5 research outputs found

    Solving the At-Most-Once Problem with Nearly Optimal Effectiveness

    Full text link
    We present and analyze a wait-free deterministic algorithm for solving the at-most-once problem: how m shared-memory fail-prone processes perform asynchronously n jobs at most once. Our algorithmic strategy provides for the first time nearly optimal effectiveness, which is a measure that expresses the total number of jobs completed in the worst case. The effectiveness of our algorithm equals n-2m+2. This is up to an additive factor of m close to the known effectiveness upper bound n-m+1 over all possible algorithms and improves on the previously best known deterministic solutions that have effectiveness only n-log m o(n). We also present an iterative version of our algorithm that for any m=O(n/logn3+ϵ)m = O\left(\sqrt[3+\epsilon]{n/\log n}\right) is both effectiveness-optimal and work-optimal, for any constant ϵ>0\epsilon > 0. We then employ this algorithm to provide a new algorithmic solution for the Write-All problem which is work optimal for any m=O(n/logn3+ϵ)m=O\left(\sqrt[3+\epsilon]{n/\log n}\right).Comment: Updated Version. A Brief Announcement was published in PODC 2011. An Extended Abstract was published in the proceeding of ICDCN 2012. A full version was published in Theoretical Computer Science, Volume 496, 22 July 2013, Pages 69 - 8

    Doing-it-All with Bounded Work and Communication

    Get PDF
    We consider the Do-All problem, where pp cooperating processors need to complete tt similar and independent tasks in an adversarial setting. Here we deal with a synchronous message passing system with processors that are subject to crash failures. Efficiency of algorithms in this setting is measured in terms of work complexity (also known as total available processor steps) and communication complexity (total number of point-to-point messages). When work and communication are considered to be comparable resources, then the overall efficiency is meaningfully expressed in terms of effort defined as work + communication. We develop and analyze a constructive algorithm that has work O(t+plogp(plogp+tlogt))O( t + p \log p\, (\sqrt{p\log p}+\sqrt{t\log t}\, ) ) and a nonconstructive algorithm that has work O(t+plog2p)O(t +p \log^2 p). The latter result is close to the lower bound Ω(t+plogp/loglogp)\Omega(t + p \log p/ \log \log p) on work. The effort of each of these algorithms is proportional to its work when the number of crashes is bounded above by cpc\,p, for some positive constant c<1c < 1. We also present a nonconstructive algorithm that has effort O(t+p1.77)O(t + p ^{1.77})

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Explicit combinatorial structures for cooperative distributed algorithms

    No full text
    corecore