2,872 research outputs found

    Explainable Prediction of Medical Codes from Clinical Text

    Full text link
    Clinical notes are text documents that are created by clinicians for each patient encounter. They are typically accompanied by medical codes, which describe the diagnosis and treatment. Annotating these codes is labor intensive and error prone; furthermore, the connection between the codes and the text is not annotated, obscuring the reasons and details behind specific diagnoses and treatments. We present an attentional convolutional network that predicts medical codes from clinical text. Our method aggregates information across the document using a convolutional neural network, and uses an attention mechanism to select the most relevant segments for each of the thousands of possible codes. The method is accurate, achieving precision@8 of 0.71 and a Micro-F1 of 0.54, which are both better than the prior state of the art. Furthermore, through an interpretability evaluation by a physician, we show that the attention mechanism identifies meaningful explanations for each code assignmentComment: NAACL 201

    Multimodal Machine Learning for Automated ICD Coding

    Full text link
    This study presents a multimodal machine learning model to predict ICD-10 diagnostic codes. We developed separate machine learning models that can handle data from different modalities, including unstructured text, semi-structured text and structured tabular data. We further employed an ensemble method to integrate all modality-specific models to generate ICD-10 codes. Key evidence was also extracted to make our prediction more convincing and explainable. We used the Medical Information Mart for Intensive Care III (MIMIC -III) dataset to validate our approach. For ICD code prediction, our best-performing model (micro-F1 = 0.7633, micro-AUC = 0.9541) significantly outperforms other baseline models including TF-IDF (micro-F1 = 0.6721, micro-AUC = 0.7879) and Text-CNN model (micro-F1 = 0.6569, micro-AUC = 0.9235). For interpretability, our approach achieves a Jaccard Similarity Coefficient (JSC) of 0.1806 on text data and 0.3105 on tabular data, where well-trained physicians achieve 0.2780 and 0.5002 respectively.Comment: Machine Learning for Healthcare 201

    Explainable clinical coding with in-domain adapted transformers

    Get PDF
    Background and Objective: Automatic clinical coding is a crucial task in the process of extracting relevant in-formation from unstructured medical documents contained in Electronic Health Records (EHR). However, most of the existing computer-based methods for clinical coding act as “black boxes”, without giving a detailed description of the reasons for the clinical-coding assignments, which greatly limits their applicability to real-world medical scenarios. The objective of this study is to use transformer-based models to effectively tackle explainable clinical-coding. In this way, we require the models to perform the assignments of clinical codes to medical cases, but also to provide the reference in the text that justifies each coding assignment. Methods: We examine the performance of 3 transformer-based architectures on 3 different explainable clinical-coding tasks. For each transformer, we compare the performance of the original general-domain version with an in-domain version of the model adapted to the specificities of the medical domain. We address the explainable clinical-coding problem as a dual medical named entity recognition (MER) and medical named entity normal-ization (MEN) task. For this purpose, we have developed two different approaches, namely a multi-task and a hierarchical-task strategy. Results: For each analyzed transformer, the clinical-domain version significantly outperforms the corresponding general domain model across the 3 explainable clinical-coding tasks analyzed in this study. Furthermore, the hierarchical-task approach yields a significantly superior performance than the multi-task strategy. Specifically, the combination of the hierarchical-task strategy with an ensemble approach leveraging the predictive capa-bilities of the 3 distinct clinical-domain transformersFunding for open access charge: Universidad de Málaga / CBUA. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the SCBI (Supercomputing and Bioinformatics) center of the University of Málaga

    Hierarchical Label-wise Attention Transformer Model for Explainable ICD Coding

    Full text link
    International Classification of Diseases (ICD) coding plays an important role in systematically classifying morbidity and mortality data. In this study, we propose a hierarchical label-wise attention Transformer model (HiLAT) for the explainable prediction of ICD codes from clinical documents. HiLAT firstly fine-tunes a pretrained Transformer model to represent the tokens of clinical documents. We subsequently employ a two-level hierarchical label-wise attention mechanism that creates label-specific document representations. These representations are in turn used by a feed-forward neural network to predict whether a specific ICD code is assigned to the input clinical document of interest. We evaluate HiLAT using hospital discharge summaries and their corresponding ICD-9 codes from the MIMIC-III database. To investigate the performance of different types of Transformer models, we develop ClinicalplusXLNet, which conducts continual pretraining from XLNet-Base using all the MIMIC-III clinical notes. The experiment results show that the F1 scores of the HiLAT+ClinicalplusXLNet outperform the previous state-of-the-art models for the top-50 most frequent ICD-9 codes from MIMIC-III. Visualisations of attention weights present a potential explainability tool for checking the face validity of ICD code predictions

    Automated Clinical Coding:What, Why, and Where We Are?

    Get PDF
    Clinical coding is the task of transforming medical information in a patient's health records into structured codes so that they can be used for statistical analysis. This is a cognitive and time-consuming task that follows a standard process in order to achieve a high level of consistency. Clinical coding could potentially be supported by an automated system to improve the efficiency and accuracy of the process. We introduce the idea of automated clinical coding and summarise its challenges from the perspective of Artificial Intelligence (AI) and Natural Language Processing (NLP), based on the literature, our project experience over the past two and half years (late 2019 - early 2022), and discussions with clinical coding experts in Scotland and the UK. Our research reveals the gaps between the current deep learning-based approach applied to clinical coding and the need for explainability and consistency in real-world practice. Knowledge-based methods that represent and reason the standard, explainable process of a task may need to be incorporated into deep learning-based methods for clinical coding. Automated clinical coding is a promising task for AI, despite the technical and organisational challenges. Coders are needed to be involved in the development process. There is much to achieve to develop and deploy an AI-based automated system to support coding in the next five years and beyond.Comment: accepted for npj Digital Medicin

    Automated clinical coding:What, why, and where we are?

    Get PDF
    Funding Information: The work is supported by WellCome Trust iTPA Awards (PIII009, PIII032), Health Data Research UK National Phenomics and Text Analytics Implementation Projects, and the United Kingdom Research and Innovation (grant EP/S02431X/1), UKRI Centre for Doctoral Training in Biomedical AI at the University of Edinburgh, School of Informatics. H.D. and J.C. are supported by the Engineering and Physical Sciences Research Council (EP/V050869/1) on “ConCur: Knowledge Base Construction and Curation”. HW was supported by Medical Research Council and Health Data Research UK (MR/S004149/1, MR/S004149/2); British Council (UCL-NMU-SEU international collaboration on Artificial Intelligence in Medicine: tackling challenges of low generalisability and health inequality); National Institute for Health Research (NIHR202639); Advanced Care Research Centre at the University of Edinburgh. We thank constructive comments from Murray Bell and Janice Watson in Terminology Service in Public Health Scotland, and information provided by Allison Reid in the coding department in NHS Lothian, Paul Mitchell, Nicola Symmers, and Barry Hewit in Edinburgh Cancer Informatics, and staff in Epic Systems Corporation. Thanks for the suggestions from Dr. Emma Davidson regarding clinical research. Thanks to the discussions with Dr. Kristiina RannikmĂ€e regarding the research on clinical coding and with Ruohua Han regarding the social and qualitative aspects of this research. In Fig. , the icon of “Clinical Coders” was from Freepik in Flaticon, https://www.flaticon.com/free-icon/user_747376 ; the icon of “Automated Coding System” was from Free Icon Library, https://icon-library.com/png/272370.html . Funding Information: The work is supported by WellCome Trust iTPA Awards (PIII009, PIII032), Health Data Research UK National Phenomics and Text Analytics Implementation Projects, and the United Kingdom Research and Innovation (grant EP/S02431X/1), UKRI Centre for Doctoral Training in Biomedical AI at the University of Edinburgh, School of Informatics. H.D. and J.C. are supported by the Engineering and Physical Sciences Research Council (EP/V050869/1) on “ConCur: Knowledge Base Construction and Curation”. HW was supported by Medical Research Council and Health Data Research UK (MR/S004149/1, MR/S004149/2); British Council (UCL-NMU-SEU international collaboration on Artificial Intelligence in Medicine: tackling challenges of low generalisability and health inequality); National Institute for Health Research (NIHR202639); Advanced Care Research Centre at the University of Edinburgh. We thank constructive comments from Murray Bell and Janice Watson in Terminology Service in Public Health Scotland, and information provided by Allison Reid in the coding department in NHS Lothian, Paul Mitchell, Nicola Symmers, and Barry Hewit in Edinburgh Cancer Informatics, and staff in Epic Systems Corporation. Thanks for the suggestions from Dr. Emma Davidson regarding clinical research. Thanks to the discussions with Dr. Kristiina RannikmĂ€e regarding the research on clinical coding and with Ruohua Han regarding the social and qualitative aspects of this research. In Fig. 1 , the icon of “Clinical Coders” was from Freepik in Flaticon, https://www.flaticon.com/free-icon/user_747376 ; the icon of “Automated Coding System” was from Free Icon Library, https://icon-library.com/png/272370.html. Publisher Copyright: © 2022, The Author(s).Clinical coding is the task of transforming medical information in a patient’s health records into structured codes so that they can be used for statistical analysis. This is a cognitive and time-consuming task that follows a standard process in order to achieve a high level of consistency. Clinical coding could potentially be supported by an automated system to improve the efficiency and accuracy of the process. We introduce the idea of automated clinical coding and summarise its challenges from the perspective of Artificial Intelligence (AI) and Natural Language Processing (NLP), based on the literature, our project experience over the past two and half years (late 2019–early 2022), and discussions with clinical coding experts in Scotland and the UK. Our research reveals the gaps between the current deep learning-based approach applied to clinical coding and the need for explainability and consistency in real-world practice. Knowledge-based methods that represent and reason the standard, explainable processof a task may need to be incorporated into deep learning-based methods for clinical coding. Automated clinical coding is a promising task for AI, despite the technical and organisational challenges. Coders are needed to be involved in the development process. There is much to achieve to develop and deploy an AI-based automated system to support coding in the next five years and beyond.Peer reviewe

    Co-design of human-centered, explainable AI for clinical decision support

    Get PDF
    eXplainable AI (XAI) involves two intertwined but separate challenges: the development of techniques to extract explanations from black-box AI models, and the way such explanations are presented to users, i.e., the explanation user interface. Despite its importance, the second aspect has received limited attention so far in the literature. Effective AI explanation interfaces are fundamental for allowing human decision-makers to take advantage and oversee high-risk AI systems effectively. Following an iterative design approach, we present the first cycle of prototyping-testing-redesigning of an explainable AI technique, and its explanation user interface for clinical Decision Support Systems (DSS). We first present an XAI technique that meets the technical requirements of the healthcare domain: sequential, ontology-linked patient data, and multi-label classification tasks. We demonstrate its applicability to explain a clinical DSS, and we design a first prototype of an explanation user interface. Next, we test such a prototype with healthcare providers and collect their feedback, with a two-fold outcome: first, we obtain evidence that explanations increase users’ trust in the XAI system, and second, we obtain useful insights on the perceived deficiencies of their interaction with the system, so that we can re-design a better, more human-centered explanation interface
    • 

    corecore