1,033 research outputs found

    Constructing Bayesian Network Graphs from Labeled Arguments

    Get PDF
    Bayesian networks (BNs) are powerful tools that are well-suited for reasoning about the uncertain consequences that can be inferred from evidence. Domain experts, however, typically do not have the expertise to construct BNs and instead resort to using other tools such as argument diagrams and mind maps. Recently, a structured approach was proposed to construct a BN graph from arguments annotated with causality information. As argumentative inferences may not be causal, we generalize this approach to include other types of inferences in this paper. Moreover, we prove a number of formal properties of the generalized approach and identify assumptions under which the construction of an initial BN graph can be fully automated

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Simple low cost causal discovery using mutual information and domain knowledge

    Get PDF
    PhDThis thesis examines causal discovery within datasets, in particular observational datasets where normal experimental manipulation is not possible. A number of machine learning techniques are examined in relation to their use of knowledge and the insights they can provide regarding the situation under study. Their use of prior knowledge and the causal knowledge produced by the learners are examined. Current causal learning algorithms are discussed in terms of their strengths and limitations. The main contribution of the thesis is a new causal learner LUMIN that operates with a polynomial time complexity in both the number of variables and records examined. It makes no prior assumptions about the form of the relationships and is capable of making extensive use of available domain information. This learner is compared to a number of current learning algorithms and it is shown to be competitive with them

    Relating Admissibility Standards for Digital Evidence to Attack Scenario Reconstruction

    Get PDF
    Attackers tend to use complex techniques such as combining multi-step, multi-stage attack with anti-forensic tools to make it difficult to find incriminating evidence and reconstruct attack scenarios that can stand up to the expected level of evidence admissibility in a court of law. As a solution, we propose to integrate the legal aspects of evidence correlation into a Prolog based reasoner to address the admissibility requirements by creating most probable attack scenarios that satisfy admissibility standards for substantiating evidence. Using a prototype implementation, we show how evidence extracted by using forensic tools can be integrated with legal reasoning to reconstruct network attack scenarios. Our experiment shows this implemented reasoner can provide pre-estimate of admissibility on a digital crime towards an attacked network

    BARD : a structured technique for group elicitation of Bayesian networks to support analytic reasoning

    Get PDF
    In many complex, real-world situations, problem solving and decision making require effective reasoning about causation and uncertainty. However, human reasoning in these cases is prone to confusion and error. Bayesian networks (BNs) are an artificial intelligence technology that models uncertain situations, supporting better probabilistic and causal reasoning and decision making. However, to date, BN methodologies and software require (but do not include) substantial upfront training, do not provide much guidance on either the model building process or on using the model for reasoning and reporting, and provide no support for building BNs collaboratively. Here, we contribute a detailed description and motivation for our new methodology and application, Bayesian ARgumentation via Delphi (BARD). BARD utilizes BNs and addresses these shortcomings by integrating (1) short, high-quality e-courses, tips, and help on demand; (2) a stepwise, iterative, and incremental BN construction process; (3) report templates and an automated explanation tool; and (4) a multiuser web-based software platform and Delphi-style social processes. The result is an end-to-end online platform, with associated online training, for groups without prior BN expertise to understand and analyze a problem, build a model of its underlying probabilistic causal structure, validate and reason with the causal model, and (optionally) use it to produce a written analytic report. Initial experiments demonstrate that, for suitable problems, BARD aids in reasoning and reporting. Comparing their effect sizes also suggests BARD's BN-building and collaboration combine beneficially and cumulatively

    Markov network structure discovery using independence tests

    Get PDF
    We investigate efficient algorithms for learning the structure of a Markov network from data using the independence-based approach. Such algorithms conduct a series of conditional independence tests on data, successively restricting the set of possible structures until there is only a single structure consistent with the outcomes of the conditional independence tests executed (if possible). As Pearl has shown, the instances of the conditional independence relation in any domain are theoretically interdependent, made explicit in his well-known conditional independence axioms. The first couple of algorithms we discuss, GSMN and GSIMN, exploit Pearl\u27s independence axioms to reduce the number of tests required to learn a Markov network. This is useful in domains where independence tests are expensive, such as cases of very large data sets or distributed data. Subsequently, we explore how these axioms can be exploited to correct the outcome of unreliable statistical independence tests, such as in applications where little data is available. We show how the problem of incorrect tests can be mapped to inference in inconsistent knowledge bases, a problem studied extensively in the field of non-monotonic logic. We present an algorithm for inferring independence values based on a sub-class of non-monotonic logics: the argumentation framework. Our results show the advantage of using our approach in the learning of structures, with improvements in the accuracy of learned networks of up to 20%. As an alternative to logic-based interdependence among independence tests, we also explore probabilistic interdependence. Our algorithm, called PFMN, takes a Bayesian particle filtering approach, using a population of Markov network structures to maintain the posterior probability distribution over them given the outcomes of the tests performed. The result is an approximate algorithm (due to the use of particle filtering) that is useful in domains where independence tests are expensive

    Learning how to act: making good decisions with machine learning

    Get PDF
    This thesis is about machine learning and statistical approaches to decision making. How can we learn from data to anticipate the consequence of, and optimally select, interventions or actions? Problems such as deciding which medication to prescribe to patients, who should be released on bail, and how much to charge for insurance are ubiquitous, and have far reaching impacts on our lives. There are two fundamental approaches to learning how to act: reinforcement learning, in which an agent directly intervenes in a system and learns from the outcome, and observational causal inference, whereby we seek to infer the outcome of an intervention from observing the system. The goal of this thesis to connect and unify these key approaches. I introduce causal bandit problems: a synthesis that combines causal graphical models, which were developed for observational causal inference, with multi-armed bandit problems, which are a subset of reinforcement learning problems that are simple enough to admit formal analysis. I show that knowledge of the causal structure allows us to transfer information learned about the outcome of one action to predict the outcome of an alternate action, yielding a novel form of structure between bandit arms that cannot be exploited by existing algorithms. I propose an algorithm for causal bandit problems and prove bounds on the simple regret demonstrating it is close to mini-max optimal and better than algorithms that do not use the additional causal information
    corecore