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Abstract

The computational burden that model predictive control (MPC) imposes depends to a large extent on the way the optimal
control problem is formulated as an optimization problem. We present a formulation where the input is expressed as an affine
function of the state such that the closed-loop dynamics matrix becomes nilpotent. Using this approach and removing the
equality constraints leads to a compact and sparse optimization problem to be solved at each sampling instant. The problem
can be solved with a cost per interior-point iteration that is linear with respect to the horizon length, when this is bigger than
the controllability index of the plant. The computational complexity of existing condensed approaches grow cubically with the
horizon length, whereas existing non-condensed and sparse approaches also grow linearly, but with a greater proportionality

constant than with the method presented here.

1 Introduction

In linear MPC, at every sampling instant, the optimal
control input is determined through the solution of a
convex optimization problem with a quadratic cost and
linear constraints. MPC’s natural ability for handling
physical constraints has the potential to deliver signif-
icant performance benefits in many application areas.
However, the very high computational demands mean
that, if at all possible, expensive power-hungry hardware
is often required to meet the application’s sampling re-
quirements. This has so far hindered the widespread use
of the technology.

Given an estimate or measurement of the current state
of the plant Z, the constrained LQR problem that we
will consider is
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for k=0,1,2,..,N—1  (2b)
for k=0,1,2,...N — 1 (2¢)
for k=0,1,2,..,N—1  (2d)

where N is the horizon length, x; € R™ is the state
vector at sample instant k, up € R™ is the input
vector, (A, B) is controllable, (Q%,A) is detectable,
Q S
ST R
tion, Q > 0, (2¢) represents a possible affine transfor-
mation on the input, J € R>*", E € R™>*™ d € R and |
is the number of constraints. The techniques described
in this note can easily be extended to problems with
costs and constraints on the input rates, time-varying

costs and constraints, as well as problems with linear
terms in the cost function.

> 0, R > 0 to ensure uniqueness of the solu-

The method employed when formulating the constrained
LQR problem as a quadratic program (QP) has a big
impact on the problem size and structure, the result-
ing computational and memory requirements, as well as
on the numerical conditioning. The standard approach
makes use of the plant dynamics to eliminate the states
from the decision variables by expressing them as an ex-
plicit function of the current state and future control
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inputs (Maciejowski, 2001). This condensed formulation
leads to compact and dense QPs. In this case, the com-
plexity of solving the QP scales cubically in the horizon
length when using an interior-point method. For MPC
problems that require long horizon lengths, the non-
condensed formulation, which keeps the states as deci-
sion variables and considers the system dynamics im-
plicitly by enforcing equality constraints (Rao, Wright,
and Rawlings, 1998; Wright, 1993, 1996), can result in
significant speed-ups. With this approach the problem
becomes larger but its structure can be exploited to find
a solution in time linear in the horizon length.

The non-condensed method is often also referred to as
the sparse method due to the abundant structure in the
resulting optimization problems. In this note, we show
that this label does not provide the complete picture and
that it is indeed possible to have a sparse condensed for-
mulation that can be solved in time linear in the horizon
length. In addition, we show that this method is at least
as fast as the standard condensed formulation and it is
faster than the non-condensed formulation for a wide va-
riety of control problems. Our approach is based on the
use of the linear feedback policy in (2c) as a mathemat-
ical trick to introduce structure into the problem. We
choose K such that A+ BK is nilpotent and show that
one can formulate a QP with banded matrices in cases
where the horizon length is larger than the controllabil-
ity index of the plant. The use of such feedback policies
for pre-stabilising predictions has been previously stud-
ied as a way of improving the conditioning of guaran-
teed stability MPC algorithms (Rossiter, Kouvaritakis,
and Rice, 1998). However, we find it surprising that it
has not yet been applied to introduce structure into the
problem, as we will do here, considering the important
practical implications.

Note that (2¢) is effectively only a change of variables
and it does not modify the optimal control problem,
hence the computed optimal input is independent of the
transformation used. Moreover, any procedure to guar-
antee stability and feasibility can still be used. For ex-
ample, if the method in Scokaert and Rawlings (1998)
is used, then Q € R™*" is the solution to the appropri-

ate Riccati equation, which is independent of the choice
of K in (2c¢).

We start by reviewing existing QP formulations and an-
alyzing their computational complexity in the context
of primal-dual interior-point methods. However, the re-
sults stated in this paper should have a similar impact
on barrier-based interior-point methods and active-set
methods. We then present our sparse condensed ap-
proach and compare it with existing formulations.

Algorithm 1 Primal-Dual Interior-Point Algorithm

Choose any initial point (0y, 0, Ao, S0) with
(A6 sg]" >0

fork=0to P—1do

H+GT™W,G FT
A =
F 0
. ~h—FTv — GT(\, — Wig + oppsy ')
k=
—Fo,+ f

Solve Az = by, for z, = [(Qk + Aﬂk)T Aljk]
AN = Wi (G0 + AbBg) — g) + O',LLkSk
Ask = =S8 — (G(@k + Aek) - g)
ag = max{a € (0,1] : (Ak, sk) + a(AXg, Asg) > 0}
(Ok+15 Vh15 A 15 S1) 1=
(O s Vi, Aks 51) + (A, Avg, Adg, Asy,)
end for

2 QP Formulation Problem

We consider the problem of formulating the optimal con-
trol problem (1)—(2) as a convex QP of the following
form:

GO < g.
3)

Primal-dual interior-point methods can be used to solve
for the optimal 8. Algorithm 1 is a variant of an infeasible
primal-dual method (Wright, 1996), where v and \ are
Lagrange multipliers for the equality and inequality con-
straints, respectively, s is a vector of slack variables, o is
a small constant between zero and one, W}, := AkSk_l,
Ay and Sy, are diagonal matrices containing the elements
of \x and sy, respectively, and puy := (A} si)/(NI) is a
measure of sub-optimality that approaches zero at the
optimum. In applications with fast dynamics, real-time
requirements will impose a hard bound on the number
of interior-point iterations, hence the number of interior-
point iterations P is assumed fixed a priori.

1
min 59THe +hTH subject to FO = f,

At each interior-point iteration, computing the matrix
triple product GTW}G (line 1) and solving the system
of linear equations Agzy = by (line 3) account for most
of the computation, hence we will express the overall
complexity considering the cost of these operations only.

3 Non-condensed Approach

The future states can be kept as decision variables and
the system dynamics can be incorporated into the prob-
lem by enforcing equality constraints (Rao, Wright, and
Rawlings, 1998; Wright, 1993 1996% In this case, for any
arbitrary K, if we let 6 := [xT v where

T T

1, T
x:=[zgxy ... xN],



h := 0, then the remaining matrices have sparse struc-
tures that describe the control problem (1)—(2) exactly.

Assuming general constraints, the number of floating
point operations (flops) for computing GT WG is ap-
proximately NI(n+m)? operations. For solving Agz;, =
by, the coefficient matrix Aj, € RN @ntm)xN@n+m) jg ap
indefinite symmetric matrix that can be made banded
through appropriate row re-ordering (or interleaving of
variables A and Av). The resulting banded matrix
has a half-band of size 2n + m. Such a linear system
can be solved using a banded LDLT factorization in
N(2n+m)3+4N (2n+m)?+ N(2n+m) flops (Boyd and
Vandenberghe, 2004, App. C), or through a block fac-
torization method based on a sequence of Cholesky fac-
torizations in O(N(n + m)3) operations (Rao, Wright,
and Rawlings, 1998). The memory requirements can be
approximated by the cost of storing matrices H, G, F
and Ay, which are all sparse. For time-invariant prob-
lems, these matrices mostly consist of repeated blocks.

4 Condensed Approach

The state variables can be eliminated from the optimiza-
tion problem by expressing them as an explicit function
of the current state and the controlled variables (Ma-
ciejowski, 2001):

x = AT + Bv, (4)

where A := A+ BK and

I, 0
Ak B 0
A A% g. | AxB B
AR AN-2B B 0
AR AN-'B AN“2B ... AxB B|

()
In this case, if we let 0 := v, F' := 0, f := 0, then we
have an inequality constrained QP with

H:=BT(Q+ K'RK + SK + KTST)B+
R+BT(K'R +8) + (RK + S7)B,

h:=z"AT(QB +S(KB + 1)+ K" (R(KB + I) + S'B)),

G :=(J+EK)B +E,
g:=d — (J + EK)AZ,

where

INn®S
0

Q= ,R: =1y ®R,

In®Q 0 S .
o Q|

K = [1N®K o],J;:INe@J,E::IN@E,

d = 1y ® d, ® denotes a Kronecker product and 1y
denotes a vector of ones of length N.

When K = 0 (ur, = vg) or is an arbitrary stabilizing
gain (Rossiter, Kouvaritakis, and Rice, 1998), G is a
lower block Toeplitz triangular matrix. The number of
flops for computing GTW},G can be split into %N 2lm
operations for the row update WG and %N?’lm2 opera-
tions for the matrix-matrix multiplication when exploit-
ing the symmetry of the result. In terms of the system
of linear equations, Ay € RY™XNm ig a symmetric pos-
itive definite dense matrix, hence the problem can be
solved using an unstructured Cholesky factorization in
%N?’m?’ +2N2m? flops (Boyd and Vandenberghe, 2004,
App. C). The cubic growth in computational require-
ments with respect to the horizon length, in contrast to
the linear growth exhibited by the non-condensed formu-
lation, suggests that the non-condensed approach could
be preferable for applications that require long horizons.
Furthermore, memory requirements scale quadratically
with N because matrices are dense and there is no ob-
viously exploitable repetition pattern.

5 Sparse Condensed Formulation

In this section we present a novel way to formulate the
optimal control problem (1)—(2) as a structured opti-
mization problem. We define the controllability index as
the smallest number of time steps to drive the system
from any z € R” to the origin, which is finite if the sys-
tem (A, B) is controllable. The nilpotency index is de-
fined as the smallest integer 7 such that that A® = 0 for
all i > r when A is a nilpotent matrix.

Proposition 1 If the pair (A, B) is controllable, we can
choose K such that Ak is a nilpotent matriz with nilpo-
tency index r so that when N > r + 1 the prediction
matriz B in (5) is block Toeplitz, block banded lower tri-
angular with a halfband of (r + 1)n elements. The last
(N —r+ 1)n rows of A are also zero.

PROOF. Given a reachable system (A, B) there ex-
ists a feedback law such that the closed-loop dynamics
matrix has arbitrary eigenvalues (Astrém and Murray,
2008). The problem of obtaining a suitable matrix K
such that A + BK has all eigenvalues at zero is analo-
gous to finding a deadbeat gain in the context of static
state feedback. A numerically reliable way of comput-
ing a deadbeat feedback gain in the multi-input case is
not a trivial task, but the problem has been addressed
by several authors (Dooren, 1984; Emami-Naeini and
Franklin, 1982; Sujimoto, Inoue, and Masuda, 1993).
These methods start by transforming the original system
into the controllability staircase form (Dooren, Emami-
Naeini, and Silverman, 1979)(ctrbf in Matlab), which



unlike the controller canonical form, can be obtained
through well-conditioned unitary transformations. The
transformed system is given by

AT AT'U,
0 A,

T

Uk,
0

or
[xkﬂ
U
L

U
Lp41

where the subcripts r and u refer to the reachable and un-
reachable subspaces, respectively, and the matrix A, is
in staircase form with a number of steps equal to the con-
trollability index of the reachable subsystem (4,, B;).
These methods yield the minimum nilpotency index for
A + BK, which is equal to the controllability index of
(A, B) given by

po= | —0 +r
" | rank(B,) b

where 7, is the nilpotency index of the unreachable sub-
system A,,. The structure of A and B is clear from direct
inspection of (5). O

Corollary 2 If K is chosen such that Ag is nilpotent,
then matrices H and G are banded, the size of their non-
zero bands is independent of N, and each interior-point
iteration has a complexity linear with respect to N.

PROOF. XB yields a matrix with the same structure
as B when X is block-diagonal, and BT XB yields a
symmetric banded matrix with halfband equal to the
halfband of B.

H is now a block banded symmetric positive definite
matrix of size Nm x Nm with half-band equal to r + 1
blocks of size m x m. In the time-invariant case, there
are only r + 1 + @ distinct blocks and its structure
is given by

(Hy, Hy --- Hrp1 0 --- )
HI H;
H?—‘—l
H .= 0
0

Hy Hy --- Hy1
HY Hy, - Hy,

’

0o - .. 0 HT, ﬁ1Tr H,.,

where

X:=Q+ K"RK + SK + K"s",

Hi:=R+) (Ag'B)" XA 'B,
=1
. T71 . . .
H; =(A BT (KTR+ 8)+ > (AxB) XA B
i=j—1

forj=2,...,r+1,

r—k
Hyp =R+ (A'B)"XAi'B+ (A5 "B) QA "B

=1

fork=1,...,r,
Hy prj =A% "B)Y(KTR+ )+
r—k—1

Z (AxB)Y' XA B + (A% *B)T QA "B
i=j

forj=1,..,r—land k=1,...,r —j.

The situation is similar for G and Aj;. G is a block
Toeplitz, block banded lower triangular matrix with a
half-band of r+1 blocks of size [ x m. The number of flops
for computing GT W}, G is approximately 1 Nm(r+1)I for
the row update plus 2 Nm?(r+1)?[ for the matrix multi-

plication. The coefficient matrix A;, € RN™*N™ is now
a symmetric positive definite banded matrix with the
same size and structure as H, hence the linear system can
be solved using a banded Cholesky routine with a cost of
Nm3(r + 1) + 4ANm?(r + 1) flops (Boyd and Van-
denberghe, 2004). Memory requirements grow linearly
with N and can be reduced significantly by exploiting
repetition in the time-invariant case, as above. O

Table 1 compares the upper bound on the number of
flops for the three different QP formulations. The ex-
pressions for the sparse condensed approach assume that
N > r + 1, otherwise the matrices are dense. As a re-
sult, the sparse condensed approach is always at least as
fast as the standard condensed approach. Taking a con-
servative assumption for the largest possible nilpotency
index r = n, the expressions suggest that if the number
of states is larger than the number of inputs, then the
formulation presented in this paper will provide an im-
provement over the non-condensed approach in terms of
the number of flops. Both these approaches will outper-
form the standard condensed approach for large N. The
assymptotic bounds from Table 1 also hold for small val-
ues of the problem parameters, as confirmed by Figure 1.
The flop count of an algorithm is proportional to the
computational effort required, but the computational
time will largely depend on the specific implementation
and computing platform. The operations to be carried
out using the sparse condensed approach are all banded
linear algebra for which efficient software libraries exist,
hence we do not consider this to be a limiting factor.



Table 1
Comparison of the number of flops required by the different
QP formulations per interior-point iteration.

Computation
O(N3*m?(1 +m))
O(N(m +n)2(l +m +n))
O(Nm?r*(l +m))

Condensed
Non-condensed

Sparse condensed
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Fig. 1. Accurate count of the number of floating point op-
erations per interior-point iteration for the different QP for-
mulations discussed in this paper. The size of the control
problem ism =2, n=6,l =6 and r = 3.

Additional benefits over the non-condensed approach
come from the possibility of adding input rate con-
straints to the optimal control problem (1)—(2) without
affecting the structure of the matrices in the optimiza-
tion problem (3), whereas with the non-condensed ap-
proach the inclusion of rate constraints increases the
bandsize of G and consequently Aj. In terms of limita-
tions, a new K needs to be computed for different (A, B)
pairs; however, the complexity of the procedure in Suji-
moto, Inoue, and Masuda (1993) is O(n? +rank(B,)%n),
hence the approach could still be applicable to some
online time-varying and nonlinear MPC applications.
For LTT systems this computation is carried out offline.
We have also observed that if there is a large mismatch
between the sampling frequency and the plant dy-
namics, employing the proposed approach can lead to
ill-conditioned optimization problems. However, in the
absence of oversampling, the conditioning is acceptable.

6 Conclusion

In this note, we have presented a novel way to formulate
a constrained optimal control problem as a structured
optimization problem that can be solved in time lin-

ear in the horizon length with an interior-point method.
The structure is introduced through a suitable change
of variables that results in banded prediction matrices.
The proposed method has been compared against the
current standard approaches and it has been shown to
offer reduced computational and memory requirements
for most control problems. As a result, employing the
proposed approach could allow one to push the bound-
aries of MPC to applications where the computational
burden has so far been too great, or it could allow cur-
rent MPC applications to run on cheaper commodity
hardware.
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