13,371 research outputs found

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages

    Get PDF
    This paper studies the problem of frequency regulation in power grids under unknown and possible time-varying load changes, while minimizing the generation costs. We formulate this problem as an output agreement problem for distribution networks and address it using incremental passivity and distributed internal-model-based controllers. Incremental passivity enables a systematic approach to study convergence to the steady state with zero frequency deviation and to design the controller in the presence of time-varying voltages, whereas the internal-model principle is applied to tackle the uncertain nature of the loads.Comment: 16 pages. Abridged version appeared in the Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, MTNS 2014, Groningen, the Netherlands. Submitted in December 201

    Fast Non-Parametric Learning to Accelerate Mixed-Integer Programming for Online Hybrid Model Predictive Control

    Full text link
    Today's fast linear algebra and numerical optimization tools have pushed the frontier of model predictive control (MPC) forward, to the efficient control of highly nonlinear and hybrid systems. The field of hybrid MPC has demonstrated that exact optimal control law can be computed, e.g., by mixed-integer programming (MIP) under piecewise-affine (PWA) system models. Despite the elegant theory, online solving hybrid MPC is still out of reach for many applications. We aim to speed up MIP by combining geometric insights from hybrid MPC, a simple-yet-effective learning algorithm, and MIP warm start techniques. Following a line of work in approximate explicit MPC, the proposed learning-control algorithm, LNMS, gains computational advantage over MIP at little cost and is straightforward for practitioners to implement
    corecore