70,358 research outputs found

    Building and Refining Abstract Planning Cases by Change of Representation Language

    Full text link
    ion is one of the most promising approaches to improve the performance of problem solvers. In several domains abstraction by dropping sentences of a domain description -- as used in most hierarchical planners -- has proven useful. In this paper we present examples which illustrate significant drawbacks of abstraction by dropping sentences. To overcome these drawbacks, we propose a more general view of abstraction involving the change of representation language. We have developed a new abstraction methodology and a related sound and complete learning algorithm that allows the complete change of representation language of planning cases from concrete to abstract. However, to achieve a powerful change of the representation language, the abstract language itself as well as rules which describe admissible ways of abstracting states must be provided in the domain model. This new abstraction approach is the core of Paris (Plan Abstraction and Refinement in an Integrated System), a system in which abstract planning cases are automatically learned from given concrete cases. An empirical study in the domain of process planning in mechanical engineering shows significant advantages of the proposed reasoning from abstract cases over classical hierarchical planning.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    Effects of automation on situation awareness in controlling robot teams

    Get PDF
    Declines in situation awareness (SA) often accompany automation. Some of these effects have been characterized as out-of-the-loop, complacency, and automation bias. Increasing autonomy in multi-robot control might be expected to produce similar declines in operators’ SA. In this paper we review a series of experiments in which automation is introduced in controlling robot teams. Automating path planning at a foraging task improved both target detection and localization which is closely tied to SA. Timing data, however, suggested small declines in SA for robot location and pose. Automation of image acquisition, by contrast, led to poorer localization. Findings are discussed and alternative explanations involving shifts in strategy proposed

    Improving performance through concept formation and conceptual clustering

    Get PDF
    Research from June 1989 through October 1992 focussed on concept formation, clustering, and supervised learning for purposes of improving the efficiency of problem-solving, planning, and diagnosis. These projects resulted in two dissertations on clustering, explanation-based learning, and means-ends planning, and publications in conferences and workshops, several book chapters, and journals; a complete Bibliography of NASA Ames supported publications is included. The following topics are studied: clustering of explanations and problem-solving experiences; clustering and means-end planning; and diagnosis of space shuttle and space station operating modes

    The Impact of Early Career Experiences on Youth’s Proactive Work Socialization Behavior

    Get PDF
    Little is known about the impact of individual characteristics, historical factors, and situational characteristics on youth\u27s proactive work socialization behavior (career planning, skill development, consultation, and networking). Data from a longitudinal cross-national study (Belgium, England, Israel, Italy, the Netherlands and Spain) on career starters from two occupational groups, are used to test the hypothesized impact of predictor sets. Results confirm the positive impact of early career experience on the skill development proactive behavior; the dominant impact of the broader socioeconomic political and cultural country context on all four aspects of proactive behavior; and the sporadic effect of occupation, gender, and educational history on some proactive behavior dimensions

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Increasingly automated procedure acquisition in dynamic systems

    Get PDF
    Procedures are widely used by operators for controlling complex dynamic systems. Currently, most development of such procedures is done manually, consuming a large amount of paper, time, and manpower in the process. While automated knowledge acquisition is an active field of research, not much attention has been paid to the problem of computer-assisted acquisition and refinement of complex procedures for dynamic systems. The Procedure Acquisition for Reactive Control Assistant (PARC), which is designed to assist users in more systematically and automatically encoding and refining complex procedures. PARC is able to elicit knowledge interactively from the user during operation of the dynamic system. We categorize procedure refinement into two stages: diagnosis - diagnose the failure and choose a repair - and repair - plan and perform the repair. The basic approach taken in PARC is to assist the user in all steps of this process by providing increased levels of assistance with layered tools. We illustrate the operation of PARC in refining procedures for the control of a robot arm
    • …
    corecore