
_IASA-TM-I08II2

_f

c£Z _

Increasingly Automated Procedure

Acquistion
In Dynamic Systems

NATHALIE MATHE

SMADAR KEDAR

ARTIFICIAL INTELLIGENCE _ESEARCH BRANCH

MS 269-2

NASA AMES RBSEARCH CENT_,_

MOFFETT FIELD, CA 94035-1000

(NASA-TM-lO8112) INCREASINGLY
AUTOMATED PROCEDURE ACQUISITION

DYNAMIC SYSTEMS (NASA) 20 p

I N

M93-16684

Unclas

G3/61 0135328

__A Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-92-23

June, 1992

https://ntrs.nasa.gov/search.jsp?R=19930007495 2020-03-17T09:25:12+00:00Z

Draft paper submitted to the 7th Banff Knowledge Acquisition for Knowledge-Based Systems
Workshop, to be held in Banff, Canada, October 11-16, 1992.

Increasingly Automated Procedure Acquisition
In Dynamic Systems

Nathalie Math61 & Smadar T. Kedar 2

NASA-Ames Research Center

Mail Stop 269-2
Moffett Field, CA 94035, USA

mathe@ptolemy.arc.nasa.gov
kedar@ p tolemy.arc, nasa. gov

ABSTRACT

Procedures are widely used by operators for controlling complex dynamic
systems. Currently, most development of such procedures is done
manually, consuming a large amount of paper, time and manpower in the

process. While automated knowledge acquisition is an active field of
research, not much attention has been paid to the problem of computer-

assisted acquisition and refinement of complex procedures for dynamic
systems. This paper presents the Procedure Acquisition for Reactive
Control Assistant (PARC), which is designed to assist users in more

systematically and automatically encoding and refining complex procedures.
PARC is able to elicit knowledge interactively from the user during

operation of the dynamic system. We categorize procedure refinement into
two stages : diagnosis - diagnose the failure and choose a repair - and repair
- plan and perform the repair. The basic approach taken in PARC is to
assist the user in all steps of this process by providing increased levels of
assistance with layered tools. We illustrate the operation of PARC in

refining procedures for the control of a robot arm.

1. INTRODUCTION

Procedures are widely used by operators for controlling complex dynamic systems such as

airplanes, nuclear power plants, and the Space Shuttle. Procedures specify how to conduct a set of
predetermined sub-tasks (or actions) that are components of a higher level task. For example, they
dictate the manner by which a pilot is expected to interact with an aircraft's systems. Currently, most
development of such procedures is done manually, consuming a large amount of paper, time and
manpower in the process (Math6, 1990b; Degani et al., 1991). First, a system designer encodes
nominal procedures which may be incomplete and incorrect. Then, during the course of system testing

and operation, if the procedures fail to perform as expected, the user needs to cope with the failure and
fred ways to recover. Detecting and correcting the procedures deemed responsible for the failure is done
later, off-line. Such procedure refinement never ceases -- it is done incrementally over the lifetime of the

dynamic system.

1Dr. Math6 is a European Space Agency fellow and currently a NASA-Ames Research Associate.

2Dr. Kedar is a contractor at Sterling Software, Inc., and is currently a visiting researcher at the Institute for the Learning
Sciences, Northwestem University.

2

There is a needfor a tool to assistusersin encodingprocedures,and refining them during
operations.While automatedknowledgeacquisitionisanactivefield of research,notmuchattentionhas
beenpaid to theproblem of acquiringandrefining complexproceduresfor dynamicsystems.Most
attemptsat procedureacquisitionto datehaveproposedadvancededitors,including flow-chartdia_am
editors,or othersimilargraphicaleditors(Saltoet al., 1991). Other attempts have dealt with procedure

acquisition in static domains such as medical diagnosis (Musen et al., 1987). While those previous

studies mainly addressed the elicitation phase of procedure acquisition 3, we focus in this work on the
refinement phase. Research in machine learning addresses procedure elicitation and refinement by
providing fully automated methods (Gil, 1991; Kedar, 1991). However, these methods rely on strong
assumptions about the domain (e.g. complete perception and prediction), which are violated in most
real-world environments.

The Procedure Acquisition for Reactive Control assistant (PARC) is designed to assist users in

more systematically and automatically encoding and refining complex procedures for dynamic systems.
Thus it is expected to increase the accuracy of procedures with decreased time and effort on the part of
the user. In order to be effective, we require that it assist in all stages of the procedure refinement

process.

Automated Acquisition Tools

Focus on current state
of execution

Diagnosis heuristic guidance
suggesting preferred repairs

Refining diagnosis heuristic
guidance with user feedback

Structured editors

Repair heuristic guidance

Procedure Refinement Task

1 - Diagnosis Stage

1a - diagnosing the failure

1b - choosing a repair

2- Repair Stage

2a - planning for the repair

2b - executing the repair

Figure 1: Assistance levels supporting the procedure refinement stages.

Given the experimental nature of procedure refinement, PARC elicits knowledge during operation
of the _dynamic system. During execution, the user supervises the dynamic sy.stem.using procedures
suggested by a control assistant. When the user disagrees with the control assxstant (such an event is
called a failure), PARC starts a procedure acquisition dialog. We categorize the procedure refinement

(la) the user diagnoses the failure

(lb) chooses the repair needed to correct the procedure base;

(2a) the user plans for the repair

(2b) performs the repair.

This refinement process is incremental and continues through further execution.

process into two stages:

(1) Diagnosis stage:

and

(2) Repair stage:

and

3Knowledge Acquisition can be broadly classified into three phases: elicitation, refinement and reformulation (Bareiss et.
al., 1989).

3

PARC is designedwith layeredKA tools,providingincreasedassistanceto automatemorestepsof
therefinementtask(Figure 1). At the lowestlevel of assistance,PARCprovides informationon the
controlassistant'scurrentstateof execution,assistingtheuserin diagnosingthefailure. It alsoprovides
structurededitors that can be usedstand-aloneto perform the repair. Secondly,PARC provides
automaticheuristicguidancein both stages.In particular,it suggestswhich typesof refinementsare
likely to correctwhichtypesof failures,assistingbothstepsof thediagnosisstage. It alsoleadstheuser
throughtherepairstageby providingheuristicguidancein planningandexecutingtherepair. Finally,
PARCprovidesautomaticreinforcementof theheuristicdiagnosisguidance.It reinforcestheheuristics
with userfeedbackin orderto refineandimproveits guidanceovertime.

In thenext section,wewill presentanoverviewof theprocedureacquisitionassistant,including a
brief procedureacquisitionexample,descriptionsof the performancesystemand of the procedure
acquisitionassistant,andof their associatedknowledgerepresentationfor procedures.In thethird and
fourth sections,we describetheprocedureacquisitionassistantwith adetailedrunning example.We
analyzetheprocedureacquisitionassistantin thefifth sectionandconcludeby presentingsomerelated
work andfuturedirectionsof research.

2. OVERVIEW OF THE PROCEDURE ACQUISITION ASSISTANT

2.1. A Sample Procedure Acquisition Dialog

In this section we illustrate PARC's operation using a simple example from a robotics domain, in
our robotics lab we use a puma 560 robot has seven degrees of freedom, a gripper, and severn sensors.
A sonar sensor measures the distance to the closest object in the environment. A force-torque sensor is
used to detect obstacles and perform severn types of commands. A camera attached on the gripper is

used with image analysis software to detect cubes and compute their positions in the environment. The
user has no direct view of the environment. A video screen displays a global view of the robot
environment from a fixed camera. The user controls the robot through a graphical interface which

includes graphical sensors values displays, a 3D graphical simulator, and a high level command
language with menus and graphical command panels (Figure 2). Messages and procedures are also

displayed on the interface by the control assistant.

In this example, the task of the user is to build a structure of cubes and beams with the robotic arm.
The control assistant suggests executing the sub-task "Approach Cube" using a guarded move robot

command. A guarded move uses the force-torque sensor to detect any collision during the motion. The
motion is stopped when the goal position is reached (successful command execution) or when an
obstacle is detected (command execution failure). The user agrees to execute the "Approach Cube"
procedure and observes the control assistant perform the guarded move. Part way through the guarded
move, the assistant abandons it to select an "Avoid Obstacle" procedure, trying to avoid a nonexistent

obstacle. At this point, the user notifies the assistant that she disagrees; she did not expect the "Avoid
Obstacle" procedure in the midst of the "Approach Cube" procedure, because she doesn't see any
obstacle on the video screen.

4

Figure 2: User Interface for Robotic Control.

Given this failure 4, a procedure refinement dialog begins. First, the procedure acquisition assistant
provides to the user the system's current state of execution: the procedure for "Approach Cube" is
followed by the procedure "Avoid Obstacle" under the abnormal outcome "obstacle". PARC assists the
user in diagnosing the failure: there is only one abnormal outcome for the "Approach Cube" procedure,
such that any execution failure feedback would be assumed to be an obstacle, and thus to be avoided by
invoking the "Avoid Obstacle" procedure. In fact, one of the other reasons for the execution failure of

the guarded move command is if the force-torque sensor stops working. The event corresponding to a
sensor breakdown has been displayed to the user, and by checking the sensors status, the user discovers
that this is the problem. PARC then assists the user is in choosing an appropriate repair for the

procedure. Given all possible repairs (adding or removing any preconditions, outcomes, or procedure
links), the heuristic guidance suggests that for this type of failure, an additional abnormal outcome and

associated recovery procedure is needed. The user selects this repair and PARC then presents a dialog
which leads her through the steps of the repair. Later on in system operation, the user finds that once
again, when the force torque sensor was not working, the control assistant suggests the "Avoid
Obstacle" procedure. By diagnosing the failure, the user notes that the heuristic guidance was
incomplete, and that the criticality order of the two abnormal outcomes needed to be modified as well
The user's feedback on the repair choice is used to modify and reinforce the corrected heuristic.

4Note that a command execution failure is different from what we call a failure: the fact that the user disagrees with the
control assistant. A failure is not always associated to an unexpected command execution failure, like in this example.

5

2.2. The Architecture

The architectureconsistsof two main components:theperformance system and the procedure
acquisition system, PARC (Figure 3). The task of the performance system is to assist the user in
controlling a dynamic system (e.g. a robot, an airplane). It is thus called a control assistant. In our
case, the task domain is robotic arm control. The procedure acquisition dialog is triggered when the
user disagrees with the control assistant. The procedure acquisition system uses the dynamic problem-
solving ability of the performance system to support procedure refinement. PARC operates as follows :
given the current procedure base and set of active procedures, it assists the user in (i) diagnosing the
failure; and (ii) repairing the failure. Once the failure has been repaired (or if the user agrees with the
control assistant), the control assistant resumes execution. In the following sections we will briefly

describe each of these aspects

Reactive
Control

J ...Procedure Acquisition
-. _Assistant

Diagnosis/
Repair

Figure 3: Architecture of the Procedure Acquisition Assistant.

2.2.1. The Performance System

For assisting the user in controlling the robotic arm, the control assistant's problem solving, method
is reactive control: given the task goal and the set of active procedures, analyze the current situation,
select the next appropriate procedure, execute it and monitor its results (Matht, 1990a). Procedures are

represented as Blocks, a formalism described in section 2.2.3., and the control assistant's problem
solving method is based on the inference mechanism associated with the block representation (Boy,
1989; Matht, 1990b-c, Math6 & Boy, 1992).

The control assistant operates as follows. It monitors the environment status, the robotic arm status
and user's actions on the interface. When an event is perceived, it is interpreted by the assistant with

respect to its current expectations. The assistant then decides if the current procedure still applies or if
another procedure should be selected. In the latter case, it displays a message to the user explaining the
new situation and the name of the selected procedure. If the user agrees with the assistant's selection,
the selected procedure is displayed on the user interface (by selecting the appropriate display and setting
parameters values - Figure 2). This is possible since procedures are expressed in terms of user's
actions on the interface (like flight procedures are expressed in terms of pilot's actions in the cockpit),

and not directly in terms of robotic instructions common for most autonomous control systems. The
user may then choose to execute this procedure, modify some parameters values before executing it, or
ignore it and select another command panel. The control assistant then executes the procedure by
translating it into low level instructions for the robotic arm and monitoring its results.

2.2.2. The Procedure Acquisition System

PARC acquires knowledge that is incorporated as extensions and refinements to an initial skeletal
procedure base. This initial procedure base, as well as models of the dynamic system and its
environment, is acquired manually during a preliminary elicitation phase with the domain designers.
PARC assists the user in incrementally refining this procedure base.

PARC provides tools automating each step of the refinement process. Once the user detects a
failure, it assists her in diagnosing why the control assistant suggested the wrong procedure, by
displaying information on the set of active procedures involved in the current execution state. Then,
PARC assists the user in choosing the repair needed to correct the faulty procedures by suggesting a
subset of preferred repairs among all possible repair options, based on some heuristic knowledge. This
heuristic guidance can be automatically tailored with user feedback in order to reinforce particular
preferred repairs, suggest new repairs, or include domain-specific knowledge. Finally, for assisting the
user in planning and performing the repair, PARC proposes a procedure acquisition dialog driven by
some heuristic procedural knowledge. This includes knowledge on how to decompose a particular
repair into a sequence of steps, on how to take into account the current execution state, and on how to
appropriately use the structured editors. Those structured editors provide direct access to procedures
and are based on the knowledge representation for procedures described below.

2.2.3. Procedure Representation

Procedures in the control assistant are represented as Blocks, a representation designed to facilitate

incremental procedure development. In a previous robotic application where procedures were manually
acquired through experimental protocols, we developed a cognitive model of reactive control.
Following this study, we designed the block representation and its associated inference mechanism as an
appropriate formalism for this model (Matht, 1990b-c, Math6 & Boy, 1992). The basic structure of this
formalism is a block of knowledge. A procedure base is represented as a network of blocks organized
in several hierarchical levels. The inference mechanism associated with this formalism is independent of

the content of the procedure base. Different procedure bases can be loaded into the system, depending

on the particular application task involved. A block includes the following components:

(1) name;
(2) hierarchical level;
(3) list of preconditions;
(4) list of actions;
(4) list of goals with their lists of associated blocks; and
(5) list of abnormal conditions with their lists of associated blocks.

A block is graphically represented as in Figure 4. It is divided into four parts corresponding to its
preconditions, actions, goals and abnormal conditions. The arrows represent the links towards the
blocks-associated to goals and abnormal conditions. Blocks of lower hierarchical level have a grey

background, and block of same or higher hierarchical level have a white background.

Actions are either elementary actions (executable on the user interface) or sub-blocks of lower
hierarchical level. Goals and abnormal conditions are terminal conditions which are tested during and

after the execution of the block actions. For a given block, each goal and abnormal condition is linked to
a list of blocks which contains possible procedures to be executed next if the goal or abnormal condition
is satisfied. Abnormal conditions and goals differ only semantically: goals correspond to a successful
execution; abnormal conditions correspond to all the abnormal situations which may occur during or
after execution. Their associated blocks represent how to recover from a particular abnormal situation.

Depending on its complexity, a procedure may be represented by a single block, a hierarchy of
blocks or a network of blocks. A simple procedure is represented by a single block whose actions are

elementary. A more complex procedure may be represented by a block whose actions are sub-blocks at
a lower hierarchical level, containing themselves either elementary actions or lower level sub-blocks.

Finally, a set of complex procedures is represented by a network of blocks, hierarchically organized and
transversely connected through their goals and abnormal conditions. Given the procedure hierarchy, the

contextof ablock is definedasthesetof its parentblocks'preconditions. The contextstructureand
hencethe hierarchicaldecompositionof blocksis determinedby task analysis. This representation
supportsincrementalproceduredevelopmentthroughacquisition of new blocks and refinementof
existing blocks by addingabnormalconditionsandassociatedrecoveryproceduresandby learning
contextualconditions(Boy, 1989).

BLOCK-1

OR

PRE-CONDITION_

PR-1, PR-2

ABNORMAL
CONDITIONS

ACTIONS

AC-2

A-1

A-2 AC-3
A-3 ...

GOALS

G-l, G-2

Block-7 I

- Block--'---'_I

Block-9 1
"__ Block-10

Figure 4: Block graphical representation.

The behavior of the control assistant is based on the inference mechanism associated with the block

representation:
(1) Sensory inputs from the environment, the robot and the user interface are matched with the

system current expectations. Expectations correspond to preconditions of blocks selected for
execution, and to goals and abnormal conditions of active blocks.

(2) The most critical of the best matched expectations is selected by the assistant.

(3) Depending on the type of the selected expectation, the block to which it belongs and the next
blocks associated to it, the assistant determines which procedures become _ictive, inactive or
selected for execution. If a low level block becomes active, its actions are executed on the user

interface. The set of of current expectations is updated and used during the next pattern-

matching phase.

2.2.4. Example of Procedures for Robotic Control

Using this representation, we have encoded in the control assistant the first set of nominal
procedures corresponding to the cubes and beams assembly task. We have manually acquired this set of
procedures through interviews with our robotics expert. For example, the task "Insert Cube in Structure
at Destination Pose" is decomposed into several phases: "Choose Cube," "Pick up Cube," "Move Cube
to Destination Pose," and "Fasten Cube into Position" which represent a nominal sequence of

procedures linked through their goals. The sub-phase "Approach Cube" (Figure 5), part of "Pick up
Cube," has one goal "gripper at position above cube" linked to the next nominal procedure "Align
Gripper," and one abnormal conditions "obstacle" linked to the next alternative recovery procedures
"Find Collision free Path to Goal Position" and "Avoid Obstacle".

"Approach Cube"

I
Move Tool to I obstacle

*position- I

above-cube* I

Tool at "position-above-cub{

I AlignGripper l

i vo,°Ifree Path toll Obstacle

Goal Positio1I I

Figure 5: Part of the "Pick up Cube"procedure.

3. AUTOMATING THE DIAGNOSIS STAGE

The procedure acquisition dialog is triggered when the user disagrees with the control assistant. We
called such an event a failure. In the following sections we describe the forms of assistance provided to

the user in diagnosing the failure.

3.1. Detecting a Failure

During reactive control, the control assistant analyzes the situation, matching it with its current
expectations (preconditions, goals, and abnormal conditions). It then decides if the current procedures
still apply or if another procedure should be suggested to the user. In the latter case, it displays a
message, as shown in Figure 6, informing the user about: (1) perceived events (if any); (2) the

recognized expected condition; and (3) the suggested procedure or the result of a previously active
procedure (normal or abnormal). The user may agree on the recognized situation and the suggested
procedure, in which case the execution will continue (cf. Section 2). Or the user may disagee and start
a procedure acquisition dialog, by accessing the other choices considered by the control assistant.

Figure 6: Confirm Selection acquisition panel.

9

Taking the example described in Section 2, the user wants the robotic arm to insert the next cube
into the partially built smacture. In order to do so, the control assistant has selected a cube on the
table using the "Choose Cube" procedure, then proposed to the user that she executes the
"Approach Cube" procedure. This procedure uses a guarded move robot command. The user
agrees on this procedure and observes the robot perform the guarded move. Part way through the
guarded move, the control assistant informs the user that the "Approach Cube" procedure has failed
(Figure 6). The events "execution failure" and "force-torque sensor off" have been received by the
control assistant and the abnormal condition "obstacle" recognized. Since the user doesn't see any
obstacle in front of the robot on the video screen, she notifies the assistant that she disagees on the

recognized situation, thus detecting a failure.

3.2. Diagnosing the Failure

Once the user disagrees with the control assistant, the first step of the refinement process is to
diagnose the failure. The diagnosis consists in determining what is wrong in the suggestion of the
control assistant, given the current situation in the environment. For example, no procedure may have
been selected if it is missing in the procedure base; or several expectations may have been recognized,

but the wrong one selected.

To help the user diagnose the failure, PARC provides information on the assistant's current state of
execution. It displays the Situation Description panel (Figure 7) which focuses on portions of the
procedure base that are involved in the current execution. This panel describes the current state of
execution in a scroUable tree format: current active procedures, current expectations, and next procedures

linked to these expectations. The ftrst column displays the names of active procedures in hierarchical
order. The second column displays current expectations associated to each active procedure, with their
name, type (precondition, goal or abnormal condition), degree of match and degree of criticality. The
third column displays the names of procedures to be executed next, associated with each expected
condition. It shows the user which procedures may become active next depending on the condition she
selects. By default, the condition selected by the control assistant is highlighted when the panel is

displayed.

Figure 7: Situation Description acquisition panel.

In our example, PARC displays the set of active procedures in a scrollable tree format: "Build
Structure," "Insert Cube in Structure at Destination Pose," "Pick up Cube," and "Approach Cube"

at the lowest hierarchical level. Figure 7 shows the bottom tJart of this tree, including the

"Approach Cube" procedure in the first column. In the second column, the expected condition
"obstacle" selected by the control assistant is highlighted. It is an abnormal condition of the

10

"Approach Cube" procedure. The procedure "Avoid Obstacle" is going to be executed if the user
does not change the selection and repair the procedure base. By accessing the "obstacle" condition,
the user sees that the "execution failure" event can only be interpreted as an obstacle by the system.
In fact, given her knowledge of the domain, she knows that one of the other reasons for the
execution failure of the guarded move command is if the force-torque sensor stops working. When
selecting the "obstacle" condition, the control assistant has displayed to the user the event
corresponding to the sensor breakdown. By checking the sensors status, she decides that this is the
problem. Thus, the user diagnoses that the "obstacle" condition has been incorrectly selected and
that the sensor breakdown event should have be recognized instead.

3.3. Choosing a Repair

After diagnosing the failure, the user may select a repair or directly access the editors. In the latter
case, she has to rely on her own knowledge for choosing, planning and performing the repair. In this
section, we describe the assistance provided by PARC for helping the user choose the repair.

First, the set of all possible repair options is displayed on the Situation Description panel (list of
buttons on the right hand side - Figure 7): modify, add or remove an expected condition; modify an

expected condition criticality; modify, add or remove a next procedure 5. Those options are not
exhaustive, but found to be the most useful for recovering from a failure.

Failures

No Match

One Match

Several
Matches

Types
No procedure associated
to selected goal or
abnormal condi_on

No Surprise

Surprise

Genera/

If Abnormal Condition
selected and there is no
uninterpreted event

If Abnormal Condition
selected and there is an
uninterpreted event

General

If two identical expected
conditions at two different
hierarchical/eve/

Possible Repairs
-> add next procedure to selected goal or abnormal condition

-> add expected condition
-> modify expected condition
-> add next procedure
-> add expected condition
-> modify expected condition

-> modify the selected expected condition
-> add expected condition

-> add a new abnormal condition and associated recovery
procedure and modify the one selected
-> add a new abnormal condition and associated recovery
procedure

-> add abnormal condition corresponding to the uninterpreted
event and associated recovery procedure

-> change recognized expected condition criticality
-> modify recognized expected condition

-> remove one expected condition if expected twice
-> modify one of them
Advice to remove one goal:
- keep the high level goal if the user wants to be able to skip all the
lower level procedures when the high level goal is satisfied
- keep the low level goal if the user only wants to skip the sub-
procedure with the low level goal

Figure 8: Failure types- preferred repairs Table.

5This is a first approximation of which repair actions would be needed. We plan to propose more help to the user by
suggesting specific procedure components on which those actions should be applied.

11

Next, PARC assists the user choose the repair among all possible repair options by suggesting a
subset of preferred repairs and highlighting the corresponding buttons. Heuristics are used to determine
the subset of preferred repairs given the failure type. This heuristic guidance encodes knowledge from
the knowledge engineer. The types of failures currently identified and their associated preferred repairs
are given in the table below (Figure 8). The type of a failure is determined by PARC using the current
state of execution and the pattern matching result. It does not depend on any domain knowledge.

We illustrate two simple cases from the table. In case (3), if none of the expected conditions
matches a perceived event (a surprise) and if this event is judged significant by the user, PARC suggests
that the user adds a new expected condition describing this event and an associated procedure specifying
how to recover from it, or to modify an existing expected condition. In case (7), if the recognized
expected conditions are correct but the wrong one was suggested by the control assistant, PARC

suggests that the user increases the degree of criticality of the right condition (so that it becomes more
critical than all the other ones recognized), in order for this condition to be correctly selected the next
time and in the same situation. If the user does not modify the criticality order before selecting the right

condition, the procedure base is not modified and the same failure may happen again.

In our example, the control assistant has selected the wrong abnormal condition "obstacle" due to
the sensor breakdown. It corresponds to case (6) in the table. The heuristic guidance suggests that

for this type of failure, an additional abnormal condition describing the unexpected event (force-
torque sensor not working) is needed, with its associated recovery procedure. The user selects this
repair and the procedure acquisition assistant presents a dialog which leads her through the steps of
the repair (cf Section 4).

3.4. Refining the heuristics for preferred repairs

Heuristic guidance, described in the previous section, assists the user in diagnosing a failure and
choosing a repair. However, it is based on knowledge elicited from the knowledge engineer and thus
may be incomplete. Moreover, the diagnosis stage corresponds to the complex process of explaining
failure in the domain in terms of the problem-solving components. Thus, heuristic guidance may also
lack some domain specific knowledge, difficult to acquire without actually running the dynamic system.
In order to solve those problems, we provide an extra level of automation which improves and refines

this heuristic guidance over time with user feedback.

The preferred repairs associated to a given type of failure will be reinforced when actually selected
by the user, or extended when the user selects another repair. The reinforcement increases the weight of
a link which associates preferred repairs with a failure type. Contextual domain knowledge including

for example, the particular task, user profile, type of sensors used and their reliability, and the active
procedures, can be also be acquired for each link (as in Boy, 1990).

In our example, we suppose that the user has performed the suggested repair, selected the new

expected condition and resumed execution. Later on in system operation, the user finds that once
again, when the force-torque sensor was not working, the control assistant selected the "obstacle"
abnormal condition. This failure now corresponds to case (7), the control assistant recognized both
conditions "obstacle" and "force-torque sensor breakdown," and selected the most critical:
"obstacle". In this case, the procedure acquisition assistant suggests modification of the criticality
order between those conditions. Thus, the user notes that the heuristic guidance for the previous

failure was incomplete, and that the criticality order of the two abnormal conditions needed to be
modified as well The user's feedback on the repair choice is used to modify and reinforce the
corrected heuristic.

4. AUTOMATING THE REPAIR STAGE

After describing the various levels of assistance available to the user during the diagnosis stage of

the.procedure refinement task, we now present the automated KA tools useful for the repair stage. Once
the user has chosen a repair, she has the choice between directly editing procedures or being guided

12

furtherby theprocedureacquisitionassistantthroughtheplanningandperformanceof therepair. We
first describethelowestlevelof assistanceavailable,theeditors,thentherepairguidance.

4.1. Performing the repair

Basic capabilities for editing procedures have been implemented using structured editors. They
include the Procedure, Condition, Elementary Condition and Elementary Action Editors (Figure 9).
Those editors are directly accessible through the main menu. Editors are structured based on the chosen
procedure representation (block representation) and integrate a number of syntactic constraints. For
example, the user's selection of sub-procedures to be added to a procedure is restricted to the list of

existing procedures at a lower hierarchical level than the level of the edited procedure. The Elementary
Action editor has been designed to make the model of the domain more transparent to the user. In order
to create or modify an elementary action, the user directly "executes" this action on the user interface for
control, by selecting a button or setting some numerical parameters for example. The procedure

acquisition assistant automatically displays the expression of this action into the Action editor. This is
possible since procedures are expressed as user's actions on the interface. For the Elementary Condition
editor, all the objects in the domain model are accessible through selection lists to the user.

Figure 9: Procedure Editor.

13

In our example, the user decides to use the editors to add an abnormal condition describing the
sensor breakdown event. She must first access the Procedure editor and display the "Approach

Cube" procedure, then add the abnormal condition. The Procedure editor will display the list of
existing abnormal conditions she may choose from. If the "sensor breakdown" condition doesn't
exist, she must access the Condition Editor, and eventually the Elementary condition editor. Then

she goes back to the Procedure editor and add the newly created abnormal condition in the ordered
list of abnormal conditions of the "Approach Cube" procedure. She may then associate a recovery

procedure with this new condition. If the procedure for approaching a cube without collision
detection doesn't exist, she must first create it from scratch, then link it to the "sensor breakdown"

condition in the "Approach Cube" procedure. This completes the repair.

Those editing capabilities should be sufficient for the knowledge engineer who knows which

editing actions are needed for a given repair and in which order they should be performed. However
they do not provide assistance to the domain expert or the operator for planning the repair.

4.2. Planning for the repair

In order to provide more assistance to the user for planning and performing the chosen repair,
PARC includes a procedure acquisition dialog which guides the user through the repair stage. It uses

knowledge on how to translate a repair into a sequence of editing actions. It also takes advantage of the
current execution state to narrow the set of options proposed to the user. Contrary to the heuristic

guidance used during the diagnosis stage, this knowledge is mostly procedural and consists of more or
less complex repair pi'ocedures associated to each possible repair (Mathr, 1991). These repair
procedures do not depend on the domain, but only on the knowledge representation syntax and
semantics and on the current set of active procedures. Once the user chooses a repair, the appropriate

repair procedure is selected and drives the dialog with the user. During this dialog, the user may be
asked to describe how external conditions have changed, to specify new procedures, or to state which

recovery procedure to associate with an abnormal condition and which active procedures and goals to
drop. At some point during this dialog, the procedure acquisition assistant will also choose and display
the appropriate editor to the user, where some slots have already been automatically filled in (deduced

from the dialog with the user).

Once the repair has been completed or when the dialog is over, the Situation Description panel is

updated to reflect the new state of the procedure base. The user may then select the appropriate expected
condition and continue the execution. It is important to notice that the user doesn't have to perform a

complete repair and may exit the dialog whenever she wants. Since the method is incremental, another
related problem will be detected later on during the execution, or again in the same situation. Thus the
user can choose how much to modify the procedure base each time she disagees with the control

assistant.

Figure 10: Part of the Repair dialog.

In our example, the user chooses to add an expected condition describing the sensor breakdown
event. The following dialog guides her through the repair:

14

(1)PARCfirst askstheuserto selectaconditionfrom thelist of existingconditionsor toedit anew
one. If the"sensorbreakdown"conditiondoesn'texist,PARCdisplaystheConditioneditorto the
user.

(2) Given the current state of execution, PARC asks the user whether she wants to add this new
condition as a goal or an abnormal condition. The user chooses to add an abnormal condition.

(3) PARC asks the user to select from the list of active procedures the procedure to which "sensor
breakdown" will be added. The user selects the "Approach Cube" procedure. Then PARC display
the list of existing abnormal conditions for this procedure and ask the user to insert the new
condition in this ordered list. She inserts it after "obstacle".

(4) The procedure acquisition assistant finally asks the user to select an associated recovery
procedure from the list of existing procedures at the same or higher hierarchical level, or to create a
new one. The user chooses to create a new recovery procedure.

(5) To define this recovery procedure, PARC fzrst asks the user to specify if the goal "gripper at

position above cube" of the "Approach Cube" procedure may still be reached by a local recovery
procedure when the force-torque sensor is down. If the goal is still valid, PARC also asks the user
if the recovery procedure is an alternative procedure or an intermediate procedure (to be executed
before going back to the current procedure "Approach Cube"). The user answers that an alternative

procedure is needed (Figure 10).

(6) From this information, PARC automatically deduces that the new alternative procedure's goal is

"gripper at position above cube," pointing towards the same next procedure "Align Gripper," and
belonging to the same context "Pick up Cube". It displays this information in the Procedure editor,
and the user only needs to enter the new procedure name and actions needed for approaching a cube

with no force-torque sensor.

When the repair is done, the procedure base is updated (Figure 11), and the Situation Description
panel graphically displays the new expectation "sensor breakdown" attached to the "Approach
Cube" procedure and its associated new recovery procedure. The user may then choose this
condition and continue the execution.

A00,oachCube
I obstacle

Move Tool to |

*position- I FTsensor

above-cube* I breakdown

Fool at *position-above-cube

,f
Align IGripper

I Approach I
Cube w/out

FT Sensor

I I I
IFin I
_oal

I

Figure 11: Part of "Pick up Cube" procedure after repair.

15

5. DISCUSSION

In Sections 3 and 4 we presented the procedure acquisition assistant guiding the user in the

diagnosis and repair of procedures. We demonstrated that PARC is able to assist the user in all four
steps of the procedure refinement task by providing increased levels of assistance. The modules of the
control assistant and of PARC are at various stages of completion. The control assistant, which includes

a friendly user interface, is currently operational. It is able to control the Puma 560 robot arm for the
robot assembly task. The structured editors and display of current execution state in PARC are
implemented. The procedure acquisition dialog, and the heuristic guidance for diagnosis and repair, are
designed and currently being implemented. We are currently in the process of completing the design for
the reinforcement of heuristics from user feedback. Modules are implemented in C, Objective C,

Common Lisp on Sun and NeXT workstations, and communicate through the Task Control Architecture
(Fedor & Simmons, 1991).

We now analyze PARC in terms of the taxonomy for interactive knowledge acquisition tools

proposed by Musen (1989). Instead of placing PARC at a fixed level in the taxonomy, PARC can be
viewed as moving through various levels of the taxonomy with increased assistance. At the lowest level
of assistance, the structured editors in PARC require knowledge of the domain, the problem-solving

method, and the knowledge representation. Thus, at this level PARC can be seen as a "method level"
tool, useful for knowledge engineers. However, the heuristic guidance assists the user in diagnosing
and repairing a failure - automating the process of expressing.domain knowledge in terms of

components of the problem-solving method. Thus, this increased assistance makes the knowledge level
analysis more transparent to the user. Finally, PARC already includes domain specific knowledge on
the task and the robotics domain. Moreover, the refinement of the heuristic guidance with user feedback

can be seen as tailoring the guidance to the user and the task by acquiring domain dependent knowledge,

making PARC a "task level" tool, potentially more usable to domain experts.

Another important aspect of PARC concerns its representation for procedures, which can be seen an
an intermediate representation for communicating, with users in reactive control domains. The block
representation narrows the gap in representation n'nsmatch. Representation mismatch (Buchanan et al.,
1983) refers to the gap between the user's knowledge, and the knowledge needed in order to
communicate with the KA system. In PARC, most steps in procedure acquisition require that the user
be familiar with the reactive control method and the procedure representation. Does that present the

typical user with too great of a representation gap? This can only be answered definitively through

experimentation with PARC. However, we have reason to believe that reactive control method and the
block representation do not present much of a gap because they were developed as natural

representations for operators of dynamic control systems. In particular:

(1) We designed this model following a cognitive analysis of the robotic control task;

(2) This model is confirmed by studies in other domains involving a reactive control task;

(3) In reactive control domains, operational knowledge is represented in manuals using terms such

as "procedures," "nominal," "emergency situations," "recovery procedures," etc., whose
semantics are well known to the domain experts (both system designers and operators);

(4) From our experience on two different robotics tasks, the elements of the reactive control
method seem to be familiar and intuitive to the domain experts.

6. RELATED WORK

Knowledge acquisition can be broadly classified into three stages: elicitation, refinement and
restructuring (Bareiss et al., 1989). Currently we have automated only the refinement stage of the
procedure acquisition process. The elicitation and reformulation stages are done manually. Related

work on procedure elicitation automation has focused on providing graphical tools to the domain expert
to assist her in encoding complex procedures with a visual language (Puerta et al, 1991; Saito et al.,

1991). Those graphical tools are very useful, but they need to be extended to facilitate the visualization
of complex procedures during execution and repair. In particular, those approaches are based on flow
diagrams. We believe that a more specific visual language is needed to represent procedures for reactive

16

control. Most work on therefinementstagehasbeendonefor rule-basedexpert systemsperforming
heuristicclassification(Davis, 1977;Araki et al., 1991). Some more recent work tries to automate the

refinement process by including explanation-based learning technique (Pazzani et al., 1991). Gruber

(1989) proposed a method for refining strategic knowledge during reactive planning. This method is
based on the induction of rules from examples, and is different from our method based on the block

representation.

Reformulation has received little attention. In PARC, reformulation would enable the user to

modify the structure of the procedure base into contexts of use. Such a context structure elicitation is
actually done manually by interviewing the system designer. Grant (1991) has shown that the context
structure for complex control tasks is incrementally built during system operation. In PARC, context
restructuring is currently left to the user through the structured editors. However, Boy (1989) has
demonstrated that the block representation could support the automation of such a restructuring process

(Boy, 1989).

There have been recent attempts to integrate machine learning and knowledge acquisition methods

(Wilkins, 1991). In our investigation, we integrated some ideas from machine learning for automated
refinement of plans in reactive systems (Kedar er al.,1991) with our method. Most other machine
learning efforts has investigated the problem of knowledge base and procedure refinement

independently, under a number of guises. The approaches to refinement of knowledge bases in expert
systems (e.g. Politakis & Weiss, 1984) typically perform induction over cases. Purely inducnve
approaches to refining procedures for dynamic systems include reinforcement learning (Lin, 1990) and
active experimentation (Gil, 1991; Christiansen et al., 1990). Machine learning approaches that are not
purely inductive (i.e. using a preexisting knowledge base) fall into four broad categories: (i)
explanation-based learning from failure, which uses a complete/correct knowledge base is to refine the
incomplete/incorrect knowledge base (e.g. Hammond, 1986; Chien, 1989); (ii) induction and active
experimentation when the explanation is insufficient (e.g. Rajamoney & DeJong, 1988; Pazzani et al.,
1991); (iii) acquisition through apprenticeship learning from the user (e.g. Laird et al., 1990; Wilkins,
1988) and (iv) using one approximate knowledge base to refine another (e.g. Kedar et al., 1991).

7. FUTURE WORK AND CONCLUSION

In order to evaluate PARC, a set of experiments will be conducted this year with users in the
robotics domain. The following hypotheses are among those we plan to test: (1) Does PARC increase

the accuracy and/or efficiency of procedure refinement (over manual refinement, in comparison with
other procedure refinement tools)? (2) Does each level of assistance provide increased accuracy and/or
efficiency? (3) Is the procedure representation appropriate for the typical users of this system? In order
to perform these experiments, a rigorous measure of 'accuracy' and 'efficiency' of the procedure base
needs to be defined and measured (using the number of execution failures, aborted goals, execution

time, repeated failures, etc.). We also need to define metrics of comparison among different refinement
methods.

While our procedure acquisition method is not de.pendent on the specifics of the robotics domain, it
currently addresses only some of the issues in suppomng procedure management and maintenance for

complex systems. In particular, this methodology assumes that procedure refinement is done as an
individual task, and that time is available to interact with PARC to correct the procedure base. This

makes it more suited to development of procedures on simulator by small teams. More work needs to be
done to study how procedures are designed and refined by corporations such as airlines companies,

where operators are only remotely involved in the process (Degani er al., 1991). Furthermore, tools for
evaluating the consequences of choosing one procedure over another or of modifying a procedure could

be very helpful during the refinement process.

We are at the preliminary stages of implementing the heuristic guidance. The solution proposed
only acquires new links or reinforces/weakens existing links between failures types and repairs, but it
cannot currently acquire new failures types. Only some of the failures types could be acquired from the

user. In particular, those are failure types that can be discerned directly from the graphical representation
of the current execution state (e.g. a missing link between an abnormal condition and a recovery

17

procedurefor it). We arecurrently consideringa techniquesimilar to theoneproposedin (Gruber,
1989)for acquiringrules associatingnew failureswith repairsby inductionfrom examplesof failure
typesandrepairs.

We planto improvetheflexibility of PARC. Currently,thelevelsof assistancearehard-codedin
PARC. PARCcouldbemademoremodular,letting theuserselectthelevelsof automationduring the
procedurerefinementprocess.A user-profilecouldalsobeusedto chooseadefaultlevelof assistance
for differenttypesof users.

We alsoplantoenhancetheuserinterfacefor controlbyaddingseveralfeatures:higherlevelsensor
predicatesmoreusefulto theuser,anda3D simulator(with specialglasses)in orderto simulateanew
procedurebeforeexecutingit with therealrobot.

Finally, weplan to developa graphicalvisual languagefor theprocedurerepresentation,assisting
theuserin exploringtheproceduresbase,displayinganexecutiontracein theproceduresnetwork,and
lettingtheusereditproceduresgraphically.

Wehopethatotherswill join us in theeffort.

Acknowledgements

Many thanksto GuyBoy andLonnie Chrismanfor theirinsightful commentsonthisproject. Thanksto
JaySteelefor developingtheroboticsenvironmentandto JonathanKolyerfor developingtheuser
interfaceon theNEXT. Thanksto ReidSimmonsandChrisFedorof Carnegie-MellonUniversityfor
providingandsupportingtheTaskControlArchitecture.Thanksto GuyBoy,PeterFriedland,Kate
McKusick (NASA Ames) and Brian Slator (ILS) for reviewing this paper.

References

Araki, D., Kojima, S. (1991); KASE Project towards Effective Diagnosis System Developments ;
Proceedings of the 6th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop,
Vol 1, Banff, Canada, October 6-11.

Bareiss, R., Porter, B.W., Murray, K.S. (1989); Supporting Start-to-Finish Development of
Knowledge Bases ; Machine Learning, 4(3-4):259-283.

Boy, G.A. (1989); The Block Representation in Knowledge Acquisition for Computer Integrated
Documentation ; Proceedings of the 4th AAAI-Sponsored Workshop on Knowledge Acquisition

for Knowledge-Based Systems, Banff, Canada, Oct. 1-6.

Boy, G.A. (1990); Acquiring and Refining Indices According to Context ; Proceedings of the 5th
AAAI-Sponsored Workshop on Knowledge Acquisition for Knowledge-Based Systems, Banff,
_Canada, Nov. 4-9.

Buchanan, B. G., Barstow, D. K., Bechtel, R., Bennett, J., Clancey, W., Kulikowski, C., Mitchell,
T., and Waterman, D. A., (1983); Constructing an Expert System. In F. Hayes-Rogh, D. A.
Waterman, D. B. Lenat (eds.), Building Expert Systems. Reading, MA: Addison-Wesley.

Chien, S. A. (1989); Using and Refining Simplifications: Explanation-Based Learning of Plans in
Intractable Domains. Proceedings of the Eleventh IJCAI, Detroit, MI.

Christiansen, A. D., Mason, M. T., and Mitchell, T. M. (1990). Learning Reliable Manipulation

Strategies without Initial Physical Models. Proceedings of the IEEE International Conference on
Robotics and Automation.

Davis, R. (1979); Interactive transfer of expertise: Acquisition of new inference rules ; Artificial

"Intelligence, 12(2): 121-157.

18

Degani,A., Wiener,E. L. (1991);Philosophy, Policies, and Procedures: The Three P's of Flight-Deck
Operations ; Proceedings of the 6th Int. Symposium on Aviation Psychology, Columbus, Ohio,
April 29- May 2.

Fedor, C., & Simmons, R. (1991); Task Control Architecture User Manual ; Manual Version 5.2,

Carnegie-Mellon University, June 1991.

Gil, Y. (1991); A Domain-Independent Framework for Effective Experimentation in Planning;
Proceedings of the Eight Workshop on Machine Learning, Evanston, IL, June 27-29.

Grant, S.A. (1991); Modelling Cognitive Aspects of Complex Control Tasks ; Ph.D. Dissertation,
1991, University of Strathclyde, UK.

Gruber, T.R. (1989); Automated Knowledge Acquisition for Strategic Knowledge;Machine Learning,
4(3-4):293-336.

Hammond, K. J. (1986); Learning to Anticipate and Avoid Planning Problems Through the Explanation
of Failures ; Proceedings of the Fifth AAAI Conference, Philadelphia, PA.

Kedar, S., Bresina, J., Dent, L. (1991); The Blind Leading the Blind: Mutual Refinement of
Approximate Theories ; Proceedings of the Eigth Workshop on Machine Learning, Evanston, IL,
June 27-29.

Laird, J. E., Hucka, M., Yager, E. S., and Tuck, C. M. (1990); Correcting and Extending Domain

Knowledge Using Outside Guidance. Proceeding of the Seventh International Machine Learning
Conference, Austin, TX.

Lin, L. (1990); Self-Improving Reactive Agents: Case Studies in Reinforcement Learning Frameworks;
Proceedings of the International Conference on Simulation of Adaptive Behavior, Paris, France.

Math6, N. & Boy, G.A. (1992); The Block Representation for Procedure Acquisition ; Proceedings of
the AAAI-92 Workshop on Knowledge Representation Aspects of Knowledge Acquisition, San

Jose, CA, July 16.

Math6, N. (1991); Second Progress Report on "Procedure Management and Maintenance"; European

Space Agency internal report, August 31.

Math6, N. (1990a) ; A Blackboard Approach to Intelligent Assistance for Space Telemanipulation ;
AAAI-90 Workshop on Blackboard Systems, Boston, Massachusetts, July 29.

Math6, N. (1990b) ; A Space Remote Control Application : Cognitive Modeling and Blackbaord-Based
Implementation ; Proceedings of the 3rd International Conference on Human-Machine Interaction
-and Artificial Intelligence in Aeronautics and Space, Toulouse, France, Sept. 26-28, pp 377-392.

Mathd, N. (1990c); Intelligent Assistance for Process Control: Application to Space Teleoperation ;

Thesis Dissertation (in french), Nov. 90, ENSAE, Toulouse, France.

Musen, M. A. (1989); Conceptual Models of Interactive Knowledge Acquisition Tools ; Knowledge

Acquisition, 1(1):73-88.

Musen, M. A., Fagan, L.M., Combs, D.M., & Shortliffe, E.H. (1987); Use of a domain model to
drive an interactive knowledge editing tool ; International Journal of Man-Machime Studies,
26(1):105-121.

Nielsen, M., Grue, K., Lecouat, F. (1991); Expert Operator's Associate: a Knowledge-Based System

for Spacecraft Control ; Proceedings of the 1991 Goddard Conference on Space Applications of

AI, Greenbelt, Maryland, May 1991.

19

Pazzani,M.J., Brunk, C.A. (1991);Detecting and correcting errors in rule-based expert systems: an

integration of empirical and explanation-based learning ; Knowledge Acquisition, 3:157-173.

Politakis, P. and Weiss, S. M. (1984); Using Empirical Analysis to Refine Expert System Knowledge

Bases; Artificial Intelligence 22(1):23-48.

Puerta, A., Egar, J., Tu, S., Musen, M. (1991); A Multiple-Method Knowledge-Acquisition Shell for
Automatic Generation of Knowledge-Acquisition Tools ; Proceedings of the 6th Banff
Knowledge Acquisition for Knowledge-Based Systems Workshop, Vol 2, Banff, Canada,
October 6-11.

Rajamoney, S. A. and DeJong, G. F. (1988); Active Explanation Reduction: An Approach to the
Multiple Explanations Problem; Proceedings of the Fifth Machine Learning Conference, Ann

Arbor, MI.

Saito, T., Ortiz, C., Loftin, R.B. (1991); On the Acquisition and Representation of Procedural

Knowledge ; Proceedings of the 6th Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop, Vol 2, Banff, Canada, October 6-11.

Wilkins, D. C. (1988); Knowledge Base R _¢inement Using Apprenticeship Learning Techniques;

Proceedings of the Ninth AAAI Cot ace, St. Paul, MN.

Wilkins, D.C. (1991); A Framework for In_ ation of Machine Learning and Knowledge Acquisition

Techniques ; Proceedings of the e_._ Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop, Vol 2, Banff, Canada, October 6-11.

