Figure 4.13 reveal these high
Trendrange concentrate on Prog3,
Prog6 and Prog7. Besides, Prog3
also has a relatively high level of
Scatteringmean and Scatteringrange.
The scatter plots of Q-Values over
WearCount in Figure 4.12 confirm
this. The Q-Values are almost al-
ways above one for these three
welding programs, indicating inef-
ficiency. Especially at the later stages of the dress cycles, the trend of Q-
Values fluctuates and the scattering increases significantly for Prog3 (Fig-
ure 4.12a). The trend of Q-Values rises constantly for Prog6 and Prog7
(Figure 4.12b and Figure 4.12c), increasingly deviating from the optimal
value of one, which could be caused by relatively strong wearing effects.

Trend Q-Value Scattering Outlier

a b

Prog3

c

Prog6 Prog7

Figure 4.12: Q-Values over WearCount of WMR
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4.2.5 Conclusion and Outlook

The conspicuous welding machines, welding programs and dress cycles are
identified through metrics and visualisations. Although there exist no abso-
lute criteria for formally defining conspicuities, it is still possible to narrow
down the search to areas of interests and help the users to gain insights and
evaluate the datasets with help of the metrics and illustrations. A direction
for future study can be to figure out the root causes responsible for these
conspicuities.

Because the global trend is adopted, there exist not enough data for esti-
mation of trend of some welding programs, causing missing values of trend
values (e.g. WMB). The global trend assumes the data behaviour are inde-
pendent from DressCount, which is the optimal situation, but in actual data
some conspicuities are concentrated on specific dress cycles (e.g. WMT ).
Adopting the local trend or ML model trend may obviate these problems
by assuming data behaviour can be different in different dress cycles. This
remains as a direction for future study.

WMG and WMI are selected for a further step analysis in this thesis. Their
data are complete, and trend estimations are also complete. Their complex-
ity range from low (WMG with 2 welding programs) to moderate (WMI with
4 welding programs). Their Trendrange and Scatteringmean are moderate.
WMG reflects a rather normal welding condition. It is thus suitable to test
the performance of developed ML pipelines on normal welding conditions.
WMI has a high level Trendmean. It is thus suitable to test the ML pipelines
on a slightly more complex condition. Besides, these two welding machines
are also of special interest in a research project in our group. WMR, with 6
welding programs, has a high level of Trendmean and the highest TrendRange.
Its data are complete and the estimation of trend is also complete. WMR is
therefore optimal for case study with relatively high complexity.

In the following sections, WMG, WMI , and WMR will be referred to as
WM1 (Welding Machine 1), WM2 and WM3 for simplicity.
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4.3 Quality Prediction with Feature Engineering
and Feature Learning

Overview: This use case studies predicting (or forecasting) quality of re-
sistance spot welding. The target output of the ML models in this use case
is the quality indicator, Q-Value of a future welding operation. Regres-
sion will be studied instead of classification for the same reason as in Use
Case 4.1. The studied data are collected from WM1 (or WMG) and WM2
(WMI) in Use Case 4.2, since their data are complete and representative
(Section 4.2.5). Two types of machine learning methods are compared to
gain insights into suitability of ML methods: feature engineering and fea-
ture learning. The following publications are based on/related to this use
case: [169], [170], [171]. An overview of the corresponding application
questions, open questions and methods is listed in Table 4.7.

Table 4.7: Overview of application questions (AQ), open questions (OQ) and methods (M)

AQ OQ Methods
AQ3, AQ5 OQ4, OQ5, OQ6 M2.1.1, M2.1.2, M2.4.1, M2.4.2,

M2.4.7

4.3.1 Question Definition

Previous studies have focused on estimating the welding quality after the
welding operation (Section 1.4.4). Predictive quality monitoring with ML
for ERW has been little discussed. This section demonstrates machine
learning (ML) methods for predicting the welding quality, Q-Value, (Sec-
tion 2.1.1) before the actual welding process happens (Figure 4.14). Fig-
ure 4.14 illustrates the envisioned workflow of welding with the prediction
function incorporated in the welding system. If the quality of the next weld-
ing operation is predicted to be inadequate (largely deviating from the op-
timal value of 1), necessary measures can be undertaken to prevent quality
failures, e.g. performing electrode dressing, or adapting the reference curves
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4.3 Quality Prediction with Feature Engineering and Feature Learning

Figure 4.14: Envisioned welding workflow with quality prediction. The welded spots between
the worksheets are shown on the worksheets for illustration purpose [170].

in the welding control. Two types of ML methods categorised as Feature

Engineering (FE) or Feature Learning (FL) are developed and compared to
analyse what ML methods are suitable for ERW (Section 2.4).

The formal representation of the defined question is to find a function
between the available information and the Q-Value of the next welding op-
eration Qk+1, shown in Equation 4.1, where X1, ...,Xk−1,Xk are data tuples
(including single features and time series) of welding operations from time
step 1 to step k, and SF∗k+1 are known features of the next welding operation
(e.g. welding program).

Qk+1 = f (X1, ...,Xk−1,Xk,SF∗k+1). (4.1)

In the following text, the subscripts 1, ...,k−1,k,k+1 will be replaced by
1, ..., pre2, pre1,next1 for a better understanding:

Qnext1 = f (X1, ...,Xpre2,Xpre1,SF∗next1) (4.2)

4.3.2 Data Description

Two example datasets collected from WM1 (or WMG) and WM2 (WMI) in
Use Case 4.2 are studied in this use case (Table 4.8). The prepared data con-
tain 164 Single Features and 4 effective Time Series (Section 2.3.2). Four
reference process curves (time series) are excluded from the analysis since
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Figure 4.15: (a) Q-Value along number of welding operations for Welding Machine 2 (par-

tially shown). The red rectangle indicates the area for a closer look in (b).
(b) Welding operations with different welding programs are performed for spots
of different welding positions on the car part, thus often possessing different
dynamics, e.g. the means of Q-Values are different [170].

in this use case the reference curves for the same program are always the
same, and their information are therefore represented by the welding pro-
grams.

The behaviour of Q-Value is illustrated in Figure 2.2 for WM1 and Fig-
ure 4.15 for WM2, with x-axis being number of welding operations. This
strong periodicity of Q-Values confirm that the example datasets have tem-
poral dependencies described in Section 2.1.2.

4.3.3 Experiment Settings

FE- and FL- based ML pipelines of two different feature settings give four
pipelines, and two complexity levels of each pipeline result in eight ML
models in total (Table 4.11).

Table 4.8: Two example datasets for prediction of the next Q-Value. Prog: welding programs.
DT: data tuples. tr : training set, val: validation set, tst: test set.

Dataset Welding machine #Prog #DT #DTtr #DTval #DTtst

Dataset 1 Welding Machine 1 2 1998 1598 200 200
Dataset 2 Welding Machine 2 4 3996 3127 448 421
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Four pipelines. The two basic pipelines are: FE-LR and FL-LSTM (Figure
4.16). Apart from the two classic pipelines, it is also very interesting to see
what would be the effect if these two pipelines are mixed up, resulting in
two more pipelines: FE-LSTM and FL-LR.

Data splitting. The data splitting in this use case follows a classic way, that
is to split the dataset into training, validation, and test set in a ratio of 0.8 :
0.1 : 0.1, without considering the temporal structures.

ML pipeline of feature engineering in two steps. The ML pipelines of
feature engineering are FE-LR or FE-LSTM. Experiments with two com-
plexity levels, namely the Base version and the Full version, are designed
to test feature engineering on time series or both on single features and time
series.

Base is to perform only FE on time series, represented by the pipeline
shown in Figure 4.17a after dropping the optional boxes. Padded time se-
ries features (Padded TS) are raw time series processed by length normal-
isation using padding. The padded TS on the welding time level are then
processed by feature engineering to be reduced to time series features engi-
neered (TSFE) on the welding operation level. The TSFE, the same as that
in Use Case 4.1, include 8 statistic features of minimum, maximum, min-
imum position, maximum position, mean, median, standard deviation, and
length, serving as supplementary information to the ProcessCurveMeans in
RawSF. Note that the reference curves of the same welding program are
normally identical (unless they are manually changed by process experts),
so that no TSFE are generated from them to avoid redundancy. The in-
formation of welding programs is captured in Full. RawSF and TSFE are

Figure 4.16: Machine learning pipeline of feature engineering and feature learning
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concatenated and reshaped. After that, they can directly be fed into LSTM,
or fed into LR after flattening and feature selection.

Full is to perform further FE on time series and single features, repre-
sented by the pipeline shown in Figure 4.17a with the optional boxes. The
raw single features go through feature engineering, resulting in engineered
single features (EngSF) (Section 2.4.2). The RawSF, EngSF and TSFE are
concatenated and further processed by Advanced feature engineering with

respect to ProgNo (Section 2.4.2), resulting in engineered features consid-
ering program number (EngF_Prog). After that, they are reshaped for mod-
elling, and follow the same procedures of Base.

ML pipeline of feature learning in two steps. The ML pipelines of fea-
ture learning are FL-LR or FL-LSTM. Two steps of experiments are to test
feature learning on time series or both on single features and time series.

In the Base pipelines FL is only performed on time series, represented
by the pipeline shown in Figure 4.17b after dropping the optional boxes.
The padded TS are first reshaped, and then processed by a time distributed
LSTM network to automatically “learn” important features, resulting in
time series features learned (TSFL), thus reducing time series on the weld-
ing time level to TSFL on the welding operation level. Program numbers
(ProgNo) are one-hot encoded to incorporate information of welding pro-
grams (strictly speaking, this is also a kind of feature engineering), in con-
trast to feature engineering’s decomposition of time series with ProgNo.
(The pros and cons will be discussed in the discussion section.) After that,
RawSF are reshaped and concatenated with TSFL. They can directly be fed
to a further LSTM network for modelling, or be flattened and fed into LR.

In the Full pipelines further FL is performed on time series and single
features, represented by the pipeline shown in Figure 4.17b with the optional
boxes. The only difference from Base is that an extra time distributed MLP
is added after the concatenation layer, resulting in learned single features
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(LSF) and another time series features learned (TSFL∗). The optional time
distributed MLP provides the possibility to “learn” feature from RawSF.

The feature learning part of neural networks can be seen as a Encoder,
transforming information of the input features into some abstract represen-
tations. While the modelling part can be seen as a Decoder, which takes
the Readout from the Encoder and performs the information aggregation to
output features.

Feature reduction and model alignment for comparison. Feature engi-
neering generates a large number of features. From each of the 4 actual
process curves, 8 features are extracted (4× 8 = 32). Adding the RawSF,
the number of features amounts to 164+32= 196 before reshaping for Base

(Figure 4.17a). For Full, EngSF adds 3 more features, and EngF_Prog dou-
bles the feature number. The number of features amount to ((164+ 32+
3)×2 = 398) before reshaping.

For FE-LR, suppose the look-back length l is 10, for Base a total of 1960
(196× 10) features are generated after flattening, while for Full 3980 fea-
tures. The large amount of features need to be reduced before modelling.
This study adopts a wrapper method with step-wise forward feature selec-

tion (Section 2.4.3) to reduce the feature number for LR modelling, since
other methods (e.g. F-Test, recursive feature elimination) yield worse per-
formance in experiments. For FE-LSTM, the feature reduction is already
performed by neural networks.

Feature learning handles the issue of excessive features by adjusting the
number of neurons. To make these approaches more comparable, the num-
ber of neurons in some layers should be aligned with the feature engineering
approaches. The number of ReadOut features from time distributed LSTM
network is therefore set (Figure 4.17b) to 8 for each time series, amounting
to 32 in total (corresponding to the number of TSFE). To not constrain the
flexibility of network architecture, the ReadOut is realised by adding a lin-
ear layer after the time distributed LSTM network. Similarly, the number
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Figure 4.18: (a) Hyper-parameter tuning by evaluating mape on validation set of WM1 for
LR. Blue: low mape. Yellow: middle mape. Red: high mape.
(b) Hyper-parameter tuning by evaluating mape on validation set of WM1 for
LSTM. Performance on three all sets are illustrated for monitoring [170].

of neurons of the time distributed MLP in Full also aligns with the feature
number after FE in Full, amounting to 398.

Performance metric and data normalisation. This study uses the perfor-
mance metric mape (Section 2.4.8), as it is scale-independent and intuitive
to the domain experts.

Z-score normalisation (Section 2.4.4) is applied to the input features be-
fore modelling. The parameters for normalisation, including mean values
and standard deviations, are learned from the training and validation set and
applied to all input data.

No normalisation is applied to the output feature, the Q-Value, because
the scale of Q-Value is fixed to a level (the optimal value is one).

ML model training and hyper-parameter selection. Eight ML models
are trained on the training set and the hyper-parameters are selected based
on the performance evaluated on the validation set.

(1) For the pipeline FE-LR, the model is the simplest: linear regression.
Two hyper-parameters are to be selected for LR, the #selected features (ω)

fed into LR and look-back length (l) for data reshaping (Table 4.10). These
two hyper-parameters are similar in the sense, that as they increase, the data
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Table 4.9: Hyper-parameters that are fixed once chosen

Hyper-parameter Value Reason
Look-back length 10 Kept the same as FE-LR

Optimiser Adeldelta Fast convergence
Data shuffling True Better performance

Memory Stateless Better performance
Early-stopping Save the best model Better performance

amount provided to the ML model will increase and therefore the model
performance evaluated on the training set should always increase.

These two features are selected with LR and then fixed for other FE
pipelines, for several reasons. 1) To make a fair comparison, the data amount
delivered to the model should remain the same, so that the performance dif-
ference is indeed caused by the quality of features or models, not the data
amount. 2) In industrial application, it is desired to find suitable hyper-
parameters that provide relatively good performance, avoid overfitting, and
ideally make the model insensitive to the hyper-parameters.

A grid search is performed to find these two hyper-parameters. It can
be clearly seen from Figure 4.18a that after around 12 of selected features
and a look-back length of 5, the performance of models trained on Dataset
1 reaches a plateau (or basin in sense of mape). The models trained on
Dataset 2 show similar characteristics. At the end, ω = 20 and l = 10 are
selected because they are in a relatively large and insensitive area of the two
hyper-parameters.

(2) For FE-LSTM, there exist many hyper-parameters. Most of them need
only to be tested once because these will normally deliver better perfor-
mance than their alternatives. A series of experiments are conducted and
these hyper-parameters are then fixed as shown in Table 4.9.

Other hyper-parameters include #layers of the Decoder LSTM and #neu-
rons in each layer. They are tuned using limited grid search (varying one
while fixing others), and the results (Figure 4.18b) show model performance
is relatively insensitive to the hyper-parameters, as the difference between
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Table 4.10: Hyper-parameter selection of ML methods

Methods Hyper-parameters Selection method
FE-LR #Selected features , look-back length Grid search

FE-LSTM #Layers of Decoder LSTM, #neurons and Table 4.9 Limited
FL-LR #Layers of FL LSTM, #neurons and Table 4.9 grid

FL-LSTM #Layers of FL and Decoder LSTM, #neurons and Table 4.9 search

the worst performance and the best performance is about 0.3% mape (for
validation data). After experimenting, models with two layers of LSTM
have almost the same performance as models with one layer. Therefore, one
layer of LSTM is selected according to the principle of Ockham’s razor.

(3) For FL-LR, the look-back length is the same as FE pipelines for a fair
comparison. Other hyper-parameters include #layers of feature learning
(Encoder) LSTM and #neurons in each layer. They are selected with the
best performance on the validation sets. Through limited grid search it turns
out the models are also relatively insensitive to the number of neurons. The
same as FE-LSTM, one layer of LSTM is good enough to be selected.

(4) For FL-LSTM, the look-back length and optimiser are the same as that
for FL-LR. Other hyper-parameters include #layers of FL LSTM, #layers
of Decoder LSTM, and #neurons in each layer. They are selected with the
same practice as that for FL-LR.

4.3.4 Results and Discussion

After hyper-parameter selection, the ML models are trained again with the
training and validation sets (trainingx sets), then tested on the test set. The
two levels of complexity (Base and Full) and four pipelines result in eight
best models. Two benchmarks are used as the baselines comparison for
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model performance, which is Benchmark 2 (Q̂next = Qpre1) and Benchmark
3 (Q̂next = Qpre1_Prog). 1

Comparison of prediction accuracy. The model performance and feature
settings are listed in Table 4.11. The simple benchmarks are already good
for Welding Machine 1, perhaps for its lower complexity with only 2 weld-
ing programs, while much worse for Welding Machine 2 with 4 welding
programs. It can be seen that the results of the eight models are always
better than the benchmarks. The best models in Full are always better than
that in Base, as expected. This means high level of feature engineering and
feature learning brings improvement. In general, the performance of the FE
pipelines and FL pipelines are very good and comparable, indicating ade-
quate feature engineering and effective feature learning.

Table 4.11: Model performance tested on test sets

Data preprocessing and
feature setting

Modelling mape
(WM1)

mape
(WM2)

Benchmark2: Q̂next = Qpre1 3.19% 7.74%
Benchmark3: Q̂next = Qpre1_Prog 2.51% 2.51%

Base
FE RawSF, TSFE

LR 2.38% 2.50%
LSTM 2.35% 2.27%

FL RawSF, TSFL
LR 2.14% 2.11%

LSTM 2.72% 2.37%

Full
FE RawSF, TSFE,

EngSF, EngF_Prog
LR 1.61% 2.10%

LSTM 2.04% 1.94%

FL LSF, TSFL∗
LR 2.01% 1.94%

LSTM 2.45% 2.30%

The best model for Welding Machine 1 is FE-LR (1.61%), while for Weld-
ing Machine 2 FE-LSTM and FL-LR are equally good (1.94%). FE-LR
outperforms FE-LSTM for Welding Machine 1, and for Welding Machine 2
the other way around. By comparing FE-LR and FE-LSTM, the reason can
be postulated that Welding Machine 1 has less complex data than Welding

1 Benchmark 1 is Q̂next = mean(Qpre1,Qpre2, ...,Qpre10), established for reference. It is always
worse than Benchmark 2 and 3. Therefore, only Benchmark 2 and 3 are used for performance
comparison.
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Figure 4.19: Results of the best FE model for WM1 in line plot (a) and scatter plot (b). Re-
sults of the best FL model for WM2 in line plot (c) (closer zoom into the test set
area) and scatter plot (d) [170]

Machine 2. The most complicated model FL-LSTM is however not the best.
The reason may be that the data are still too simple for FL-LSTM to demon-
strate its power, as neural networks are known for its capacity of capturing
very complicated data [198].

The best prediction results are illustrated in Figure 4.19 with line plots and
scatter plots. It can be seen from Figure 4.19a that the model predictions for
WM1 follow the target trend very closely. Figure 4.19b shows the estimation
for targets with high values in training data are not good, but these targets are
actually outliers in Figure 4.19a. This indicates that the model is insensitive
to outliers. Figure 4.19c zooms into the test set area of WM2, and shows
that the predictions match the target exceptionally well.
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Table 4.12: More comprehensive evaluation. 1: on NVIDIA Titan V, 2: on AMD EPYC 7801.

Domain
understanding

Feature
understanding

Data
preparation

Hyper-parameter
tuning

Mean
training time

Model ex-
plainability

FL 8 meetings 2 meetings less general 250 experiments about 355s1 mediocre
FE 8 meetings 10 meetings less general 200 experiments about 15s2 good

The FE-LR can provide insights by interpreting what features are selected.
The resulted models show the most important features are the Qpre1_Prog,
WearDiff, Imean, Rstd . These indicate (1) the previous spot with the same
program number contain important information for predicting the quality of
the next welding operation; (2) wearing effect has large impact for quality;
(3) average value of current and standard deviation of resistance contain the
most important information of quality.

Besides, from results of hyper-parameter tuning for FE-LR (Figure 4.18),
it can be interpreted that the quality of next spot is truly dependent on pre-
vious 1 to 4 spots, as mape decreases until a look-back of 5. The number of
features should be better more than 12, indicating the quality is influenced
by multiple factors.

Comparison of adoptability metrics. The prediction accuracy of the FL
and FE pipelines are comparable. Yet for adoption and deployment in indus-
try, not only prediction accuracy is important, but also many other adoptabil-
ity metrics. Table 4.12 summarises these metrics. To evaluate these metrics,
an ideal way is to strictly design and conduct experiments of developing
and deploying ML pipelines across numerous use cases and analyse the col-
lected statistics. This is however not realistic in most cases, not only because
that any companies would not have abundant ML projects to economically
test and evaluate, but also for huge discrepancies between different projects
to be compared. However, this does not prevent obtaining insights before
numerous use cases are conducted.

Number of meetings between data scientists and domain experts (averaged
to about one hour each) is used for evaluating effort of domain understand-
ing and feature understanding, and the number of experiments for evalu-
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ating hyper-parameter tuning. Training time is an average value for each
run of model training, including data pre-processing. Clearly, in these met-
rics some aspects are quite subjective, but in practice it gives a reasonable
estimation of adoptability for ML pipelines in an industrial setting.

Domain understanding for data scientists takes the same time for FL and
FE. After that, 2 more meetings about the detailed meaning of features were
needed, and then FL was possible. While for FE, 10 meetings were spent
on understanding the details of features.

For data preparation, both FL and FE needed to pull data from different
datasets with discrepancies in naming and formats. Effort was needed to use
different versions of scripts to extract data from SQL database, Excel table,
text files, RUI-files (for time series), etc. Thus the effort was the same and
scripts were rather less generalisable.

Hyper-parameter tuning for FL was arduous. For each LSTM and each
dataset, 10 hyper-parameters with about 250 experiments needed to be deter-
mined. Considering the time for each model training, the hyper-parameter
tuning for FL easily exceeded several hours. While for FE, the training time
was much faster, and the tuning was quite handy even for grid search.

In terms of model explainability, there was not much to interpret from FL
models, because their neurons were abstractions of features, lacking phys-
ical meanings. In contrast, the FE models indeed could provide some in-
sights.

4.3.5 Conclusion and Outlook

Conclusion. This use case compares the performance of eight models from
ML pipelines following two feature extraction philosophies, in terms of pre-
diction accuracy, time and effort expense for domain and data understand-
ing, hyper-parameter tuning and training time, and model explainability.
The ML pipelines of feature engineering and feature learning are compa-
rable in terms of prediction accuracy, but relatively different in terms of
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other performance metrics of adoptability (Table 4.12). These adoptability
metrics are especially important for industrial deployment.

Outlook. In future research, the two ML pipelines can be evaluated more
thoroughly on other datasets and other scenarios. Both two pipelines can
be enhanced with semantic technologies to improve their adoptability. The
feature engineering pipeline will be studied thoroughly more in direction of
feature evaluation and selection in Use Case 4.4, to provide more insights
for the welding domain from a data-driven perspective.
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4.4 A Closer Study on Feature Engineering and
Feature Evaluation

Overview: The same as in Use Case 4.3, this use case studies predicting (or
forecasting) quality of resistance spot welding. The difference is that this
study focuses on feature engineering, feature evaluation and interpretation.
The goal is to gain insights from these features. The studied data are col-
lected from WM1 (or WMG) and WM3 (WMR) in Use Case 4.2, since they
are complete and representative datasets of low complexity and high com-
plexity (Section 4.2.5). The studied ML methods are feature engineering
with three classic methods: linear regression, multi-layer perceptron (with
one hidden layer), and support vector machine. An overview of the cor-
responding application questions, open questions and methods is listed in
Table 4.13.

Table 4.13: Overview of application questions (AQ), open questions (OQ) and methods (M)

AQ OQ Methods
AQ3, AQ5 OQ4, OQ5,

OQ6
M2.1.1, M2.1.2, M2.2.4, M2.4.1,

M2.4.2, M2.4.5, M2.4.7

4.4.1 Question Definition

The same question in Use Case 4.3 is studied, to predict Q-Value of the next
welding operation. The special emphasis is to experiment on four feature
engineering strategies (two of them are already introduced in Use Case 4.3)
to analyse the influence of features on model performance. This is also
an attempt to integrate domain knowledge in machine learning modelling,
combining views from data science and manufacturing domain.

4.4.2 Data Description

An overview of the datasets collected from WM1 and WM3 are given in
Table 4.14. The data contain 164 Single Features and 8 Time Series (Section
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Figure 4.20: (a) Q-Value along number of welding operations for WM3 (partially shown).
The irregular trends of Q-Value indicate complex production conditions. The red
rectangle indicates the area for a closer look in (b).
(b) Welding operations performed with different welding programs. Note that
there exists a change of production arrangement. Before the 618th welding op-
eration, only three welding programs were performed (Prog6, 7 and 8). After
that three MORE welding programs were performed (Prog1, 2 and 3) due to a
change of production plan. Possibly a new chassis part is welded. The change is
a typical situation in manufacturing.

2.3.2). The reference process curves are not excluded this time since the
data of WM3 are collected from a period with changed production schedule
(Figure 4.20b). The behaviour of quality indicator Q-Value is illustrated
in Figure 2.2 for WM1 and Figure 4.20 for WM3. This strong periodicity
of Q-Values indicate that the example datasets very likely have temporal
dependencies described in Section 2.1.2.

Table 4.14: Two example datasets for prediction of the next Q-Value

Dataset Welding machine #Prog #DT #DTtr #DTval #DTtst

Dataset 1 WM1 2 1998 1456 219 323
Dataset 3 WM3 6 5839 4474 602 763

4.4.3 Experiment Settings

The data analysis in this use case follows the branch of feature engineering
and classic machine learning modelling introduced in Section 2.4. The im-
plementation in the use case is illustrated in the upper part of Figure 4.16.
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After data preparation, hierarchical feature extraction will be performed on
the two time levels using feature engineering. These engineered features
then will be reshaped to accentuate short-time dependency. The reshaping
look-back length adopts the same one (10) as in Use Case 4.3. Twenty
features will be selected and fed into three classic machine learning meth-
ods. After hyper-parameter selection based on the model performance on
the validation data, the best model of each method will be retrained using
all training data and validation data (trainingx set). In the end, the models
will be compared and the results will be interpreted with deep involvement
of engineering know-how.

Data splitting according to temporal structure. In this use case, the data
splitting points are chosen at complete units of dress cycle levels. The
datasets are first split into to training, validation, and test in a 0.8 : 0.1 :
0.1 ratio, and then rounded to complete electrode dress cycles. It is also
important to note that the validation data and test data should contain at
least one complete dress cycle to ensure that they cover the wearing effect
through a full dress cycle. Details of data tuple numbers are illustrated in
Figure 4.21 and Table 4.14.
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Figure 4.21: Example of data splitting rounded to complete dress cycles. Note that the data of

WM3 is much more complicated than that of WM1. Especially at the beginning
cycles, complicated dressing operations were performed. This is caused by the
change of production arrangement (Figure 4.20)
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Four settings of feature engineering. Feature engineering is performed on
both time series features and single features. Four settings of feature en-
gineering are designed. From Setting 0 to Setting 3, the degree of feature
engineering deepens, to study whether and to which degree feature engineer-
ing can increase model prediction power. The feature engineering follows
the strategies introduced in Section 2.4.2.
• Setting 0, no feature engineering. Only the raw single features will be

used in machine learning modelling. Note that the ProcessCurveMeans

in the raw single features already provide some information of the time
series. A total of 1640 (164× 10) features are generated before feature
selection.

• Setting 1 (almost equal to Base of FE pipeline in Section 4.3), only per-
forming feature engineering on time series. Additional four reference
curves are added in analysis. Ten features are extracted from each time
series (explained in the next paragraph). A total of 2440 ((164+8×10)×
10) features are generated before feature selection.

• Setting 2, performing feature engineering on time series and single fea-
tures. The time series features engineered (TSFE), raw single features
(RawSF) and engineered single features (EngSF) will be concatenated for
machine learning modelling. A total of 2470 ((164+ 3+ 8× 10)× 10)
features are generated before feature selection.

• Setting 3 (almost equal to Full of FE pipeline in Section 4.3), performing
a further step of feature engineering on time series and single features. A
total of 4940 ((164+ 3+ 8× 10)× 2× 10) features are generated before
feature selection.

Feature engineering on time series. Different from the strategies in Use
Case 4.3, this use case deepens the degree of domain knowledge integration.
According to domain knowledge, the time series contain an initial stage and
a welding stage, pre-determined by the adaptive control. After referring to
various literature, ten TSFE are designed, extracted from the welding stage
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(Figure 4.22): length (WeldTime) [139], maximum (WeldMax) [38], min-
imum (WeldMin) [135], maximum position (WeldMxPo) [125], minimum
position (WeldMnPo), slope (WeldSlope, a local extrema between the Weld-
MxPo and WeldMnPo is very unlikely according to domain knowledge)
[126] (slope = (max−min)/(mxpo−mnpo)), mean (WeldMean) [135],
median (WeldMedian), standard deviation (WeldStd) [135], and end value
(WeldEndValue).

Figure 4.22 takes the resistance curve as example, which is the most com-
plicated process curve, and often deemed as the most informative time series
feature by the literature [38, 135, 36, 125]. It can be seen from the figure
that these features can characterise the statistic and geometric properties of
resistance time series to a large degree. Current, voltage and pulse width
modulation curves are much simpler than the resistance curve and can also
be described by these features.

Figure 4.22: Domain knowledge supported time series feature extraction: from the welding
stage 10 statistic and geometric features are extracted. Most features are shown
except for: WeldMean, WeldMedian, WeldStd [56, 57, 58, 125, 135, 141].
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Feature selection. The number of features grow enormously because of
feature engineering. After feature extraction from time series, 80 TSFE are
generated. After reshaping, 2470 features are generated for Setting 2 and
4940 for Setting 3. These features need to be reduced before modelling.
Feature selection is optimal as it preserves the features for interpretation
(the other option is feature aggregation, which loses the meanings of the
features). The multivariate wrapper method, step-wise forward feature se-

lection [50] is applied with LR. Experiments have confirmed that features
selected by MLP and SVR are almost the same as that by LR, because the
number of selected features is set to 20, which allows the selected features
cover a larger range of relevant information than what is normally needed.
Therefore, the same features selected by LR are also used for modelling
with MLP and SVR, to reduce the computational time.

Figure 4.23: Reducing features by feature selection. SF: single features. TS: time series.

Performance metric. This study adopts the performance metric mape (Sec-
tion 2.4.8), as it is scale-independent and intuitive to the domain experts.

Normalisation. Z-score normalisation (Section 2.4.4) is applied to the input
features before feeding them into modelling. The parameters for normali-
sation, including mean values and standard deviations, will be learned from
the training and validation set and applied to all input data. No normalisa-
tion is applied to the output feature, the Q-Value, for the scale of Q-Value is
fixed to a level (the setpoint is 1).

ML model training. Three representative classical ML methods, linear
regression (LR), multi-layer perceptron with one hidden layer (MLP), and
support vector regression (SVR) are studied. They are trained on the training
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Table 4.15: Hyper-parameter selection of ML methods

Methods Hyper-parameters Selection method

LR #Selected features, features, look-back length Limited grid search

MLP
#Selected features, features, look-back length Kept the same as LR

#Neurons, activation function Limited grid search

SVR
#Selected features, features, look-back length Kept the same as LR

Kernel type, regularisation factor, degree Limited grid search

set, and their hyper-parameters are selected based on the performance on the
validation set.

Hyper-parameter selection for LR. Two hyper-parameters are to be se-
lected for linear regression, the number of selected features (ω) and look-

back length (l). Apart from the study in Use Case 4.3, additional limited
grid search is done for the four settings. The results in Figure 4.24 illustrate
the model performance evaluated on validation set of WM1 and WM3. The
models become insensitive to the hyper-parameters after more than approx-
imately 20 features are selected and when the length of look-back window
is longer than about 10. To note in Setting 3, where the EngF_Prog is used,
the effective look-back time step is look-back length × number of welding

program (l×#Prog). The performance of Setting 0 and Setting 1 for WM1
is more sensitive to hyper-parameters.

Hyper-parameter selection for MLP and SVR. The same feature sets de-
termined by LR are used for MLP and SVR. Other hyper-parameters are
selected using limited grid search. MLP has two hyper-parameters, #neu-
rons in the hidden layer and the activation function. SVR has three hyper-
parameters, kernel type, regularisation factor, and degree in case of polyno-
mial kernel types (Table 4.15).
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(a) (b)

(c) (d)
Figure 4.24: Hyper-parameter selection with limited grid search based on performance of

validation set of WM1 for #selected features ω (a) and look-back length l (b).
The performance reaches a basin in the area where ω ≈ 20 and l ≈ 10 features
are selected. The same for WM3 in (c) and (d).

4.4.4 Results and Discussion

The models are trained again with the selected hyper-parameters on the
combined set of training data and validation data (trainingx set), and tested
on the test sets. The model performance is compared and percentage im-
provements are calculated with respect to Setting 0 and the best benchmark
(Benchmark 3) for WM1 (Table 4.16) and WM3 (Table 4.17). The predic-
tion results on WM1 are illustrated in Figure 4.25.

Interpretation of prediction results. Based on the Table 4.16 and Ta-
ble 4.17, it is easy to conclude that the model performance increases as the
degree of feature engineering deepens. The performance of Setting 0 and
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Table 4.16: LR performance on test set of WM1. Imprv. w.r.t.: improvement with respect to.

Feature settings or benchmarks mape
(LR)

Imprv.
w.r.t.

Setting 0

Imprv. w.r.t.
Bench-
mark3

Benchmark3 Q̂next1 = Qpre1_Prog 2.69% -0.75% -

Setting 0 RawSF 2.67% - 0.74%

Setting 1 RawSF, TSFE 2.55% 4.49% 5.20%

Setting 2 RawSF, TSFE, EngSF 2.10% 21.35% 21.93%

Setting 3 RawSF, TSFE, EngSF, EngF_Prog 1.92% 28.09% 28.62%

Table 4.17: LR performance on test set of WM3. Imprv. w.r.t.: improvement with respect to.

Feature settings or benchmarks mape
(LR)

Imprv.
w.r.t.

Setting 0

Imprv. w.r.t.
Bench-
mark3

Benchmark 3 Q̂next1 = Qpre1_Prog 5.17% -7.48% -

Setting 0 RawSF 4.81% - 6.69%

Setting 1 RawSF, TSFE 4.55% 5.41% 11.99%

Setting 2 RawSF, TSFE, EngSF 4.19% 12.89% 18.96%

Setting 3 RawSF, TSFE, EngSF, EngF_Prog 3.40% 29.31% 34.24%

Setting 1 on WM1 shows slight improvement compared to Benchmark 3.
The performance of Setting 0 and Setting 1 on dataset of WM3 shows more
improvement with respect to Benchmark 3, because the Q-Value behaviour
of WM3 (Figure 2.2d) is much more complicated.

The performance improvement of Setting 1 compared to Setting 0 is in-
significant, but consistent (Figure 4.24), which implies the features in the
RawSF that contain time series information (the ProcessCurveMeans) al-
ready provide valuable information. A significant improvement begins with
Setting 2, which indicates the feature engineering strategies on the welding
operation level are meaningful. The performance difference between Set-
ting 2 and Setting 3 analysed on dataset of WM1 is rather small, but that on
dataset of WM3 is evident.

147



4 Use Cases

A further inspection on the two datasets reveals that the welding programs
of WM1 are always arranged in a fixed interlaced order (Figure 2.2b), i.e.
the ProgNo always repeat the same pattern: Prog1, Prog2, Prog1, Prog2,
..., but the welding programs of WM3 are not arranged in a fixed order. A
change of production arrangement happened in the 618th welding opera-
tion (Figure 2.2d), before which the production arrangement was comprised
of three welding programs. After the 618th welding operation, three ex-
tra welding programs were added to the production arrangement, which is
typical in manufacturing industry since the production arrangement could
change at any time in agile manufacturing. This explains why Setting 3, in
which the welding program information is specially handled, has a signifi-
cant improvement on dataset of WM3, but an insignificant improvement on
dataset of WM1.

Interpretation of prediction visualisations. Figure 4.25 illustrates the vi-
sualisation of the target values and estimated values of WM1. It can be
seen that the Setting 0 and Setting 1 learned a general rising trend of the
behaviour of Q-Values. However, the dynamics of behaviour of Q-Values
are more complex than a simple rising trend. The Q-Value trend first rises
then declines slightly, and remains stable at the end. These dynamics are
better learned by more complicated feature settings.

Besides, although most of the Q-Values are predicted with small errors,
there exist quite a few outliers that have an apparent different behaviour
than the "normal" Q-Values. These outliers seem to be random, and cannot
be explained with the trained models.

The complex dynamics of Q-Value behaviours implicate that the welding
quality is not solely influenced by the assumedly linear wearing effect. Ac-
cording to domain knowledge, other influential factors include the statistic
and stochastic variance caused by dressing, the chassis to be welded, etc.

Interpretation of hyper-parameter tuning results. Reviewing the hyper-
parameter results (Figure 4.24b), the selection of look-back length imply
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Figure 4.25: Prediction results zoomed into test set area of LR models on WM1.

that the hypothesis holds, that there exist temporal dependencies between
welding spots, since the performance of the models improves as the look-
back length increases. That is to say, the Q-Value of the next welding spot
is indeed dependent on the previous welding operations. Figure 4.24 also
reveals that the improvements along degree of feature engineering is not
random but systematic, although some times small.

Feature interpretation of WM1 with engineering knowledge. Table 4.18
lists the 5 most important features with a order of descending importance for
Setting 0, Setting 1, Setting 2 and Setting 3 on dataset of WM1, respectively.
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Table 4.18: The most important 5 features selected from feature settings in the analysis of
dataset of WM1, listed in ranking of descending importance. Note that the score
is evaluated on a multivariate basis, i.e. the importance of ω-th feature is the
combined score of the 1st to ω-th feature. The correlation coefficient between the
model estimation and target value is chosen as the feature score for an intuitive
comparison.
The prefixes RawSF, TSFE, EngSF, EngF_Prog indicate the feature source, the
suffixes indicate the time stamp of the features, and the stems indicate the phys-
ical meanings, e.g. Q for Q-Value, R for resistance, I for current, I2_Mean for
ProcessCurveMeans of current, I_WeldMin for the minimum extracted from the
welding stage.

# Setting 0 Score Setting 1 Score

1 RawSF_Q_pre2 0.72 RawSF_Q_pre2 0.72

2 RawSF_I2_Mean_pre1 0.78 RawSF_I2_Mean_pre1 0.78

3 RawSF_WearCount_next1 0.79 RawSF_WearCount_next1 0.79

4 RawSF_Q_pre9 0.81 TSFE_I_WeldMin_pre3 0.81

5 RawSF_Q_pre3 0.82 TSFE_R_WeldStd_pre8 0.82

# Setting 2 Score Setting 3 Score

1 RawSF_Q_pre2 0.72 EngF_Prog_Q_pre1 0.72

2 EngSF_NewDress_next1 0.80 EngF_Prog_WearDiff_next1 0.86

3 RawSF_I2_Mean_pre1 0.84 EngF_Prog_I2_Mean_pre1 0.87

4 TSFE_R_WeldStd_pre1 0.86 TSFE_R_WeldStd_pre1 0.88

5 RawSF_I_Mean_pre3 0.87 EngF_Prog_Q_pre2 0.88

The Q-Value of the previous second welding spot (RawSF_Q_pre2) is se-
lected as the most important feature in three settings. Since the ProgNo
always repeat the same pattern: Prog1, Prog2, Prog1, Prog2, ..., the fea-
ture RawSF_Q_pre2 is therefore equal to EngF_Prog_Q_pre1. EngF_Prog-
_Q_pre1 is namely the Q-Value of the previous spot welded with the same
welding program as the next welding spot (this feature is identical to Bench-
mark 3). This means the quality of welding usually does not have abrupt
changes.

Moreover, the features RawSF_WearCount_next1, EngSF_NewDress
_next1, EngF_Prog_WearDiff_next1 are selected, which means the wear-
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ing effect has strong influence on the welding quality, and therefore quality
prediction should always consider features characterising the wearing effect.

The features RawSF_I2_Mean_pre1, TSFE_R_WeldStd_pre1, TSFE_I_-
WeldMin_pre3, RawSF_I_ Mean_pre3 are selected, which means the time
series features extracted from the welding stage indeed contain some infor-
mation for predicting the next spot quality. Note that these features are of
previous first or third spots, which are not welded with the same ProgNo
as the next spot. This indicates that the information provided by historical
spots that are not welded with the same ProgNo as the next spot are also im-
portant. The reason may be that the wearing effect during these temporally
adjacent welding operations has influence on the next welding quality.

In Setting 0 and 1, the selected features of relatively early operations, like
RawSF_Q_pre9, TSFE_R_WeldStd_pre8, are questionable, because their
influence should not be greater than temporally more adjacent features. Se-
lection of these questionable features is avoided in Setting 2 and Setting 3,
which feature engineering is more complex.

Feature interpretation of WM3 with engineering knowledge. As for
WM3 (Table 4.19), the selected features are different. The most obvious
difference is that RawSF_Q_pre2 is no longer selected as the most im-
portant feature. As mentioned in Section 4.4.4, a change of arrangement
of welding programs happened in the 618th welding operation. For the
same reason, no EngSF is selected in the most important features, since
EngSFs do not incorporate information of welding programs. Although the
feature RawSF_WearCount_next1 can also describe the dependency of Q-
Value on wearing effect to some degree, as it is selected through Setting 0
to 2, the performance of models trained on Setting 3 demonstrates a signifi-
cant improvement (Table 4.17). This highlights the advantage of the feature
EngF_Prog_Q_pre1 in Setting 3.

Many TSFEs extracted from reference curves are selected as more impor-
tant than those from actual process curves. Reference curves are prescribed
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Table 4.19: The most important 5 features selected from feature settings in the analysis of
dataset of WM3, listed in ranking of descending importance. Feature scores are
similar to Table 4.18.
The prefixes RawSF, TSFE, EngSF, EngF_Prog indicate the feature source, the
suffixes indicate the time stamp of the features, and the stems indicate the physi-
cal meanings, e.g. Q for Q-Value, I2_Mean for ProcessCurveMeans of current, R
for resistance, RefU_WeldEndValue for the end value extracted from the welding
stage of the reference curve of voltage, I_WeldMin for the minimum extracted
from the welding stage, RefPWM for the reference curve of the Pulse Width Mod-
ulation

# Setting 0 Score Setting 1 Score

1 RawSF_WearCount_next1 0.75 RawSF_WearCount_next1 0.75

2 RawSF_Time_pre2 0.81 TSFE_RefU_WeldEndValue_pre2 0.85

3 RawSF_I2_Mean_pre2 0.85 TSFE_RefR_WeldMax_pre1 0.88

4 RawSF_R_Mean_pre1 0.86 TSFE_I_WeldMin_pre3 0.90

5 RawSF_Power_Mean_pre10 0.87 TSFE_R_WeldMax_pre1 0.90

# Setting 2 Score Setting 3 Score

1 RawSF_WearCount_next1 0.75 EngF_Prog_Q_pre1 0.79

2 TSFE_RefU_WeldEndValue_pre2 0.85 EngF_Prog_WearDiff_next1 0.91

3 TSFE_RefR_WeldMax_pre1 0.88 TSFE_RefR_WeldSlope_pre2 0.92

4 TSFE_I_WeldMin_pre3 0.90 RawSF_WearCount_next1 0.93

5 TSFE_R_WeldMax_pre1 0.90 TSFE_RefPWM_WeldMean_pre4 0.93

by the welding programs, and are therefore always identical for a specific
program. This implicates that the next spot quality is also dependent on the
welding programs performed on the previous spots, rather than the corre-
sponding actual process curves. This phenomenon is not evident for WM1,
since its welding program arrangement is fixed. Similar to the case of WM1,
complex feature engineering avoids selection of questionable features like
RawSF_Power_Mean_pre10.

Interpretation of results of MLP and SVR models. Table 4.20 and 4.21
list the results of MLP and SVR models trained with the features determined
by LR models and their hyper-parameters selected using limited grid search.
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Table 4.20: MLP and SVR models evaluated on test set of WM1. “rbf": Radial-Basis-
Function.

Feature
settings

mape
(MLP)

Activation
function

#Neurons mape
(SVR)

Kernel
type

Regularisation
factor

Setting 0 2.27% tanh 5 2.25% rbf 8.17

Setting 1 2.42% tanh 25 1.94% rbf 10.19

Setting 2 2.03% tanh 50 2.08% rbf 6.15

Setting 3 1.92% tanh 53 1.87% rbf 8.17

Table 4.20 and 4.21 demonstrate that performance can indeed be improved
by non-linear models. This indicates that there exist non-linearity and inter-
action between the selected features, which cannot be described using the
LR models.

The performance of MLP models are usually better than LR models. The
performance gain becomes significant for complicated datasets (WM3) with
the highest degree of feature engineering (Setting 3). Conspicuous is that the
Setting 1 model performance is worse than that of Setting 0 for both welding
machines (Note that the number of selected features are the same for all
settings. Only the available features before feature selection are different.).
This indicates the time series features engineered may cause overfitting in
some cases.

A closer look at the results of LR and MLP models on the test set of
WM3 for two example welding programs with Setting 3 is illustrated in
Figure 4.26. It reveals that although the different welding programs have
very different behaviour of Q-values, both LR and MLP models are able to

Table 4.21: MLP and SVR models evaluated on test set of WM3. “rbf": Radial-Basis-
Function.

Feature
settings

mape
(MLP)

Activation
function

#Neurons mape
(SVR)

Kernel
type

Regularisation
factor

Setting 0 3.87% tanh 50 4.02% rbf 19.02

Setting 1 4.07% tanh 47 4.49% rbf 21.29

Setting 2 3.57% logistic 60 4.32% rbf 14.79

Setting 3 2.97% tanh 44 3.34% rbf 16.00
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Figure 4.26: Examples of prediction results on test set of WM3 illustrated for two welding
programs, with the model of MLP with the Setting 3 of feature engineering, 20
features selected, and a look-back length of 10.

capture the different dynamics. From the figure the performance of the two
models are not easy to differentiate. This indicates the importance of the
numerical performance metric in Table 4.17 and 4.21.

The performance of SVR models are on par with the LR models. Also
conspicuous is that the performance of SVR models does not always im-
prove as the degree of feature engineering increases. A further investigation
of SVR models reveals that the performance of them fluctuates irregularly
quite a few (up to 1.2% mape) as the regularisation factor changes, which
means SVR models often fall into local optimums. Some SVR models per-
form well on training and validation sets but perform badly on test sets,
which indicates a tendency of overfitting.

4.4.5 Conclusion and Outlook

Conclusion. This use case studies the ML pipelines of feature engineering
with more domain knowledge integration than that in Use Case 4.3, the de-
gree of which is intensified through four feature settings. In the area of the
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selected two hyper-parameters, the machine learning method is insensitive
to the hyper-parameters, number of features and look-back length, which is
desired for industrial application. Furthermore, the results and selected fea-
tures are extensively interpreted to provide more insights to the domain per-
spective. A blind training of ML models would select questionable and less
robust features. Through domain knowledge-supported feature engineering,
visualisation of prediction results and interpretation of selected features, the
explainable ML pipelines of feature engineering can avoid this, enabling a
relatively transparent understanding of machine learning modelling.

Outlook. In future work, the following directions are valuable from both
industrial and academic points of view:

• Testing the proposed approach on more datasets to verify the generalis-
ability.

• Exploring other feature extraction strategies on complex welding ma-
chines.

• Investigating other machine learning methods, e.g. other types of arti-
ficial neural networks, especially recurrent neural networks, which are
suitable for processing data with temporal structures.

• Predicting the Q-Value of the next welding spot as a probabilistic distri-
bution, by using e.g. quantile regression [199]. Before the next welding
actually happens, the next Q-Value can in fact not be deterministically
predicted. The prediction of the next Q-Value in this work is actually a
prediction of the mean value. A better way is probabilistic forecasting.

• Using the prediction results as a basis for process optimisation. After
the next spot quality is predicted, there exist several possible measures
to undertake, e.g. flexible dressing, adaptation of the reference curves,
or switching to non-adaptive control mode.
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4.5 Transferability of Models between Datasets

Overview: Once ML models are developed for some datasets, it is desired
and necessary to transfer these models to other datasets. This section studies
whether the ML model trained on one dataset can be transferred to datasets
collected from other welding machines. The feature settings and models are
the same as in Use Case 4.4. The target output of the ML models is the
same: Q-Value of future welding operations. The studied data are collected
from WM1 (or WMG), WM2 (WMI), and WM3 (WMR) in Use Case 4.2.
An overview of the corresponding application questions, open questions and
methods is listed in Table 4.22.

Table 4.22: Overview of application questions (AQ), open questions (OQ) and methods (M)

AQ OQ Methods
AQ5, AQ10 OQ4, OQ8 M2.1.1, M2.4.5

4.5.1 Question Definition

This use case studies the transferability between models trained on different
datasets, e.g. whether it is possible to train ML models on the dataset of
one welding machine and apply them on another welding machine (Figure
4.27). The transferability is very desired in industrial scenarios, because
there exist many advantages if a model trained on the dataset of one machine
can be transferred to another new machine, without change or with small
adaptation:

Figure 4.27: The simple workflow of model transfer. D1: Dataset 1. D2: Dataset 2.

• The cost of extra data collection on the new welding machine can be
obviated or at least reduced;
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• The cost of new model development, or old model adaptation, for the
new welding machine can be saved;

• The time, in which the new machine performs manufacturing tasks but
its product quality is not fully covered by data-driven monitoring, can be
minimised.

ML models of Setting 3 introduced in Use Case 4.4 provide good predic-
tion accuracy and are explainable. Their transferability will be investigated.

4.5.2 Data Description

Apart from the two datasets described in Section 4.4, the dataset collected
from WM2 is also studied. The three datasets are summarised again for
readers’ convenience in Table 4.23. Their Q-Values are illustrated in Fig-
ure 2.2 for WM1, Figure 4.15 for WM2, and Figure 4.20 for WM3.

Table 4.23: Example datasets for studying model transferability

Dataset Welding machine #Prog #DT #DTtr #DTval #DTtst

Dataset 1 WM1 2 1998 1456 219 323
Dataset 2 WM2 4 3996 3127 448 421
Dataset 3 WM3 6 5839 4474 602 763

4.5.3 Experiment Settings

This section first introduces a preliminary experiment and the problem re-
vealed by this experiment. Then it explains the solution to the problem and
the experiment settings to implement the solution.

Data splitting according to temporal structure. The data splitting strat-
egy is exactly the same as in Use Case 4.4. Since after the hyper-parameter
selection, the ML models need to be trained again using training and valida-
tion sets, the training and validation dataset can be deemed as the “training
dataset” in a more general sense, and will be referred to as the “trainingx
set” (Dtrx).
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Preliminary experiment: Training on WM1 and testing on WM3. A first
step of the experiment is to simply train a model on one dataset and then di-
rectly apply on another dataset without any adjustment. To make the results
in this use case comparable to that in Use Case 4.4, it is needed to ensure
the training set is exactly as in Use Case 4.4. Therefore the trainingx set of
WM1 (D1trx) is used to train a MLP model and the model is tested on WM3
(D3trx) dataset. Again to make the performance comparable to that in Use
Case 4.4, the performance of the model should be evaluated on the trainingx
set (D3trx) and test set of WM3 (D3tst ), respectively. The input features
are normalised using Z-score normalisation while the output is not. The
normalisation parameters (denoted as PX

D1trx) are therefore learned from the
D1trx for input features and applied on D1tst , D3trx, and D3tst . The resulting
workflow becomes Figure 4.28. The models and their hyper-parameters and
selected features are directly taken from Setting 3 in Use Case 4.4.

Figure 4.28: The workflow of model transfer with normalisation (N) on input features us-
ing normalisation parameters (PX

D1trx) learned from the trainingx set of WM1
(D1trxN ). D1trx and D1tst stand for the trainingx set and test set of WM1. D1trxN ,
D1tstN , D3trxN and D3tstN stand for normalised D1trx, D1tst , D3trx and D3tst ,
respectively.

Revised experiment with normalisation. The result of the preliminary ex-
periment will reveal that using normalisation parameters learned from WM1
to normalise data in WM3 causes problems. The problem rises from the dis-
crepant statistics between the datasets.

In light of the problem of discrepancy of statistics, the experiment will
be revised to a version that allows learning “local" normalisation parame-
ters from each trainingx set for both input feature and output feature, and
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Figure 4.29: Normalisation parameters learned from each trainingx set and applied to train-
ingx set and test set before model transfer. The results are better than that in
Figure 4.28, and therefore the model transfer is tested on WM2 and WM3.

applying the learned normalisation parameters on the trainingx set and its
corresponding test set, respectively, as shown in Figure 4.29. Before test-
ing the models on WM2 and WM3, the normalisation parameters will be
learned from trainingx set of WM2 and applied to trainingx set and test set
of WM2. The same workflow repeats for models trained on trainingx set of
WM3 and tested on WM1 and WM2.

4.5.4 Results and Discussion

Preliminary experiment and the revealed problem. The results of the
preliminary experiment are listed in Table 4.24 and illustrated in Figure
4.30.

Table 4.24: Performance of the model trained on D1trx (trainingx set of WM1) and tested
on D1tst and D3tst (test set of WM1 and WM3) in the preliminary experiment.
Normalisation parameters are only learned from D1trx. The blue texts indicate the
training set and test set are collected from the same welding machine.

Training
Method

mape of model testing
set D1trx D1tst D3trx D3tst

Row1 D1trx MLP 1.92% 1.81% 10.3% 10.0%

Table 4.21 shows that the model transfer results on WM3 are significantly
worse than that of WM1, on which the model is trained. Comparing the (a)
and (b) in Figure 4.30, it can be seen clearly that there exists a discrepancy
of mean value when testing the model.
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Since normalisation is only performed on input features, not on output (Q-
Value), it is natural to hypothesise that the mean value of Q-Values of WM1
is different from that of WM2. A simple calculation gives that the mean
value of Q-Value in D1trx is 1.09, and that in D2trx is 1.17 (anonymised).
This confirms the hypothesis. Furthermore, the statistics, e.g. mean values
and standard deviations, of input features in WM1 also differ from that in
WM3. The experiment of directly transferring a model trained on WM1
to WM3 reveals the problem caused by the difference of statistics between
datasets. To improve the results, normalisation parameters should be learned
“locally” from the dataset to be transferred to.
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Figure 4.30: (a) Results of the MLP model trained on and tested on WM1. It is the complete

version of Figure 4.25d.
(b) Results of the MLP model trained on the trainingx set of WM1 and tested on
WM3.

Revised experiments. The results of the revised experiment are listed in
Table 4.25. Each row lists the performance of the models trained on the
dataset in the “Training set” column and tested on several datasets. The blue
texts indicate the case when the data are trained and tested on the datasets
collected from the same welding machine.

In particular, Row 1 and Row 2 list performance of ML models trained on
D1trx and tested on D1, D3, and D2 with the methods LR and MLP. Row
3 and Row 4 list performance of ML models trained on D3trx and tested on
D1, D3, and D2 with the methods LR and MLP. Note that to evaluate the
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4.5 Transferability of Models between Datasets

performance of model transfer to WM2, the performance of models trained
on D2 and tested on D2 is needed, and is added in Row 5. Comparing Row
1 in Table 4.24 and Row 2 in Table 4.25 reveals that learning normalisation
parameters from each dataset improves the performance slightly, from about
10% mape to 8% or 9%.

However, in general the performance of models transferring is not good.
The performance of Benchmark 3 for WM1, WM2, and WM3 is 2.69%,
2.67%, and 5.17%. All performance of model transfer is worse than that.
By comparing the model performance in each column, it shows that the
model performance deteriorates significantly when testing on the datasets
collected from other welding machines. In particular, looking at Column
1 and Column 2, it reveals that the model performance trained on D1 and
testing on D1 is about 2% mape, but the mape is more than 5% when the
model is trained on D2trx. The same phenomena repeat when looking at
Column 3 and Column 4. The added Row 5 further confirms this.

Figure 4.31 illustrates the prediction results of MLP and LR models
trained on D1trx and tested on D3 and D2. It reveals although the problem
of mean shift is eliminated by learning “local” normalisation parameters,
the discrepant dynamics in behaviours of Q-Values still cause problems for
model transfer. On one hand, the Q-Values of WM3 have a larger range

Table 4.25: Performance of the model trained on D1trx (trainingx set of WM1) or D3trx (train-
ingx set of WM3) and tested on D1tst , D2tst , and D3tst (test set of WM1, WM2
and WM3) in the revised experiment. Normalisation parameters are learned from
each trainingx set. The blue texts indicate the training and test set are collected
from the same Welding Machine.

mape of model testing
Training Method Col1 Col2 Col3 Col4 Col5 Col6

set D1trx D1tst D3trx D3tst D2trx D2tst

Row1 D1trx LR 1.93% 1.92% 9.11% 8.65% 5.71% 4.53%
Row2 D1trx MLP 1.93% 2.03% 8.93% 8.40% 5.64% 4.36%
Row3 D3trx LR 6.00% 6.05% 3.02% 3.40% 3.95% 3.49%
Row4 D3trx MLP 5.36% 5.38% 2.72% 3.10% 3.90% 3.56%
Row5 D2trx LR - - - - 2.25% 2.07%

161



4 Use Cases

than that of WM1 and have more complex dynamics (WM3 has 6 welding
programs). The models trained on D1trx are not capable to cope with the
complexity. On the other hand, the models trained on D3trx are too complex
for transferring to WM1. By comparing Figure 4.30 and Figure 4.31c and
d, it reveals that the predicted Q-Values are “chunkier” than they should
be, because the Q-Values of WM3 are “chunkier” than that of WM1 in the
illustrated shape.

4.5.5 Conclusion and Outlook

Conclusion. In summary, transferring a model by simply training the model
on one dataset and applying on another is not sufficient. Normalisation of
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Figure 4.31: The results of the MLP model (a) or LR model (b) trained on D1trx and tested

on D3. The results of the MLP model (c) or LR model (d) trained on D3trx and
tested on D1.
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the new dataset with the learned parameters brings a slight improvement but
also does not provide satisfactory results. Transferring a model trained with
more complex data to simpler data is more promising than the other way
around.

Outlook. In future work, the following directions can potentially improve
the model transfer performance:
• In this use case, learning “local” normalisation parameters has used a large

amount of data, which does not reduce the effort and cost of data collec-
tion. In the future, less data should be used to learn the normalisation
parameters, and a dynamic approach for adjusting the normalisation pa-
rameters can be investigated, so that learning “local” normalisation pa-
rameters indeed becomes practical.

• To adopt a transfer learning approach to fine-tune ML models on new
datasets and studying the necessary data amount for fine-tuning.

• To develop an active learning approach to constantly adjusting ML models
on new datasets. This could also handle the OQ7 concept drift problem.

• To train a Master Model on a large dataset collected from a group of weld-
ing machines and fine-tuning the master model to tailor to specific welding
machines. The Master Model should be trained on a very complex dataset,
as the results indicate transferring from a model trained from complex data
to simpler data is more promising than the other way around.
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4.6 Transferability to Another Application:
Laser Welding

Overview: This use case tests the transferability of the proposed framework
and approaches to another quite different welding process, laser welding.
The methods in this use case are however not limited to laser welding, but
also apply to other laser processes, e.g. high-precision laser machining and
surface treatment. This use case study is accomplished in cooperation with
Dmitriy Mikhaylov. The author’s contribution is conceptualisation, design,
and implementation of ML methods of Neural Networks. The following
publications are based on/related to this use case: [200], [201]. An overview
of the corresponding application questions, open questions and methods is
listed in Table 4.26.

Table 4.26: Overview of application questions (AQ), open questions (OQ) and methods (M)

Application Question Open Question Methods

AQ2, AQ6 OQ1, OQ5, OQ8 M2.1.3, M2.2.3, M2.2.4

The target output of the machine learning models is the input laser ampli-
tude matrix to an optic system for achieving the desired output laser ampli-
tude distribution. This is a supervised multivariate regression problem. The
results of ML models are tested in laboratory experiments to validate the
methods and compared to conventional non-ML benchmarks.

In addition, an analysis of the influence of amount of training data on
prediction accuracy is conducted to gain insights for preparing costly data
collection from laboratory or production.

The data for model development are collected in a laboratory setting. The
tested machine learning methods are linear regression and convolutional
neural networks.

164



4.6 Transferability to Another Application: Laser Welding

4.6.1 Question Definition

Liquid crystal on silicon phase-only spatial light modulator (LCoS-SLM) is
a type of optical device often used to generate beam splitter patterns (de-
noted as a matrix A) for parallelised high-precision laser processes. The ac-
curacy of laser power amplitude distribution of these processes is essential
for many laser applications, e.g. multifocal fluorescence microscopy [202,
203, 204], two-photon polymerisation [205] or high-precision laser material
processing.

In application, the laser light from the laser source (Figure 4.32) is ex-
panded to a broader single laser beam by the beam expander, then trans-
formed to a set of beams by the spatial light modulator, and goes through a
series of optical devices and reaches the workpiece. The output laser ampli-
tude distribution can be measured by a camera if an extra beam attenuator
is installed to scale down the laser amplitude. The measured amplitude dis-
tribution can be described by a matrix Ameas. An ideal optical system will
output the desired amplitude distribution (Ades) so that Ameas = Ades, while
in reality the Ameas normally differs from Ades to some degree.

In order to achieve an Ameas more close to Ades, a phase hologram (φ )
needs to be generated and fed into the SLM. Many algorithms [206] (known
as phase retrieval algorithms) attempted to calculate the phase hologram
φ from an input amplitude distribution matrix (Ain), by iterative or non-
iterative methods. Among which, the weighting Iterative Fourier Transform

algorithm (IFTA) is a most commonly used method because it has fewer
constraints and enables fast implementation and calculation [207, 208]. Tra-
ditionally, the Ain is directly set to Ades and ideally Ameas should be equal to
Ades.

However, the actual Ameas deviates from Ades to a certain degree, because
IFTA assumes an ideal optical setup, differing from the real experimental
system. To overcome this small deviation, an extended IFTA with a closed
camera feedback loop (referred to as Camera-IFTA) was proposed [209],
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Figure 4.32: Schematic illustration of an application of the liquid crystal on silicon phase-
only spatial light modulator (LCoS-SLM). φ indicates the phase hologram cal-
culated by Iterative Fourier Transformation Algorithm (IFTA). An extra beam
attenuator is needed for scaling down the laser amplitude to measure the output
amplitude distribution (Ameas) using a camera. The figure is modified from [201].

achieving higher accuracy, but increasing the computational time signifi-
cantly.

To achieve both high accuracy and fast computation, this section proposes
novel approaches of ML-aided phase retrieval algorithms to combine
IFTA, camera feedback, and machine learning algorithms.

The basic idea is to extend the standard IFTA with an ML model for com-
puting the phase hologram, so that the ML-aided IFTA can achieve higher
accuracy than IFTA, and with much less time than the Camera-IFTA. The
ML model is pre-trained using a dataset with Ameas as the input data and
Ain as the output data (Ain = fml(Ameas)), so that the ML model can be
seen as an inverse model of the optical system ( fml = f−1

optics). The op-
tical system includes IFTA, SLM and the subsequent optical setups until
the camera in Figure 4.32. After that, the desired distribution Ades is in-
put to the ML model to estimate the output of the ML model, which is an
estimated input of the optical system Âin that should have Ades as output,
i.e. Âin = fml(Ades)⇒ Ades = foptics(Âin). The extended ML-aided IFTA
pipeline is illustrated in Figure 4.33.
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Three performance metrics of the proposed ML-aided phase retrieval
algorithms, including prediction accuracy evaluated using mape, minimal
training data number and computational time, are of interest and are com-
pared with the standard IFTA and Camera-IFTA.

4.6.2 Data Description

The data are collected from LCoS-SLM, including the input matrices Ain,
and the actual output matrices Ameas of the optical system. In total, 1000
instances of each type are collected, and each instance is a 10× 10 matrix,
representing the laser amplitude distribution. Therefore, a data tuple is a
10× 10 matrix in this use case. Three types of hologram matrices are col-
lected: random beam profiles, homogeneous distributed profiles, and pro-
files of linear ramps. Since the actual laser amplitude will be scaled up and
down in different components of the optical system according to the require-
ments of different applications, the absolute scale is not important. Hence
the data are normalised to sum to 1 after collection.

4.6.3 Experiment Settings

Two steps of experiments (Figure 4.33) are designed to evaluate the pro-
posed ML-aided phase retrieval algorithms.

Step 1: Inverse modelling. In Step 1, laser amplitude distribution matrices
Ain (equal to the desired distribution matrices Ades) are input into the optical
system, passing through IFTA, SLM and optical setups, resulting the actu-
ally measured amplitude distribution matrices Ameas. These two matrices
are used to train ML models that map the Ameas to Ain, exactly inverse to the
input and output of the optical system.

The data comprised of pairs of input and output, i.e. Ameas and Ain, are
split into trainingx set and test set with a ratio of 0.8 : 0.2. The trainingx set
is again split into training set and validation set with a ratio of 4 : 1. Two

167



4 Use Cases

Figure 4.33: Extended ML-aided IFTA with 2 steps: inverse modelling and model application.
The figure is modified from [201].

types of ML models, regularised Linear Regression (LR) and Convolutional
Neural Networks (CNN) are trained.

The CNN models are first trained on the training set. The hyper-parameters
of CNN models are selected based on the performance on the validation set.
A series of architectures, including different layers, number of layers and
number of neurons, were experimented using limited grid search (varying
one while fixing other hyper-parameters). In particular, using C denot-
ing the Conv2d layer, D denoting the Dense layer, the tested architectures
include: C, CC, CCC, CCCC, CD, CCD, and CDC. Among which, two
architectures, CC and CD, prevail in performance and are selected. The
best CC network selected based on the performance of validation set is
Conv256-Conv1 with filter sizes of (6,6) and (4,4) for each layer. The best
CD network is Conv320-Dense100 with a filter size of (6,6) in the Conv2d
layer. All activation functions are ReLU (rectified linear units). The “Adam”
optimiser is adopted, and loss function is mape.

After that, CC and CD with the best hyper-parameters and LR are trained
again with the trainingx set (combining training and validation set) and
tested on the test set (200 matrices), and evaluated with mape and maxape
(maximal absolute percentage error).
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Table 4.27: Data splitting to seven subsets of different training data number

Dataset name D1 D2 D3 D4 D5 D6 Dall

#Trainingx data 10 50 101 150 200 400 800

#Test data 200 200 200 200 200 200 200

Step 2: Model application. In Step 2, the ML models are applied and the
results are validated in an experimental setting. In particular, the desired
distribution matrices Ades of the test set (200 matrices) are used as input
to the ML models (in contrast to Step 1 where Ades is used as output) to
estimate the input distribution of optical systems Âin, that should have Ades

as output.
Then the estimated distribution matrices Âin are input into the optical sys-

tem in the laboratory to generate the output, measured as A′meas. These A′meas

are compared with Ades using mape and maxape to quantify the performance
of ML models in experimental validation.

Data splitting into subsets of different training data numbers. To ad-
dress the open question how many minimal data are necessary, the training
data set is split into a series of subsets of different numbers of data tuples
(Table 4.27), similar to Use Case 4.1. All three selected ML models, LR,
CC and CD are trained with each subset of training data and evaluated in
terms of prediction accuracy and experimental validation.

4.6.4 Results and Discussion

The performance in model application (Step 2) of the best ML-aided IFTA,
whose ML models are trained with 800 trainingx set, are validated with the
test set (200 matrices) and compared with two benchmarks in Table 4.28.
Note that the IFTA calculation in each phase retrieval algorithm has internal
errors. Thus the error of any IFTA-based phase retrieval algorithm cannot
be lower than the IFTA calculation error. This error is also listed in Row 1 in
Table 4.28 for reference. The two benchmarks are standard IFTA (referred
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to as IFTA) and extended IFTA with a closed camera feedback loop (referred
to as Camera-IFTA).

Table 4.28 reveals that the ML-aided phase retrieval algorithms have sig-
nificantly better performance compared to the standard IFTA. Especially the
LR-aided IFTA and CC-aided IFTA can even approximate the performance
of Camera-IFTA.

The mape is the mean absolute error calculated by comparing the A′meas

and Ades. Since each A′meas is a 10× 10 matrix, the comparison of each
matrix has a mape. The average values of mape (µ̂) of the 200 test data
tuples for each method are listed in Column 2, while the standard deviation
of mape (σ̂ ) are listed in Column 3. Similarly, the maxape is the maximal
absolute error of the comparison between A′meas and Ades. Its average values
and standard deviations are listed in Column 4 and Column 5.

Table 4.28: Performance comparison of ML-aided IFTA with the best ML models

Method mape (%) maxape (%)
µ̂ σ̂ µ̂ σ̂

IFTA calculation 1.11 0.37 5.06 1.99
IFTA 7.14 0.35 24.7 1.92

Camera-IFTA 1.93 0.31 7.80 2.33
LR-aided IFTA 2.36 0.40 8.46 1.66
CC-aided IFTA 2.46 0.29 8.99 1.95
CD-aided IFTA 3.59 0.47 13.00 2.50

A further analysis of necessary training data number for ML models is
illustrated in Figure 4.34. The two figures on the left side are the results of
model prediction accuracy in Step 1 of Figure 4.33, and on the right side are
the results of model application accuracy in Step 2.

Figure 4.34 gives the relationship between method performance and num-
ber of data tuples used for model training and validation. Sub-figures of
both prediction performance (left column) and experimental validation per-
formance (right column) indicate that LR and CC are much better than CD
when training data number < 400. After that their performance becomes
comparable. LR and CC are quite close in performance when training data
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Figure 4.34: ML models for prediction and experimental validation compared to IFTA. The
figure is modified from [201].

number≥ 150. CC can still achieve relatively good performance when train-
ing data number is only 101, while LR needs the training data number to be
at least 150, because the Theory of Equation requires the number of equa-
tions > number of variables.

In summary, the ML-aided IFTA need at least 150, 101, 400 training data
tuples for the ML model of LR, CC, and CD respectively, to achieve sig-
nificantly improvement compared to standard IFTA. This is summarised in
Table 4.29.

Table 4.29 evaluates the ML-aided methods considering minimal num-
ber of training data, and computational time. The standard IFTA takes 40
seconds for each hologram computation with relatively large errors. The
Camera-IFTA takes 280 seconds for each hologram computation with sig-
nificantly better performance, serving as benchmark for the proposed ML-
aided methods. The LR-aided IFTA needs at least 150 training data, re-
quiring about 270 seconds for data collection and neglectable training time.
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Once the LR model is trained, no further data collection time and training
time is needed. After that, the computation of each hologram takes 40 sec-
onds, since the method is based on IFTA. This means the LR-aided IFTA
becomes more efficient from the computation of the 2nd hologram (270s +
40s × 2 = 350s) than the Camera-IFTA (280s × 2 = 560s), while achieving
a comparably good performance as Camera-IFTA. Similarly, the CC-aided
IFTA saves time already from the 1st hologram (182s + 40s = 222s < 280s)
than Camera-IFTA, and CD-aided IFTA saves time from the 4th hologram
(720s + 40s× 4 = 880s, better than that of Camera-IFTA 280s× 4 = 1120s).

Table 4.29: Evaluation of ML-aided methods considering time

Method Minimal
#trainingx

data

Minimal data
collection

time

Training
time

Hologram
computation

time

#Data from which
ML method saves

time

IFTA - - - 40s -

Camera-IFTA - - - 280s Benchmark

LR-aided IFTA 150 270s <1s 40s 2

CC-aided IFTA 101 182s 5s 40s 1

CD-aided IFTA 400 720s 38s 40s 4

4.6.5 Conclusion and Outlook

Conclusion. This use case has studied improving phase retrieval algorithm
in laser beam splitting application by extending the standard IFTA with ML
models. The performance of the ML models is validated both from ML
perspective with training and test, and from domain perspective with labo-
ratory experiments. To further improve the adoptability and efficiency, the
influence of training data number on model performance is studied. All ML
methods have shown comparable performance and improvement in compu-
tation time, compared to the state-of-the-art phase retrieval algorithm, the
Camera-IFTA, given that sufficient training data are provided. ML-aided
IFTA has better comprehensive performance if several holograms need to
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be calculated. Especially CC-aided IFTA surpasses Camera-IFTA in terms
of efficiency for even the calculation of the first hologram.

Outlook. In the studied use case the input and output of the optical sys-
tem are required to be dense matrices. In industrial application, sometimes
sparse matrices are used. In this case, the three proposed ML methods, LR,
CC and CD, become not suitable anymore. The sparse matrices have two
complexity levels. The simpler version is when the number of laser spots in
the input amplitude matrix Ain equals the number of laser spots in the output
matrix Ameas. In this case, the spatial information of the laser spots can be
provided as features for ML modelling. The more complex version is when
the number of laser spots in the input matrix Ain does not equal that in the
output matrix Ameas. This case may be handled by padding the matrix with
the shorter length. These questions remain as future research direction.
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Aiming on studying and developing effective and generalisable machine
learning frameworks for quality monitoring in electrical resistance welding
(Section 1.6), this work goes beyond the boundaries of data science, com-
bining perspective of machine learning, domain knowledge and semantic
technologies. This chapter first summarises the study concisely, then makes
several conclusions, and finally previews future research.

Summary. Firstly, this work reviews (Chapter 1) state-of-the-art of machine
learning methods for product quality monitoring in electric resistance weld-
ing (ERW) and summarises open questions in this field. To address these
open questions, this work proposes a framework of ML methods (Chap-
ter 2), which expands the angle from traditional machine learning to deep
integration of domain knowledge and to semantic technologies such as on-
tologies and templates. Then, a concise description of some technical points
for implementation of the framework (Chapter 3) is given. After that, this
work demonstrates six industrial use cases (Chapter 4) to exemplify and
evaluate some methods in the framework.

Contribution. The major contribution of this work is a framework of ma-
chine learning in ERW that pursues a comprehensive coverage on topics of
quality monitoring in ERW. In particular, it includes the following contribu-
tions.

1. Revealing many domain aspects and data particularities in ERW that
are little discussed in the literature (Section 2.1), including: (1) qual-
ity indicators subsumed into six fidelity levels and accessibility; (2)
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the multi-levels of temporal structures in data; (3) insufficient data
problem summarised into three data challenges; (4) a comprehensive
list of application questions related to three data sources: production,
lab, and simulation;

2. A novel simulation-supported data collection regime for ERW (Sec-
tion 2.2), including: (1) procedures and methods of interactive data
acquisition and analysis; (2) datasets similarity analysis; (3) inverse
modelling of simulation model; (4) data amount and feature sets anal-
ysis; (5) datasets evaluation;

3. A new ontology-supported data preparation scheme for ERW (Sec-
tion 2.3), including: (1) convenient domain ontology construction by
users based on upper ontology and templates for process and data un-
derstanding; (2) ontology-aware data integration to the Uniform Data

Format to unify the data from different sources, versions, and pro-
cesses; (3) a mechanism to link the Uniform Data Format to machine
learning;

4. A systematic approach for selecting suitable ML methods and con-
structing ML pipelines for ERW (Section 2.4), including: (1) a novel
data preprocessing design to handle the temporal structures by spe-
cial data splitting, reshaping, and hierarchical feature extraction; (2)
several feature engineering strategies with deep integration of do-
main knowledge; (3) discussion of feature selection, normalisation
and classic machine learning methods; (4) ontology-enabled ML en-
hancement that allows semi-automated and user-configurable ma-
chine learning pipeline construction; (5) a special design of neural
networks for hierarchical feature learning; (6) discussion of perfor-
mance metrics, such as prediction accuracy and several adoptability
metrics;
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5. Successful validation of the proposed ML framework with five in-
dustrial use cases of ERW, including: (1) simulation-supported data
analysis and collection (Section 4.1), (2) visualisation and evaluation
of a large amount of production data to detect conspicuous welding
machines and welding programs for further analysis (Section 4.2),
(3) regression analysis to predict the next quality for comparing two
school of ML pipelines: feature engineering - classic ML and fea-
ture learning - neural networks (Section 4.3), (4) regression analysis
with deep integration of domain knowledge and gaining insights from
feature evaluation (Section 4.4); (5) transferability analysis of ML
models trained with data of one machine to data of other machines
(Section 4.5).

6. Successful demonstration of the transferability of the proposed ML
framework with an industrial use case of high-precision laser pro-
cesses (Section 4.6);

7. The implementation of the proposed ML framework with two pro-
gramming platforms, Python and SciXMiner (MATLAB) (Chapter 3),
including six ML modules and ML pipeline components of data
preparation, data preprocessing and ML modelling.

Conclusion. From the review of state-of-the-art and open questions, it can
be seen that the difficulties of efficient machine learning in ERW, as well
as in manufacturing, are not development of novel and complex ML algo-
rithms. Instead, a system solution is needed that covers multi-faceted topics
from data collection, through data management, and to ML development.

This work proposes a framework of ML in ERW for quality monitoring,
aiming at establishing a system solution to cover these broad topics, which
naturally is not confined to the application of quality monitoring in ERW but
also applicable to other questions of similar mathematical nature in discrete
manufacturing. The target-oriented approach results in an interdisciplinary
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framework that combines three perspectives: data science, manufacturing
technologies, and semantic technologies. This work designs the architecture
of the framework and provides theoretical corner stones as well as evalua-
tion use cases in the five aforementioned topics: question definition, data
collection, data preparation, data preprocessing and ML modelling.

Nevertheless, much work remains to be done to further evaluate and im-
prove the proposed framework. This work starts the journey towards more
intelligent manufacturing, which merges to the grand trend of the Fourth
Industrial Revolution (Industry 4.0).

Outlook. For the following topics, this work has only proposed theoreti-
cal approaches. They need to be further evaluated and validated: similarity
analysis between datasets to support data collection and evaluation, inverse
modelling of simulation models, ontology-supported process & data under-
standing, ontology-supported data integration, ontology-enhanced machine
learning for feature engineering - classic machine learning.

The theories in the following aspects need to be further developed and
completed: addressing the third data challenge of limit on coverage of rel-
evant situations, a more general semantic framework for knowledge encod-
ing and data modelling in discrete manufacturing, a better combined use of
multiple data sources in the multi-fidelity data model, quality monitoring
with probabilistic estimation, concept drift monitoring, ontology-enhanced
machine learning for feature learning - neural networks.

The ML framework proposed by this work awaits further study in other
processes of discrete manufacturing and process manufacturing [174] to ex-
plore the transferability, e.g. hardening [210], machining [211, 212], where
factors like system input parameters (e.g. force, speed), system component
status (e.g. tool wear), and system feedbacks (e.g. temperature, stress) are
extensively studied for quality analysis. In summary, a deep intertwining
of domain knowledge, machine learning, and semantic technologies is ex-
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pected as the general manner for many other research realms in Industry
4.0.
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of Additional Welding Machines

Identifying conspicuity of Welding Machine O. WMO has a high level of
Trendmean and the highest Scatteringmean (Figure 4.7b). The overall metrics
of WMO in Figure A.1a reveals that the Prog2 has a higher Trendmean and
Prog1 has a higher Scatteringmean. These two welding programs are both
conspicuous in some way. The scatter-plots of Q-Value over WearCount for
these two programs in Figure A.1b and Figure A.1c show that Q-Values of
WMO indeed have some conspicuous behaviour. The Q-Values of Prog1
diverge into two groups in the later phases of dress cycles. One group falls
back to the optimal value of one, while the other group continues to rise. The
Q-Values of Prog2 have a discernible phase of rising in the middle phases
of dress cycles and reach a stable plateau in the later phases of dress cycles,
deviating from the optimal value of one significantly.
outliersdev_mean 0 0

outliers_num 0 0

scattering_range 0.452 0.45

scattering_mean 0.0584 0.0488

trend_range 0.309 0.384

trend_mean 1.13 1.19

prog1 prog2

num_data 999 999

a b c

Trend Q-Value Scattering OutlierProg1 Prog2

Figure A.1: Metrics and scatter-plots of Q-Values of WMO

Identifying conspicuity of Welding Machine T. WMT has the most #Outliers

(Figure 4.7b) and the discrepancy metrics show the differences are more at-
tributed to welding programs than dress cycles (Figure 4.8). The overall
metrics with respect to welding programs in Figure A.2a reveals that almost
all these outliers are from Prog27. The overall metrics with respect to dress
cycles in Figure A.2b further reveals that most of these outliers concentrate
on one dress cycle (cap1 dress0). After narrowing down the search area,
the scatter-plots of the Q-Values along welding operation (Figure A.3a) and
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outliersdev_mean 0.102 0.0981

outliers_num 10 72

scattering_range 0.23 0.247

scattering_mean 0.019 0.0335

trend_range 0.241 0.271

trend_mean 1.02 1.03

pro
g2

6
pro

g2
7

num_data 999 999

outliersdev_mean 0 0.0895 0.0903 0 0.102 0 0.0831 0.0899 0.101 0.0931

outliers_num 0 3 4 0 52 0 2 6 3 12

scattering_range 0.135 0.177 0.174 0.0344 0.2 0.136 0.149 0.146 0.212 0.17

scattering_mean 0.0194 0.0246 0.0259 0.015 0.0442 0.0205 0.0201 0.0227 0.0263 0.0299

trend_range 0.065 0.271 0.271 0.09 0.271 0.271 0.271 0.271 0.271 0.269

trend_mean 1.04 1.02 1.02 0.852 1.02 1.02 1.02 1.02 1.02 1.02
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Figure A.2: Metrics with respect to welding programs and cap dresses of WMT

over WearCount (Figure A.3b) further confirm that almost all outliers are of
Prog27 in one dress cycle, where the actual Q-Values systematically deviate
from the estimated trend.

Trend Q-Value Scattering Outlier

a b

Prog27 Prog27

Figure A.3: Q-Values along welding operation and over WearCount of WMT

A.4 Determination of Minimal Number of Data
Tuples for Statistical Estimation

This section derives the minimal number of data tuples for estimation of
mean value and standard deviation of an (assumedly) Gaussian distributed
random variable X . This section is written with great support from Prof.
Markus Reischl.
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Estimation of Mean. Suppose the estimated mean value is estimated with
n data tuples, expressed as xT,n, and it cannot deviate from the true mean

value µ by 10%. The probability of |xT,n− µ| ≤ 0.1µ should be greater
than or equal 95%. This is expressed in the following inequation:

P(0.9µ ≤ xT,n ≤ 1.1µ)≥ 95% (A.1)

Inside the probability parenthesis of the left hand side of the inequation it
is also an inequation. A µ can be deducted from all sides in the ineuqation
in the parenthesis, and thus the inequation can be changed to:

P(0.9µ−µ ≤ xT,n−µ ≤ 1.1µ−µ)≥ 95% (A.2)

This can be further changed by multiplying
√

n/σ in all sides inside the
parenthesis and it becomes:

P(−0.1µ

σ

√
n≤

xT,n−µ

σ

√
n≤ 0.1µ

σ

√
n)≥ 95% (A.3)

Since x is assumed to be Gaussian distributed, and xT,n is the estimated
mean value of x with small sample size, then (xT,n− µ)/σ should be nor-
mal distributed, and

√
n(xT,n− µ)/σ should be t-distributed 1 [213, 214].

√
n(xT,n−µ)/σ can therefore be replaced with tn−1, indicating t-distributed

random variable with n−1 degree of freedom. Thus the inequation can be
expressed as:

P(−0.1
µ

σ

√
n≤ tn−1 ≤ 0.1

µ

σ

√
n)≥ 95% (A.4)

1 Student’s t-distribution refers to any continuous probability distributions that often arises for
estimating the mean of a normally-distributed population whose sample size is small and the
population’s standard deviation is unknown
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To estimate the value of the probability, µ and σ will be replaced with
estimated values, i.e. xT,n and sT,n, respectively.

P(−0.1
xT,n

sT,n

√
n≤ tn−1 ≤ 0.1

xT,n

sT,n

√
n)≥ 95% (A.5)

Using FX (x) as the cumulative distribution function of the random variable
X , the inequation becomes:

FX (0.1
xT,n

sT,n

√
n)−FX (−0.1

xT,n

sT,n

√
n)≥ 95% (A.6)

This is not analytically solvable, but can be solved numerically with tables
of cumulative distribution function of t-distribution.

Estimation of Standard Deviation. Suppose the estimated standard de-
viation is estimated with n data tuples, expressed as sT,n, and it cannot
deviate from the true standard deviation σ by 10%. The probability of
|sT,n−σ | ≤ 0.1σ should be greater than or equal 95%. This is expressed in
the following inequation:

P(0.9σ ≤ sT,n ≤ 1.1σ)≥ 95% (A.7)

All sides in the inequation in the parenthesis are strictly greater than 0.
Thus, they can be squared, and the inequation still holds:

P(0.81σ
2 ≤ s2

T,n ≤ 1.21σ
2)≥ 95% (A.8)

All sides in the inequation in the parenthesis can be multiplied by a posi-
tive number (n−1)/(σ2) (n > 1), and the inequation is changed to:

P(0.81σ
2 (n−1)

σ2 ≤ s2
T,n

(n−1)
σ2 ≤ 1.21σ

2 (n−1)
σ2 )≥ 95% (A.9)
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The σ2 in the numerator and denominator cancel themselves and the in-
equation becomes:

P(0.81(n−1)≤ (n−1)
s2

T,n

σ2 ≤ 1.21(n−1))≥ 95% (A.10)

Since X is Gaussian distributed, thus (n− 1)s2
T,n/(σ

2) is chi-square dis-
tributed with n− 1 degree of freedom [214]. The inequation can be ex-
pressed by

P(0.81(n−1)≤ χ
2
n−1 ≤ 1.21(n−1))≥ 95% (A.11)

Using FX (x) as the cumulative distribution function of the random variable
X , the inequation becomes:

FX (1.21(n−1))−FX (0.81(n−1))≥ 95% (A.12)

This ineuqation is not analytically solvable, but can be solved numerically
with tables of cumulative distribution function of chi-square distribution.
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