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A B S T R A C T   

Background and Objective: Automatic clinical coding is a crucial task in the process of extracting relevant in-
formation from unstructured medical documents contained in Electronic Health Records (EHR). However, most 
of the existing computer-based methods for clinical coding act as “black boxes”, without giving a detailed 
description of the reasons for the clinical-coding assignments, which greatly limits their applicability to real- 
world medical scenarios. The objective of this study is to use transformer-based models to effectively tackle 
explainable clinical-coding. In this way, we require the models to perform the assignments of clinical codes to 
medical cases, but also to provide the reference in the text that justifies each coding assignment. 
Methods: We examine the performance of 3 transformer-based architectures on 3 different explainable clinical- 
coding tasks. For each transformer, we compare the performance of the original general-domain version with 
an in-domain version of the model adapted to the specificities of the medical domain. We address the explainable 
clinical-coding problem as a dual medical named entity recognition (MER) and medical named entity normal-
ization (MEN) task. For this purpose, we have developed two different approaches, namely a multi-task and a 
hierarchical-task strategy. 
Results: For each analyzed transformer, the clinical-domain version significantly outperforms the corresponding 
general domain model across the 3 explainable clinical-coding tasks analyzed in this study. Furthermore, the 
hierarchical-task approach yields a significantly superior performance than the multi-task strategy. Specifically, 
the combination of the hierarchical-task strategy with an ensemble approach leveraging the predictive capa-
bilities of the 3 distinct clinical-domain transformers, yields the best obtained results, with f1-score, precision 
and recall of 0.852, 0.847 and 0.849 on the Cantemist-Norm task and 0.718, 0.566 and 0.633 on the CodiEsp-X 
task, respectively. 
Conclusions: By separately addressing the MER and MEN tasks, as well as by following a context-aware text- 
classification approach to tackle the MEN task, the hierarchical-task approach effectively reduces the intrinsic 
complexity of explainable clinical-coding, leading the transformers to establish new SOTA performances for the 
predictive tasks considered in this study. In addition, the proposed methodology has the potential to be applied to 
other clinical tasks that require both the recognition and normalization of medical entities.   

1. Introduction 

Clinical coding of textual healthcare documents aims to assign 
standardized diagnosis and procedure codes to the different free-text 
sections that make up electronic health records (EHR): admission and 
discharge summaries, diagnosis test and pathology reports, nursing care 

reports, clinical notes, etc. [1]. These codes constitute a sort of sum-
marized and objective information regarding patients’ diseases and their 
associated clinical care and allow for the efficient and systematic 
accomplishment of subsequent research and medical audit tasks. 
Traditionally, clinical coding of EHRs in hospitals and healthcare centers 
has been carried out manually, resulting in a tedious task, with a high 
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propensity for errors, which requires a huge human effort to be carried 
out. However, clinical coding can be automated [2,3], making it easier 
for professional coders to provide more accurate results. 

Standardized clinical coding systems, such as ICD or SNOMED-CT, 
represent patient diagnoses, procedures, and other information using 
controlled clinical terminology. The ICD3 (International Statistical 
Classification of Diseases and Related Health Problems) classification 
system establishes a standardized coding that allows statistical analysis 
of morbidity and mortality of patients in private or public health sys-
tems. The 10th edition of the ICD, ICD-10, is structured hierarchically 
into chapters that group codes of up to seven characters, thus allowing 
the coding of over 70,000 diagnoses and 72,000 different procedures, 
which gives an idea of the complexity underlying clinical text coding. 
Thus, the length of ICD codes ranges from 3 to 7 characters, depending 
on the degree of specificity needed for the disease or procedure to be 
coded. An added intrinsic difficulty for the development of automated 
clinical coding systems is that the distribution of ICD codes in the 
available annotated corpora is highly unbalanced. Therefore, the 
MIMIC-III corpus [4], which is one of the English corpus used as a 
reference for many of the natural language processing (NLP) tasks on 
clinical text, contains a large number of medical records with a few 
disease-specific ICD-9 codes. Thus, the three most frequent ICD-9 codes 
in MIMIC-III are 401.9 (unspecified essential hypertension), 428.0 
(congestive heart failure, unspecified) and 427.31 (atrial fibrillation), 
which are present in 37.5 %, 23.8 % and 23.4 %, respectively, of the 
records. The hundredth most frequent code, V10.46 (personal history of 
malignant neoplasm of prostate) only appears in 2 % of MIMIC-III 
discharge reports [5]. 

A fundamental aspect regarding the applicability of automatic clin-
ical coding is the explainability of the predictive models used. Most of 
the approaches used in clinical coding models act as “black boxes” [6], 
without giving a deeper and more detailed view of the reason for the 
selection of each label that the model automatically assigns to each text 
chunk. In general, eXplainable Artificial Intelligence (XAI) aims to un-
derstand why a certain predictive or classification algorithm obtains a 
specific result as output [7]. For the particular case of clinical coding, 
XAI aims to provide information that makes it possible to explain the 
assignment to a clinical text of certain ICD codes, to the detriment of 
others, in order to motivate the output proposed by the algorithm and 
thus support clinical decision-making. XAI is one of the priority lines of 
the DARPA projects [8], whose main objective is to create artificial in-
telligence (AI) systems whose models and decisions can be understood 
and thus trusted by final users. For its part, the European General Data 
Protection Regulation (GDPR)4 promotes the explainability of the logic 
underlying automatic decision-making, considering “black box” AI 
models as an unfair and misleading business practice. Although deep 
learning (DL) algorithms are getting in general better performance re-
sults at most domains and tasks than traditional machine learning (ML) 
approaches, they are inherently less transparent than traditional 
methods due to their extreme complexity and the huge number of pa-
rameters that their network architectures of non-linear units contain [7]. 

In this article, we propose and evaluate different multilingual 
Transformer-based approaches, with in-domain adaptation, for 
explainable clinical coding. These models not only assign standardized 
disease and procedure codes to clinical texts, but also provide infor-
mation related to the exact text spans that motivate the choice of each of 
these codes given as output. For this, the performance of two different 
multilingual transformers [9], such as XLM-RoBERTa [10] and mBERT 
[11], as well as a Spanish-based transformer model, called BETO [12], is 
analyzed. These pretrained models are fine-tuned on a corpus of a spe-
cific clinical domain, as is the case of a clinical oncology corpus in 
Spanish, and then trained and evaluated on downstream clinical coding 

tasks. In addition, we compare two different training strategies for 
explainable clinical coding: a hierarchical-task approach versus a multi- 
task approach. For the former, a first transformer that tackles a medical 
named entity recognition (MER) task is trained to identify clinical en-
tities, i.e. text spans with diagnosis or procedure relevant information. 
The outputs of this MER transformer are subsequently used to train a 
second transformer that deals with a medical named entity normaliza-
tion (MEN) task to assign ICD-10 labels to the clinical entities recognized 
by the first transformer. For the multi-task approach, the MER and MEN 
transformers are instead trained in parallel. As we will see in the 
following sections, our hierarchical-task MER + MEN approach for 
explainable clinical coding obtains better performance rates than our 
multi-task counterpart. Moreover, the performance of in-domain 
adapted transformers surpasses that of their non-adapted versions in 
all the scenarios analyzed herein. These different multilingual trans-
formers and training approaches proposed in this study are evaluated on 
public corpora obtained from explainable clinical coding shared- 
tasks—namely CodiEsp-X [13], within the shared tasks of the e-Health 
CLEF 2020, and Cantemist-Norm [14], from the IberLEF 2020 confer-
ence—, obtaining for both cases results that exceed the current state-of- 
the-art (SOTA) for these shared tasks. 

In the last few years, a new family of models has emerged capable of 
associating a contextual numerical representation of each word, taking 
into account the specific context in which the word appears within the 
text. These types of models are known as contextual embeddings. Some of 
them are based on semi-supervised sequence learning, as is the case with 
ELMo [15], ULMFit [16], Transformer [9], BERT [11] and more recently 
T5 [17] and XLNet [18]. The BERT model [11], based on the Trans-
former architecture [9], has been standing out among all those before it 
for allowing not only the extraction of contextual representations of 
words, but also the resolution of subsequent downstream tasks (such as 
text classification, NER, text summarization, information extraction, 
automatic translation, etc.). While those based on recurrent neural 
networks (usually bidirectional LSTM networks), such as ELMo [15] or 
ULMFit [16], present efficiency issues due to the sequential nature of 
these networks, models based on Transformer focus on the attentional 
mechanisms proposed in [9] to, among other advantages, increase 
computational efficiency by parallelizing much of the network archi-
tecture. Another peculiarity of the Transformer-based models (or 
transformers, for short) is that they can be pre-trained on a general 
domain corpus and later fine-tuned and adapted on a specific domain 
corpus to solve a specific NLP task. This technique, known as transfer 
learning [17,19], is commonly used to fit DL algorithms to small data 
sets. Most of the available transformers, such as BERT, have been trained 
using English corpora. This makes them less efficient at tackling NLP 
tasks in other languages, such as Spanish. In recent years a series of new 
transformers has emerged, such as XLM-RoBERTa (XLMR) [20,21] or 
Multilingual BERT (mBERT) [11], which have been pre-trained on 
multilingual corpora composed of texts in hundreds of languages and 
subsequently fine-tuned on monolingual corpora. These multilingual 
transformers have been proven to be effective models when tackling 
several NLP downstream tasks, such as named entity recognition (NER) 
or text classification [22,23]. 

2. Related work 

In [6], that is one of the first systematic reviews on the SOTA of 
automatic clinical coding and classification systems, they analyze a total 
of 113 different studies, most of which apply rule-based strategies, 
regular expressions and grammars. These techniques suffer, in general, 
from not having enough generalization capacity. In recent years, the 
field of clinical coding has advanced remarkably thanks to the open 
publication of labeled clinical corpora of standardized clinical coding 
data. This is the case of the corpus published in [24], which contains 
labeled radiological reports or, more recently, the MIMIC-III corpus [4], 
with more than 50,000 discharge reports from the critical care units at 

3 https://www.who.int/classifications/classification-of-diseases.  
4 https://eur-lex.europa.eu/eli/reg/2016/679/oj. 
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the Beth Israel Deaconess Medical Center. With these datasets, various 
DL strategies have been used, which have generally shown higher per-
formance rates than traditional ML methods. Thus, for example, [25] 
compares methods based on DL, namely convolutional neural networks 
(CNN), with various ML techniques, such as SVM, random forests and 
logistic regression, obtaining comparable or better results for DL stra-
tegies even without hyperparameter optimization. In [26] CNNs with 
attentional mechanisms were used for clinical coding, obtaining SOTA 
results when applied on the MIMIC-III dataset. Based on this latest work, 
in [27] a per-label attentional mechanism was incorporated to the con-
volutional architecture proposed in [26], which further improved the 
clinical coding performance of the models. 

2.1. Clinical coding in Spanish 

In the particular case of clinical coding in Spanish, not many works 
have been published, most of which use corpus of restricted use, not 
published for data protection reasons and, therefore, not available for 
analysis and the development of new competitive models. Thus, in [28] 
a non-public corpus in Spanish, from the hospital setting of the Basque 
Country health system, was used to train DL models for automatic 
clinical coding. For its part, in [29] an approach based on latent 
Dirichlet allocation (LDA) was used to perform multi-label classification 
of texts from EHRs obtained from the cardiology department of the 
Basqe Country public health system, obtaining positive results for the 
124 most frequent ICD codes present in that corpus. More recently, [30] 
compared algorithms based on binary outputs and extreme classification 
algorithms to assign ICD-10 codes to clinical texts in discharge reports 
from the Fundación Alcorcón University Hospital in Spain. This work 
concluded that the use of assembly methods based on the weighting of 
each code according to its frequency and its performance during training 
allows to obtain better results in extreme distributions, such as the one 
corresponding to the assignment of ICD codes to clinical texts. The au-
thors of the current paper have developed automatic coding algorithms 
for clinical texts in Spanish, in which they have pre-trained, by using a 
non-public corpus of the clinical-oncology domain, several Transformer- 
based models to address downstream clinical coding tasks. These models 
were applied to both general clinical texts—namely, CodiEsp-D [31]— 
and oncology texts in particular—namely, Cantemist-Coding [32]—to 
obtain SOTA results [23]. 

2.2. Explainable clinical coding 

The aforementioned corpora, MIMIC-III and the radiology reports 
corpus from [24], contain clinical documents in English, labeled with 
ICD-9 codes without any reference to the text segments (or spans of text) 
that give support to the assignment of those codes. Few studies have 
explored the explainability of ML and DL models for clinical coding. One 
of the most representative and cited works in the specific literature is 
[26], where the authors compared the ability of different models to 
identify in the text the n-grams related to each ICD code that is pre-
dicted. A manual and qualitative evaluation showed that a CNN archi-
tecture with attentional mechanisms could generate more significant 
and relevant n-grams for the clinical coding labels selected by the model. 
In [33] a Hierarchical Attention bi-directional Gated Recurrent Unit 
(HA-GRU) was proposed to produce a sentence-level explanation for 
each predicted code, instead of an n-gram-level explanation. Following 
this same line of proposing hierarchical architectures, [34] presented an 
approach to increase explainability that uses a Hierarchical Label-wise 
Attention Network (HLAN) that employs the weights both at word- 
level and at sentence-level to perform automatic coding. In [35] they 
used an architecture based on transformers to capture the interdepen-
dence between the tokens of a document, using an attentional mecha-
nism for each different ICD code in order to learn specific 
representations of the entire document. To handle the frequency 
imbalance of the codes in the dataset, they used label distribution aware 

margin (LDAM) as the loss function. They applied this strategy to MIMIC- 
III discharge reports, resulting in a micro-AUC of 0.923. In [36] 
knowledge graphs and attentional mechanisms were used to train a 
multi-CNN architecture that, together with the use of adversarial 
learning to supply adversarial samples, allowed MIMIC-III discharge 
reports to be encoded using ICD-9 codes. They obtained micro-F1 results 
of 0.692 and allowed, through an analysis of the attentional weights 
associated with the models, that the predicted codes were explained by 
the spans of text highlighted as the most relevant. 

Regarding automatic explainable clinical-coding in Spanish, recently 
in [27] CNNs with attentional mechanisms were used for clinical coding 
with ICD-10 codes on a non-public corpus in Spanish, achieving results 
that exceeded those obtained with other approaches that use CNN 
without attentional mechanisms. In that work, the authors carried out 
an a posteriori analysis of the explicability provided by the attentional 
mechanisms of the models, specifically that derived from the analysis of 
the attentional weights, as well as the chronological ordering of the ICD 
codes identified in the clinical histories for future predictive tasks. 

In all these works cited so far, the absence of conveniently labeled 
information in the corpus —due to the lack of data on the text segments 
that motivate the assignment of each label— means that the explain-
ability obtained by the models cannot be evaluated with quantifiable 
metrics that allow the objective comparison of the results, but in most 
cases only a subjective assessment of the explainability results obtained 
can be made. 

In 2020, two independent initiatives were carried out to advance 
explainable automatic coding systems, within the competitive health 
tasks of the CLEF 2020 and the IberLEF 2020 international forums. As a 
result of these tasks, several corpora were made available for the NLP 
community. Two of those corpora supplied datasets of labeled samples 
of clinical texts in Spanish, with information on ICD-10 codes assigned to 
those samples. The organizers also provided information on the exact 
spans of text that motivated the assignment of those codes to each text 
chunk. Specifically, for the CodiEsp-X task [13] on explainable clinical 
coding in Spanish a corpus of 1000 clinical cases was provided, with 
16,504 sentences classified with ICD-10 labels that included references 
to text segments that explained the selection of the labels. The best 
model presented in this shared task [37] proposed an approach based on 
BERT and semantic linking that obtained f1-score of 0.661, precision of 
0.687 and recall of 0.562, and made use of data augmentation tech-
niques to generate synthetic inputs to fine-tune pre-trained BERT models 
[11]. On the other hand, for the Cantemist-Norm shared task [14], texts 
from 1,301 clinical oncology cases labeled with ICD-O (oncology) codes 
were provided, with additional information about the text spans that 
motivated the choice of each code. The best model presented to this 
shared task obtained f1-score of 0.825, precision of 0.824 and recall of 
0.826 [38], by using also BERT transformers. To the best of our 
knowledge, CodiEsp-X and Cantemist-Norm are the first two publicly 
available corpora, not only in Spanish but in any other language, for 
which information regarding the explainability of clinical coding is 
provided and, therefore, that can be used to objectively evaluate the 
performance of models oriented to explainable clinical coding. 

There exist similar strategies in the literature that, like the one pre-
sented in this study, use models that join together MER and MEN 
approaches—either composed of transformers, recurrent neural net-
works or other NLP and ML models—to tackle explainable clinical- 
coding tasks. They can either follow a multi-task strategy [38–40] or a 
hierarchical-task (or “pipelined”) strategy [37]. Furthermore, other 
groups of studies pose explainable clinical coding as a single MEN task 
[41–43]. However, for the particular case of models that follow these 
MER and/or MER approaches to tackle explainable clinical-coding on 
corpora that supply text spans labeled with ICD information, only three 
works deserve to be cited as noteworthy antecedents. On the one hand, 
in [38], which became the SOTA at the time Cantemist-Norm was held, 
the authors used a multi-task approach for clinical coding that used 
BERT as the core model to tackle MER as a machine comprehension task 
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and MEN as a sequence labeling task. On other hand, the SOTA for the 
CodiEsp-X shared task was reached, at the time the conference was held, 
by [37], that proposed a hierarchical-task approach that used a BERT 
model for MER, together with a semantic linking strategy for MEN. 
Additionally, in [44], CodiEsp-X was one of the different corpora used to 
address biomedical named entity linking tasks. The main contribution of 
this study was the creation of a tool for mapping identifiers between 
clinical ontologies and lexical resources. Besides, the authors also 
experimented with sequence labeling transformer-based models for 
detecting diagnosis and procedure concepts, although clinical coding 
tasks were not tackled in this study. In our work, we compare two end- 
to-end approaches—a multi-task versus a hierarchical-task approach-
—for both MER and MEN based on transformers adapted to the clinical- 
oncological domain in Spanish. In our multi-task approach both MER 
and MEN are tackled as sequence-labeling tasks. For its part, in our 
hierarchical-task strategy MER is considered as a sequence-labeling task, 
while MEN is carried out by following a text classification approach. The 
latter allows to reduce the intrinsic complexity of labeling the entities 
recognized by the MER module with labels that came from a highly 
imbalanced distribution of ICD codes. 

Finally, for reproducibility purposes, all the data and code needed to 
replicate our work, is publicly available at https://github. 
com/guilopgar/TransformersExplClinicalCoding. 

3. Paper contributions 

The main lines of contribution of this work are the following:  

• We systematically analyze the performance of transformer-based 
models for explainable clinical-coding. For this purpose, we 
compare the performance obtained by both clinical-domain and 
general-domain versions of the models when following multi-task 
and hierarchical-task approaches to tackle the problem of explain-
able clinical-coding.  

• Our proposed hierarchical-task strategy leverages the context-aware 
predictive capabilities of transformers to achieve new SOTA perfor-
mance on 3 different explainable clinical-coding tasks. Additionally, 
the developed methodology can be applied to other medical tasks 
involving both the detection and normalization of clinical entities.  

• Finally, we deeply examine the differences in performance between 
the multi-task and the hierarchical-task strategies, identifying the 
crucial aspects of the hierarchical-task setting that lead to the 
observed increase in explainable clinical-coding performance. 

4. Materials and methods 

A schematic description of our developed methodology is shown in 
Fig. 1. In the next subsections, a more detailed description of the ma-
terials and methods is provided. 

4.1. Corpora 

In this section we describe the four corpora used in the different 
phases of this study. On the one hand, we characterize the corpus used 
for unsupervised pretraining and adaptation of several multilingual 
transformers to the specificities of the clinical domain. On the other 
hand, the corpora used for supervised training of the resulting trans-
formers—to tackle three different explainable clinical-coding tasks—are 
also described in detail in the following subsections. 

a) In-domain pre-training 
With the goal of adapting transformers to the specificities of the 

medical domain, for this study we pretrain several multilingual trans-
formers models on a private collection of real-world clinical cases 
retrieved from the Galén Oncology Information System [45]. The corpus 
contains 30.9 K oncology medical documents written in Spanish by 
physicians from the Hospital Regional Universitario and the Hospital 

Universitario Virgen de la Victoria in Málaga, Spain, comprising a total of 
64.4 M words and 437.6 M characters. 

b) Explainable clinical coding 
We tackle three different explainable clinical-coding tasks, derived 

from two medical NLP shared tasks, namely the CodiEsp-X and the 
Cantemist-Norm tasks. On the one hand, the CodiEsp-X task is based on 
the CodiEsp corpus [13], a collection of 1 K medical cases in Spanish 
annotated with both ICD-10-CM5 diagnosis and ICD-10-PCS6 procedure 
codes. The CodiEsp-X task is separated into two different subtasks: 
CodiEsp-X-D and CodiEsp-X-P. The CodiEsp-X-D subtask focuses on 
diagnosis mentions, and it comprises the annotations from the CodiEsp- 
X task corresponding to ICD-10-CM codes. For its part, the CodiEsp-X-P 
subtask focuses on procedure mentions, comprising the ICD-10-PCS 
coding annotations from the CodiEsp-X task. On the other hand, the 
Cantemist-Norm task is based on the Cantemist corpus [14], a collection 
of 1.3 K oncology clinical cases in Spanish where tumor morphology 
mentions were annotated with ICD-O-37 codes. Both the CodiEsp and 
Cantemist corpora were split into training, development and test 
subsets. 

In this way, the CodiEsp-X-D, CodiEsp-X-P and Cantemist-Norm tasks 
are each one centered on the prediction and normalization of a different 
type of medical concept. For all these three tasks, each available anno-
tation assigns a particular clinical code to a medical document and 
additionally indicates the reference in the text that supports that coding 
assignment (see Fig. 2-A). In this way, each annotation available in the 
corpora comprises a textual mention (i.e., a reference to the text span 
bounding a mention) of a clinical concept and the corresponding stan-
dardized clinical code assigned to that mention. Table 1 summarizes the 
annotation distribution for the three tasks addressed in this study. 

4.2. Transformer-based models 

In this study, we tackle explainable clinical-coding problems using 
transformer-based models. Since the corpora considered in this work 
comprise clinical cases written in Spanish, we explore three trans-
formers that support the Spanish language, namely, BETO [12], mBERT 
[11] and XLM-R [10].  

• BETO: the Spanish BERT model, named BETO, employs a similar 
architecture to the BERT-Base model, with ~ 110 M trainable pa-
rameters [12], and it uses a Spanish vocabulary of ~ 31 K subwords.  

• mBERT: it corresponds to the multilingual version of the BERT-Base 
model [11], pretrained on a collection of texts from 104 distinct 
languages. This model uses a multilingual WordPiece vocabulary of 
~ 110 K subwords, and it has ~ 177 M trainable parameters.  

• XLM-R: pretrained on a Common Crawl Corpus in 100 languages, the 
XLM-R model is the multilingual version of the RoBERTa-Base 
transformer [10], using a large multilingual SentencePiece vocabu-
lary of ~ 250 K subwords. The total number of trainable parameters 
of the model is ~ 278 M. 

4.3. Unsupervised in-domain pretraining 

With the aim of adapting the aforementioned transformers to the 
specificities of a clinical domain, they are further pretrained on a corpus 
of unlabeled real-world oncology medical documents. We follow the 
same pretraining pipeline developed in [23], where in-domain adapta-
tion of transformers was also performed. Specifically, mBERT and BETO 
are optimized on the basis of the Next Sentence Prediction (NSP) and the 

5 https://www.cms.gov/Medicare/Coding/ICD10/2018-ICD-10-CM-and- 
GEMs.  

6 https://www.cms.gov/Medicare/Coding/ICD10/2018-ICD-10-PCS-and- 
GEMs.  

7 https://seer.cancer.gov/icd-o-3/. 
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Masked Language Model (MLM) pre-training objectives [11]. The MLM 
objective with the dynamic masking modification [10] is used in this 
study to perform the pretraining of the XLM-R model. 

4.4. Supervised fine-tuning for explainable clinical-coding 

In this study, we address the explainable clinical-coding problem as a 
dual mER-MEN task. On the one hand, the MER subtask consists in the 

detection of the textual evidence of a coding assignment. Thus, from a 
MER task perspective, a single type of medical entity (i.e., diagnosis, 
procedure or tumor morphology) has to be recognized in each of the 3 
different tasks tackled in this work. On the other hand, a medical entity 
must also be normalized. Hence, the MEN subtask corresponds to the 
assignment of a certain ICD code to each recognized entity. To perform 
this normalization procedure, following previous works [38,46], we 
leverage the hierarchical and multi-axial nature of the ICD coding 

Fig. 1. Schematic representation of the methodology developed in this work for explainable clinical coding using transformers.  

Fig. 2. A. Illustration of the explainable clinical-coding annotations format. B. Description of the code prefix and suffix pair obtained from each type of ICD code. The 
number of distinct prefixes and suffixes obtained from the ICD-10-CM, ICD-10-PCS and ICD-O-3 codes are calculated exclusively considering the clinical codes 
contained in the training and development subsets of the CodiEsp-X-D, CodiEsp-X-P and Cantemist-Norm corpora, respectively. 

Table 1 
Description of the number of annotations used in each of the 3 explainable clinical-coding tasks.   

CodiEsp-X-D CodiEsp-X-P Cantemist-Norm 

Train. Devel. Test Train. Devel. Test Train. Devel. Test 

Documents 500 250 250 435 222 224 501 499 300 
Total annotations 7209 3431 3665 1972 1046 1112 6396 6001 3635 
Unique ICD codes 1767 1158 1143 563 375 371 493 520 386 
Unique unseen ICD codes – 427 363 – 164 143 – 250 107  
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system to perform the clinical-coding assignment. As shown in Fig. 2-B, 
each ICD code can be split into two parts: a code prefix and a code suffix. 
The code prefix constitutes its basic part and describes general coding 
information, whereas the code suffix details more specific information 
and it may be absent. For instance, in the case of the ICD-10-PCS codes 
each code has a length of either 4 or 7 characters, with the first 4 
symbols describing the type of procedure and its location, and the last 3 
characters specifying the approach, device and qualifier information 
[47]. 

With the aim of addressing explainable clinical-coding with trans-
formers, in this study we develop two distinct end-to-end approaches to 
tackle the dual mER-MEN task: a multi-task and a hierarchical-task 
strategy. In the following paragraphs, a detailed description of each 
end-to-end approach is given. 

a) Multi-task approach 
In the multi-task setting that we have followed for this study, both 

MER and MEN subtasks are addressed as sequence-labeling tasks, which 
are performed in parallel by a single transformer model. Specifically, the 
MER task corresponds to a multi-class sequence labeling problem, using 
the IOB2 [48] tagging scheme. On the other hand, for the MEN task, the 
goal is to assign an ICD code to each word that is part of a medical entity. 
However, instead of predicting the complete ICD code directly, we 
divide the problem into two distinct subtasks: one dedicated to the 
prediction of the prefix of the code, and the other one dedicated to the 
prediction of the code suffix. Given the highly imbalanced distribution 
of ICD codes, the rationale is to decrease the intrinsic complexity of the 
clinical coding assignment, since multiple codes prefixes and suffixes are 
shared across codes (see Fig. 2-B and Table 1). In this way, the MEN task 
has two classification objectives, each one corresponding to a multi-class 
sequence labeling subtask. Fig. 3 shows a schematic representation of 
the multi-task approach, and each of its six stages are described below. 

Phase 1: Subword-level annotations. Firstly, word-level annotations 
are generated for both MER and MEN tasks. In the case of the MEN task, 
an additional “O” label is used to indicate the absence of a code prefix or 
suffix associated with a certain word. However, transformer-based 
models do not work at word-level. Alternatively, they obtain the input 
tokens by further splitting words into a sequence of subwords, each 
model using a particular tokenizer. For this reason, the original word- 
level annotations are converted to subword-level (i.e., token-level) by 
plainly assigning the same label to all subwords obtained from the same 
word. 

Phase 2: Model fine-tuning. Using the resulting subword-level an-
notations, a single transformer is fine-tuned on both MER and MEN 
sequence-labeling tasks. In this way, the output representation encoded 
by the model for each token is fed into 3 independent classification feed- 
forward layers. The first classification layer addresses the MER classi-
fication objective, using R softmax units, with R = 3—representing the 
“I”, “O” and “B” tags of the IOB2 scheme, respectively. To tackle the two 
distinct MEN classification objectives, the second and third final layers 
use P + 1 and S + 1 softmax units, respectively—an extra unit repre-
senting the additional “O” label was added to both layers—, with P as 
the number of codes prefixes and S as the number of codes suffixes to be 
predicted.8 Since each of these three classification objectives corre-
sponds to a multi-class sequence labeling task, categorical cross-entropy 
loss is adopted. Finally, to perform the supervised fine-tuning of the 
models, the sum of the three corresponding categorical cross-entropy 
losses is computed to guide the optimization of the models’ parameters. 

Phase 3: Subwords predictions. Thus, at inference time, given a 
sequence of n subwords (i.e., n tokens) as input to the model, three 
different matrices are outputted by the classification layers (see Fig. 3, 

after step 3). On the one hand, a n × R matrix corresponds to the pre-
dictions made by the MER classification layer, containing the proba-
bility of each token to be classified with a certain IOB2 label. On the 
other hand, the MEN classification layers output two matrices, a n × (P 
+ 1) matrix and a n × (S + 1) matrix, which contain the probability of 
each input token to be associated with a particular code prefix and 
suffix, respectively. 

Phase 4: Word-level predictions. As a result of the previous phase, 
three distinct subword-level probability matrices are obtained. Never-
theless, given that both MER and MEN annotations are created at word- 
level, the subword-level predictions are to be converted to their word- 
level counterparts. For this purpose, an average-based probability cri-
terion is applied separately on each of the three subword-level proba-
bility matrices. Thus, for the predictions made for all subwords obtained 
from a single word, we perform the average of the predicted probabil-
ities across the corresponding subwords, independently for each label. 
Therefore, the probability of a word to be associated with a certain label 
corresponds to the arithmetic mean of the probabilities of its subword 
components to be assigned that label. 

Phase 5: Entity recognition. Subsequently, the medical entities 
recognized by the model are identified. In this way, considering the MER 
word-level probability predictions obtained as a consequence of the 
previous stage, the IOB2 label with the maximum probability is assigned 
to each word (e.g., the label B for the word “acute”, or the label I for the 
word “otitis”, in the example of Fig. 3, after step 5). The information 
provided by these assigned IOB2 tags allows us to identify the words 
forming each detected clinical entity. Secondly, with the aim of per-
forming the normalization of each recognized entity, the MEN word- 
level predictions are converted to entity-level predictions. For this 
aim, an average-based probability criterion is independently applied on 
each of the two MEN word-level prediction matrices obtained from the 
previous phase. Hence, the probability of a particular coding label-
—either a code prefix or suffix—to be assigned to an entity is calculated 
as the arithmetic mean of the probabilities of its forming words to be 
associated with the corresponding label (e.g., the entity “acute otitis” 
obtained a probability of 0.77 for the prefix label H66, as a result of 
averaging the probabilities of words “acute” and “otitis”: (0.69 + 0.85) / 
2, as shown in the example of Fig. 3, after step 5). 

Phase 6: Entity normalization. Finally, considering the MEN entity- 
level probability predictions obtained in the previous stage, both the 
code prefix and suffix with the maximum probability are assigned to 
each medical entity. As a result, this final combination of each recog-
nized entity with its associated clinical code fully specifies a clinical- 
coding assignment, indicating both the predicted code and the textual 
reference that explains that coding assignment. 

b) Hierarchical-task approach 
In contrast to the multi-task setting, in the hierarchical-task 

approach the MER and MEN subtasks are not performed in parallel, 
but hierarchically. In this way, a first transformer model addresses the 
MER task, by following the same sequence labeling approach employed 
in the multi-task strategy (see Fig. 4-A). Afterward, the MEN task is 
subsequently performed by a second transformer (see Fig. 4-B). The 
principal objective of the hierarchical-task setting is to reduce the 
intrinsic difficulty of the MEN task. For this reason, instead of following 
a sequence labeling approach, we tackle the MEN task as a text classi-
fication problem. Hence, for each medical entity recognized by the MER 
transformer, the MEN transformer has to assign its corresponding clin-
ical code. 

As it can be seen from Fig. 4-B, considering a sequence of tokens 
given as input to the MEN model, two additional elements are used in 
the hierarchical-task setting to supply the MEN transformer with infor-
mation of the presence of a medical entity that has to be normalized: the 
medical entity tokens and the medical entity embeddings. On the one 
hand, two special tokens are inserted into the input sequence: the < M 
> and the </M > medical entity tokens. The < M > token is inserted 
right before the first subword of the medical entity, and it aims to 

8 The values of P and S vary for the CodiEsp-X-D, CodiEsp-X-P and Cantemist- 
Norm tasks. In each case, both values match the number of unique prefixes and 
suffixes, respectively, of the clinical codes contained in the training and 
development subsets of the corresponding corpus (see Fig. 2-B). 
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identify the start of the entity, while the </M > token is inserted right 
after the last subword of the clinical entity, indicating the end of the 
entity. On the other hand, we use two additional medical entity em-
beddings: the EC and the EM embeddings. The EC embedding is assigned 
to the tokens that are not part of the entity, i.e. those tokens that 
constitute the context part of the input sequence. For its part, the EM 
embedding is assigned to each token belonging to the medical entity. 
Both the medical entity tokens and the medical entity embeddings are 
optimized during the fine-tuning of the MEN transformer model. 

The usage of medical entity tokens and embeddings to supply the 
model with information of the presence of a clinical entity was inspired 
by the way BERT model itself is trained during the Next Sentence Pre-
diction (NSP) task [11]. Thus, by means of special tokens and embed-
dings, BERT receives information to distinguish between the two 
sentences present in each sample used to train the model. For this pur-
pose, BERT makes use of two special tokens—the [CLS] and [SEP] 
tokens—to delimit each sentence in the input, while segment embed-
dings are also used to give the model information of the tokens forming 
each of the two distinct sentences. Our hierarchical-task approach uses 
the same rationale to highlight the tokens of the input sequence forming 
the clinical entity to be normalized by the MEN transformer-based 

model. 
Finally, in the next paragraphs, we give a description of the main 

differences between the fine-tuning and the prediction phases of the 
hierarchical-task approach. 

Fine-tuning phase. At training time, two different transformers are 
independently fine-tuned on the MER and MEN tasks, respectively. On 
the one hand, we follow the same sequence labeling procedure used in 
the multi-task approach to fine-tune the model on the MER task, by 
using the IOB2 tagging scheme (see Phases 1–2 in Section 4.4.a and 
Fig. 4-A). On the other hand, regarding the MEN task, as it was formerly 
performed in the multi-task strategy, the problem is divided into two 
different multi-class classification subtasks to independently predict the 
prefix and the suffix of each ICD code. However, in contrast to the multi- 
task setting, in the hierarchical-task approach each of the two MEN 
classification objectives is addressed as a text classification task. For this 
reason, the output representation encoded by the model for the initial 
beginning of sequence (BOS) token—[CLS] token for the BERT-based 
models and < s > token for the XLM-RoBERTa model—is fed into 2 
different classification feed-forward layers with P and S softmax units, 
respectively (see Phase 3 in Section 4.4.a and Fig. 4-B). The categorical 
cross-entropy loss is adopted to tackle each multi-class classification 

P + S + R 

Fig. 3. Workflow of the six-phases multi-task approach developed to perform explainable clinical-coding using transformers. For illustration purposes, we use an 
annotated text fragment from the CodiEsp-X-D corpus as input to the model (see Fig. 2-A). Also, the WordPiece tokenizer of the mBERT model is employed to convert 
the input text fragment into a sequence of subwords. 

Fig. 4. Visual representation of the hierarchical-task approach. A. The sequence labeling MER transformer model. Given a sequence of subword tokens supplied as 
input to the model, the input representation of each token is constructed by summing the corresponding token, segment and position embeddings, as it was originally 
proposed by BERT [11]. B. The text-classification MEN transformer. Two additional elements are used to indicate the MEN model the clinical entity to be normalized: 
the medical entity tokens and embeddings. Consequently, the medical entity embedding is added to the sum of the token, segment and position embeddings to build 
the final input representation of each token. 
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objective, and the sum of both losses is employed to guide the param-
eters optimization of the model. Lastly, regarding the training samples 
used to fine-tune the MEN transformer, we obtained them by using the 
available annotations from the corresponding corpus. In this way, for 
each text fragment inputted to the model, a single annotated clinical 
entity is considered to be normalized. Consequently, if a single fragment 
of text contains multiple annotated entities, one training sample is 
generated for each medical entity using the aforementioned medical 
entity tokens and embeddings (see Supplementary Fig. S1 for more 
details). 

Prediction phase. At inference time, given the dependence of the 
MEN task on the entities detected as a result of the MER task, the pre-
dictions made by the MER transformer are firstly considered. Thus, 
following the same procedure developed in the multi-task strategy, the 
medical entities detected by the MER transformer model are to be firstly 
identified (see Phases 3–5 in Section 4.4.a). Subsequently, for each 
fragment of text containing a clinical entity previously recognized by the 
MER transformer, its corresponding clinical code is predicted by using 
the MEN transformer. Again, if a single fragment of text contains mul-
tiple detected entities, one inference sample is produced for each clinical 
entity using the medical entity tokens and embeddings (see Supple-
mentary Fig. S1). 

4.5. Experiments 

During the unsupervised pre-training of the models, the same values 
for most of their hyperparameters are fixed (see Supplementary Table S1 
for further details). When performing the supervised fine-tuning of the 
models, the RAdam [49] optimizer is employed with a learning rate of 
3× 10− 5, with a batch size of 16 and a number of epochs that is 
empirically estimated for each model using the development subset of 
each corresponding corpus, with an upper limit of 100 epochs. For all 
transformers analyzed in this work, we fix a maximum input sequence 
length of 128 subwords. However, the majority of the clinical docu-
ments from both the CodiEsp and Cantemist corpora has a sequence 
length clearly above 128. To overcome this limitation, we first split each 
document into sentences. Then, contiguous sentences are to be joined 
together in single fragments of text by using a greedy approach, so that 
the length of each fragment does not exceed that of 128 tokens. All 
models examined in this study employ the same fragments of text as 
input patterns. To tackle the two different classification objectives, both 
approaches use softmax output layers of P + 1 = 308 and S + 1 = 36 
units for the Cantemist-Norm task, P + 1 = 902 and S + 1 = 306 units for 
the CodiEsp-X-D subtask, and P + 1 = 447 and S + 1 = 64 units for the 
CodiEsp-X-P subtask, respectively (see Section 4.4). Furthermore, given 
the considerable number of discontinuous textual references among the 
annotations, we employ an additional IOB2 prediction layer in the MER 
classification component (see Supplementary Fig. S2 for further details). 
This extra classification layer aims at recognizing the medical entities 
with discontinuous textual references, and it is only employed when 
tackling the CodiEsp-X-D and the CodiEsp-X-P tasks. Finally, regarding 
the hardware resources employed, all experiments are conducted on an 
exascale system of 4 NVIDIA DGX-A100 nodes. 

5. Results 

Tables 2, 3 and 4 show the performance of the three transformer- 
based models for explainable clinical-coding on the Cantemist-Norm, 
CodiEsp-X-D and CodiEsp-X-P tasks, respectively. For each trans-
former, we compare the original model pretrained on general domain 
corpora (see Section 4.2) with the corresponding version adapted to the 
clinical domain (see Section 4.3). Additionally, we also compare the 
predictive performance obtained by the models when they follow either 
the multi-task or the hierarchical-task approaches. The classification 
performance of the models is evaluated by using the micro-averaged 

precision, recall and f1-score metrics—i.e., the official evaluation met-
rics given for the analyzed tasks [13,14]. For each metric, the distribu-
tion of the values obtained from 5 distinct random fine-tuning instances 
of each model is described by reporting the mean, standard deviation 
and maximum values. 

According to the f1-score, the three transformer models achieve the 
best performance rates when they have been adapted to the clinical- 
domain and follow the hierarchical-task approach. Among all models, 
mBERT-Galén obtains the highest average f1-scores by following the 
hierarchical-task strategy, with mean f1-scores of 0.826, 0.627 and 
0.542 for the Cantemist-Norm, CodiEsp-X-D and CodiEsp-X-P tasks, 
respectively. For their part, the two other transformer-based models 
adapted to the medical domain achieve almost the same performance 
across the 3 tasks. Thus, by following the hierarchical-task strategy 
BETO-Galén obtains average f1-scores of 0.823, 0.625 and 0.533, while 
XLM-R-Galén achieves mean f1-scores of 0.823, 0.625 and 0.533 for the 
Cantemist-Norm, CodiEsp-X-D and CodiEsp-X-P tasks, respectively. 

In this way, two distinct patterns emerge overall from Tables 2, 3 and 
4. On the one hand, compared with the general-domain transformers, 
the clinical-domain version of the models improves their performance 
for the three distinct tasks analyzed herein. Thus, for each model, its 
“clinical version” achieves a higher average f1-score than the original 
general-domain model, when following both the multi-task approach 
and the hierarchical-task strategy. With the intention of verifying the 
statistical significance of the previous observation, in this study we 
perform non-parametric paired Wilcoxon signed-rank tests [50] to 
compare the distribution of the f1-score values obtained by the clinical- 
domain transformers with the f1-score values obtained by the general- 
domain models. In this way, for each specific task, the distribution of 
the 30 values of the f1-score metric achieved by the in-domain adapted 
transformers are compared with the 30 f1-score values obtained by the 
general-domain models. Significant p-values9 are obtained for every 
task (p = 2 × 10− 5 in the Cantemist-Norm task, p = 2 × 10− 3 in the 
CodiEsp-X-D subatsk and p = 3 × 10− 5 in the CodiEsp-X-P subatsk), 
hence accepting the alternative hypothesis—i.e., the performance of the 
clinical-domain transformers is significantly greater—in all cases. 

On the other hand, the hierarchical-task strategy yields a superior 
performance across the three tasks. In this way, for every task, the mean 
f1-score achieved by each model when it follows the hierarchical-task 
approach is greater than the performance of the same model when it 
is trained with the multi-task strategy. Again, for each task, we perform 
the paired Wilcoxon signed-rank test to compare the distribution of the 
30 f1-score values obtained by the models when following the 
hierarchical-task strategy with the corresponding 30 f1-score values 
achieved when using the multi-task approach. Significant differences 
can be observed for each task (p = 1 × 10− 5 in the Cantemist-Norm, 
CodiEsp-X-D and CodiEsp-X-P tasks), thus proving that our 
transformer-based models achieve a significantly greater performance 
when they follow a hierarchical-task approach. 

5.1. Ensemble 

Additionally, we develop an ensemble approach to combine the 
different predictions made by the transformers. We adopt the ensemble 
strategy proposed in [23], adapting it to particularities of the method-
ology proposed herein to address the explainable clinical coding prob-
lem. Given the aforementioned superior performance of the 
hierarchical-task approach in comparison with the multi-task setting, 
we apply our ensemble approach to combine the predictions made by 
the models in this more favorable hierarchical scenario. Thus, the 
ensemble approach firstly combines the predictions made by the MER 
transformer at the word-level; then, based on the resulting predictions, 

9 All the p-values reported in this study have been corrected for multiple-tests 
using the Bonferroni procedure [50]. 
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the clinical-coding probabilities outputted by the MEN transformer are 
also combined (see Section 4.4.b and Fig. 4). 

Hence, in the first place, given a sequence of m words as input to the 
MER model, a m × R matrix of word-level predictions is produced (see 
Phase 4 in section 4.4.a). In fact, as a result of considering 5 distinct 
random executions for each fine-tuned model, 5 different m × R prob-
ability matrices are obtained from a single model. To combine the 5 
distinct matrices into a single word-level probability matrix, our 
ensemble strategy plainly consists of summing the 5 probability 
matrices. Moreover, the ensemble approach could also be applied to 
combine the word-level predictions made by any number of different 
models by directly summing all the obtained probability matrices. Once 
a single m × R ensemble prediction matrix is generated, the recognized 

medical entities could be identified (see Phase 5 in Section 4.4.a). 
Subsequently, the medical entities identified following the ensemble 

approach are normalized using the MEN transformer. In this way, for 
each recognized entity, the MEN model outputs two different probability 
vectors: a vector of length P and a vector of length S, which contain the 
probability of the entity to be assigned a certain code prefix and suffix, 
respectively (see Section 4.4.b). Since, as it was previously mentioned, 5 
different random instances of each fine-tuned model are considered, 5 
distinct vectors of length P and 5 vectors of length S are obtained from a 
single model. To combine the 5 different probability vectors into a single 
vector, again, our ensemble approach consists of summing the 5 distinct 
vectors. Also, the predictions made by any number of models for a 
particular recognized entity could be combined by plainly summing all 

Table 2 
Explainable clinical-coding performance of the transformer models on the Cantemist-Norm task. For the maximum values column of each metric, the best result 
obtained is bolded, while the second best is underlined.  

Strategy Model Precision Recall F1-score 

Mean ± Std Max Mean ± Std Max Mean ± Std Max      

Multi-task 

BETO 0.802 ± 0.011  0.820 0.797 ± 0.005  0.805 0.799 ± 0.004  0.804 
BETO-Galén 0.805 ± 0.005  0.810 0.806 ± 0.007  0.816 0.805 ± 0.004  0.813 
mBERT 0.805 ± 0.005  0.811 0.809 ± 0.006  0.816 0.807 ± 0.003  0.812 
mBERT-Galén 0.815 ± 0.011  0.830 0.814 ± 0.006  0.822 0.815 ± 0.004  0.819 
XLM-R 0.802 ± 0.007  0.814 0.806 ± 0.006  0.816 0.804 ± 0.005  0.810 
XLM-R-Galén 0.812 ± 0.008  0.826 0.812 ± 0.003  0.817 0.812 ± 0.004  0.818      

Hierarchical-task 

BETO 0.818 ± 0.007  0.824 0.811 ± 0.004  0.816 0.814 ± 0.003  0.819 
BETO-Galén 0.825 ± 0.005  0.833 0.821 ± 0.005  0.826 0.823 ± 0.004  0.829 
mBERT 0.819 ± 0.009  0.832 0.818 ± 0.009  0.830 0.818 ± 0.002  0.820 
mBERT-Galén 0.828 ± 0.007  0.839 0.825 ± 0.004  0.830 0.826 ± 0.004  0.832 
XLM-R 0.814 ± 0.005  0.822 0.817 ± 0.004  0.822 0.815 ± 0.004  0.822 
XLM-R-Galén 0.824 ± 0.008  0.832 0.822 ± 0.008  0.832 0.823 ± 0.005  0.832  

Table 3 
Explainable clinical-coding performance of the transformer models on the CodiEsp-X-D task. For the maximum values column of each metric, the best result obtained is 
bolded, while the second best is underlined.  

Strategy Model Precision Recall F1-score 

Mean ± Std Max Mean ± Std Max Mean ± Std Max      

Multi-task 

BETO 0.672 ± 0.018  0.695 0.521 ± 0.014  0.533 0.586 ± 0.008  0.598 
BETO-Galén 0.664 ± 0.021  0.696 0.527 ± 0.005  0.534 0.587 ± 0.010  0.601 
mBERT 0.661 ± 0.017  0.684 0.540 ± 0.006  0.546 0.595 ± 0.004  0.598 
mBERT-Galén 0.671 ± 0.008  0.681 0.544 ± 0.002  0.546 0.601 ± 0.004  0.605 
XLM-R 0.643 ± 0.010  0.658 0.546 ± 0.005  0.550 0.591 ± 0.006  0.598 
XLM-R-Galén 0.664 ± 0.010  0.677 0.543 ± 0.004  0.547 0.597 ± 0.007  0.605      

Hierarchical-task 

BETO 0.694 ± 0.005  0.702 0.559 ± 0.005  0.565 0.619 ± 0.001  0.622 
BETO-Galén 0.684 ± 0.009  0.695 0.576 ± 0.004  0.578 0.625 ± 0.004  0.631 
mBERT 0.694 ± 0.007  0.703 0.564 ± 0.003  0.568 0.622 ± 0.003  0.627 
mBERT-Galén 0.692 ± 0.006  0.704 0.574 ± 0.005  0.578 0.627 ± 0.004  0.634 
XLM-R 0.678 ± 0.012  0.691 0.564 ± 0.003  0.568 0.616 ± 0.004  0.622 
XLM-R-Galén 0.686 ± 0.010  0.695 0.575 ± 0.004  0.582 0.626 ± 0.004  0.629  

Table 4 
Explainable clinical-coding performance of the transformer models on the CodiEsp-X-P task. For the maximum values column of each metric, the best result obtained is 
bolded, while the second best is underlined.  

Strategy Model Precision Recall F1-score 

Mean ± Std Max Mean ± Std Max Mean ± Std Max      

Multi-task 

BETO 0.620 ± 0.008  0.634 0.401 ± 0.005  0.407 0.487 ± 0.005  0.493 
BETO-Galén 0.615 ± 0.028  0.647 0.423 ± 0.008  0.436 0.501 ± 0.007  0.510 
mBERT 0.607 ± 0.005  0.612 0.408 ± 0.009  0.416 0.488 ± 0.007  0.494 
mBERT-Galén 0.621 ± 0.014  0.642 0.418 ± 0.005  0.423 0.499 ± 0.007  0.510 
XLM-R 0.593 ± 0.018  0.624 0.413 ± 0.007  0.423 0.486 ± 0.006  0.496 
XLM-R-Galén 0.613 ± 0.024  0.645 0.420 ± 0.008  0.427 0.498 ± 0.007  0.510      

Hierarchical-task 

BETO 0.635 ± 0.024  0.661 0.442 ± 0.007  0.449 0.521 ± 0.009  0.535 
BETO-Galén 0.636 ± 0.013  0.649 0.458 ± 0.012  0.477 0.533 ± 0.009  0.548 
mBERT 0.639 ± 0.023  0.665 0.441 ± 0.008  0.452 0.522 ± 0.007  0.533 
mBERT-Galén 0.647 ± 0.014  0.661 0.467 ± 0.004  0.471 0.542 ± 0.005  0.548 
XLM-R 0.618 ± 0.022  0.650 0.443 ± 0.010  0.454 0.516 ± 0.006  0.526 
XLM-R-Galén 0.625 ± 0.023  0.658 0.462 ± 0.011  0.474 0.531 ± 0.006  0.536  
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the probability vectors obtained. As a result of applying the ensemble 
approach, a single pair of P-length and S-length prediction vectors is 
produced for each identified medical entity. Finally, the label predicted 
with the maximum value in each vector corresponds to the clinical code 
assigned to the corresponding medical entity. 

Table 5 describes the predictive performance of the ensemble strat-
egy applied to combine both the predictions made by single models and 
the predictions outputted by multiple distinct models. With the aim of 
comparing the performance achieved by our ensemble approach with 
the current SOTA performance in the CodiEsp-X task [13], we join the 
results obtained by each ensemble model on the CodiEsp-X-D and 
CodiEsp-X-P subtasks to evaluate its overall performance on the 
CodiEsp-X task10 (see Supplementary Table S2 for further details on the 
performance of the ensemble approach separately on both subtasks). In 
addition, we also compare the performance obtained by our ensemble 
strategy on the Cantemist-Norm task with the SOTA performance re-
ported by the organizers of the shared task [14]. In this way, regarding 
the performance of the ensemble approach applied to single models, 
according to the f1-score metric, the mBERT-Galén ensemble obtains the 
best results on the Cantemist-Norm and CodiEsp-X tasks, with f1-score 
values of 0.842 and 0.622, respectively, thus surpassing the prior 
SOTA performance on both tasks. In relation to the ensemble approach 
applied to multiple models, the BETO-Galén + mBERT-Galén + XLM-R- 
Galén ensemble achieves the highest performance among all models 
analyzed in this work, with f1-scores of 0.849 and 0.633 on the 
Cantesmit-Norm and CodiEsp-X tasks, respectively, establishing a new 
SOTA performance for each of both explainable clinical-coding tasks. 

6. Discussion 

In this study, we have systematically analyzed transformer-based 
models for explainable clinical coding. With this aim, we have exam-
ined the performance of the models on the Cantemist-Norm, CodiEsp-X- 
D and CodiEsp-X-P tasks, by comparing the results obtained when 
following a multi-task approach with the performance achieved by 
following a hierarchical-task strategy. For the classification tasks 
explored in this work, the obtained experimental results demonstrate 
that transformer models achieve higher performance when following 
the hierarchical-task approach. In this section, we further examine the 

differences in performance between the multi-task and the hierarchical- 
task strategies, as well as identify the key aspects of the hierarchical-task 
setting that lead to the observed increase in performance. 

6.1. Multi-task vs Hierarchical-task approaches 

With the aim of performing a thorough comparison between both 
explainable clinical-coding approaches, we separately examine the 
performance of transformers on the MER and MEN components of our 
multi-task and hierarchical-task strategies. In Supplementary Tables S3, 
S4 and S5, the independent MER performance of the transformer-based 
models obtained by following each of the two strategies is described for 
the Cantemist-Norm, CodiEsp-X-D and CodiEsp-X-P tasks, respectively. 
According to the f1-score, each model achieves a significantly greater 
MER performance when following the hierarchical-task approach than 
when it is trained with the multi-task setting (p = 1 × 10− 3 in the 
Cantemist-Norm task and p = 1 × 10− 5 in both CodiEsp-X-D and 
CodiEsp-X-P tasks). Noticeably, the differences in MER performance are 
greater in the CodiEsp-X-D and CodiEsp-X-P tasks than in the Cantemist- 
Norm task. In this way, the differences in terms of average f1-score are 
0.004, 0.011 and 0.021 in favor of the hierarchical-task approach for the 
Cantemist-Norm, CodiEsp-X-D and CodiEsp-X-P tasks, respectively. On 
the other hand, we perform an additional experiment to compare the 
performance of the MEN component of the multi-task and hierarchical- 
task settings in an isolated manner. In this way, we aim to prevent the 
performance of the MER components from influencing the performance 
of the MEN components—given the dependence of the MEN component 
on the clinical entities detected by the MER component. Hence, we 
compare the results obtained by the models in the multi-task setting (see 
Tables 2, 3 and 4), with the results achieved by the transformers in a 
modified version of the hierarchical-task approach in which the MEN 
transformer performs the normalization of the clinical entities previ-
ously detected by the MER component of the multi-task approach (see 
Tables 6 and 7). Consequently, the performance of the MEN components 
of the multi-task and hierarchical-task approaches are compared inde-
pendently of their MER counterparts, since in both settings the same 
MER predictions are considered. When comparing the results shown in 
Tables 2, 3 and 4 with the results described in Tables 6 and 7, according 
to the f1-score, the MEN performance of every transformer is signifi-
cantly higher in the hierarchical-task scenario (p = 1 × 10− 5 in the 
Cantemist-Norm, CodiEsp-X-D and CodiEsp-X-P tasks). Also, the differ-
ences in MEN performance are higher in the CodiEsp-X-D and CodiEsp- 
X-P tasks than in the Cantemist-Norm task. In this way, according to the 
mean f1-score, an average improvement across all models of 0.010, 
0.027 and 0.019 is observed in the Cantemist-Norm, CodiEsp-X-D and 
CodiEsp-X-P tasks, respectively. 

Table 5 
Explainable clinical-coding performance of the ensemble models on the 
Cantemist-Norm and CodiEsp-X tasks. For each metric, the best result obtained is 
bolded, while the second best is underlined.  

Model Cantemist-Norm CodiEsp-X 

P R F1 P R F1 

BETO  0.836  0.828  0.832  0.708  0.542  0.614 
BETO-Galén  0.838  0.834  0.836  0.695  0.557  0.619 
mBERT  0.840  0.835  0.838  0.711  0.544  0.616 
mBERT-Galén  0.843  0.840  0.842  0.707  0.556  0.622 
XLM-R  0.835  0.833  0.834  0.693  0.546  0.610 
XLM-R-Galén  0.843  0.838  0.840  0.696  0.560  0.620 
BETO + BETO-Galén  0.845  0.835  0.840  0.712  0.556  0.624 
mBERT + mBERT-Galén  0.846  0.841  0.844  0.722  0.552  0.626 
XLM-R + XLM-R-Galén  0.845  0.841  0.843  0.712  0.559  0.626 
BETO +

mBERT + XLM-R  
0.845  0.839  0.842  0.724  0.552  0.626 

BETO-Galén + mBERT- 
Galén + XLM-R-Galén  

0.852  0.847  0.849  0.718  0.566  0.633 

Prior SOTA  0.824  0.826  0.825  0.687  0.562  0.611  

Table 6 
MEN performance of the hierarchical-task approach using the MER predictions 
of the multi-task setting on the Cantemist-Norm task. For the maximum values 
column of each metric, the best obtained result is bolded, while the second best 
is underlined.  

Model Precision Recall F1-score 

Mean ± 
Std 

Max Mean ± 
Std 

Max Mean ± 
Std 

Max 

BETO 0.814 ±
0.013  

0.834 0.809 ±
0.005  

0.816 0.812 ±
0.005  

0.818 

BETO- 
Galén 

0.819 ±
0.005  

0.826 0.820 ±
0.005  

0.825 0.819 ±
0.002  

0.822 

mBERT 0.813 ±
0.006  

0.817 0.817 ±
0.004  

0.821 0.815 ±
0.002  

0.817 

mBERT- 
Galén 

0.825 ±
0.012  

0.843 0.824 ±
0.004  

0.830 0.825 ±
0.005  

0.832 

XLM-R 0.808 ±
0.003  

0.812 0.812 ±
0.006  

0.821 0.810 ±
0.002  

0.813 

XLM-R- 
Galén 

0.821 ±
0.008  

0.835 0.821 ±
0.003  

0.825 0.821 ±
0.004  

0.827  
10 Although we have separately addressed the CodiEsp-X-D and CodiEsp-X-P 

subtasks, the organizers of the CodiEsp shared task reported the SOTA perfor-
mance on the whole CodiEsp-X task [13]. 
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Recent works have shown the superior performance of multi-task 
approaches over hierarchical-task strategies in medical classification 
problems involving both the detection and normalization of clinical 
entities, such as medical concept normalization [39,40]. In the case of 
explainable clinical-coding, SOTA results were obtained for the 
Cantemist-Norm task at the time the shared-task was held by training 
BERT using a multi-task approach [38]. By jointly modeling the MER 
and MEN tasks, the multi-task setting leads the models to build shared 
representations between both tasks, which represents a potential 
advantage when the tasks are related, as it is the case for explainable 
clinical-coding. However, in contrast with the results obtained in the 
aforementioned works, we have experimentally demonstrated that, for 
the 3 explainable clinical-coding tasks tackled in this study, a 
hierarchical-task approach leads the transformer-based models to ach-
ieve a significantly higher performance than when following a multi- 
task strategy. Particularly, both MER and MEN tasks benefit from the 
hierarchical-task setting in terms of performance. In fact, we have 
observed a larger difference in performance between both approaches in 
the CodiEsp-X-D and CodiEsp-X-P tasks than in the Cantemist-Norm task 
for both MER and MEN. CodiEsp-X-D and CodiEsp-X-P tasks represent 
more complex classification problems than the Cantemist-Norm task, 
given the scarcity of annotated samples available for the CodiEsp corpus 
in comparison with the large number of distinct clinical codes to be 
predicted (see Table 1). Given the obtained results, we can identify-two 
key features of the hierarchical-task approach that have led to the 
observed increase in the performance of the models. On the one hand, 
the first crucial characteristic is to separately perform the MER and MEN 
tasks, in contrast with the multi-task approach in which both tasks are 
performed in parallel. This is supported by the fact that, by following the 
same sequence labeling approach, the MER component of the 
hierarchical-task approach obtains a higher performance than the MER 
part of the multi-task setting. Although by jointly performing MER and 
MEN the model can build shared representations for both tasks, this does 
not always represent an advantage, specially for complex classification 
problems where there is a considerable limitation on the number of 
available annotated samples. On the other hand, the second pivotal 
feature of the hierarchical-task setting is the text classification approach 
used to tackle the MEN task. In contrast with the multi-task strategy 
where the MEN problem is addressed as a sequence labeling task, the 
text classification procedure allows the MEN transformer of the 
hierarchical-task setting to focus on the normalization of a single clinical 
entity per input pattern to the model, hence alleviating the intrinsic 
complexity of the MEN task. In fact, when comparing the results ob-
tained by the MEN components of the multi-task and hierarchical-task 
strategies, we observe the highest MEN performance gains of the 
hierarchical-task approach in both the CodiEsp-X-D and CodiEsp-X-P 
tasks, which present higher unbalanced distributions of ICD codes 

than the Cantemist-Norm task. 
Finally, we further evaluate the predictive capabilities of the text 

classification MEN component of our hierarchical-task approach. In the 
context of medical entity linking, it is very common to observe a large 
overlap between the train and test subsets of the benchmark datasets 
derived from shared tasks—like the datasets employed in this work, both 
at the level of coding labels and mentions [51–53]. For this reason, 
following the evaluation strategies proposed in previous works [51,53], 
we have evaluated the generalization capabilities of the MEN trans-
former of the hierarchical task approach in three different setups, 
namely zero-shot, few-shots and filtering setups. Supplementary Table S6 
and Table 8 contain the description of the data used to evaluate the 
model on each setting, as well as its classification performance, 
respectively. For the three tasks addressed in this study, although an 
expected degradation in performance is observed, the text classification 
MEN approach shows a robust performance in the configurations with 
limited overlap between train and test sets, both at the level of codes and 
mentions. Additionally, we compare the performance achieved by the 
MEN transformer with the results obtained by SapBERT [54], a 
transformer-based model that has shown to achieve SOTA performance 
using Cantemist-Norm and CodiEsp-X-D corpora for medical entity 
linking [53]. When considering all mentions from the test set (see full 
row in Table 8), our MEN text classification approach outperforms 
SapBERT in both Cantemist-Norm and CodiEsp-X-D tasks. On the other 
hand, when the overlapping mentions are removed from the test set (see 
filtering row in Table 8), the MEN transformer obtains a higher classifi-
cation accuracy than SapBERT in the Cantemist-NORM task, while 
SapBERT outperforms our text classification strategy in the CodiEsp-X-D 
task. With this analysis we demonstrate that the MEN component of our 
hierarchical-task approach also achieves strong performance in settings 
that limit leakage between the training and evaluation sets, obtaining 
comparable results with SOTA models for medical entity linking. How-
ever, as it can be observed from Table 8, in terms of performance, the 
most challenging setup for our MEN strategy is the zero-shot scenario. 
This is an expected consequence of the text classification approach used 
by the hierarchical-task strategy (see Section 4.4.b), since only codes 
that have been seen during training can be predicted at inference time. 
In future works, we will focus our efforts on improving the performance 
of our hierarchical-task approach in the zero-shot setup, by combining an 
entity linking approach with the context-aware normalization of clinical 
entities performed by our proposed methodology. 

6.2. Context-aware normalization of clinical entities 

Another distinctive characteristic of the proposed hierarchical-task 
strategy is the ability of the MEN transformer to leverage the specific 
context in which a clinical entity appears within the text to perform its 

Table 7 
MEN performance of the hierarchical-task approach using the MER predictions of the multi-task setting on both the CodiEsp-X-D and CodiEsp-X-P tasks. For the 
maximum values column of each metric, the best obtained result is bolded, while the second best is underlined.  

Model CodiEsp-X-D CodiEsp-X-P 

Precision Recall F1-score Precision Recall F1-score 

Mean ± Std Max Mean ± Std Max Mean ± Std Max Mean ± Std Max Mean ± Std Max Mean ± Std Max 

BETO 0.710 ±
0.019  

0.736 0.544 ±
0.010  

0.553 0.616 ±
0.005  

0.623 0.651 ±
0.008  

0.662 0.420 ±
0.007  

0.428 0.511 ±
0.007  

0.520 

BETO-Galén 0.703 ±
0.019  

0.735 0.561 ±
0.002  

0.563 0.624 ±
0.008  

0.637 0.645 ±
0.028  

0.683 0.438 ±
0.013  

0.460 0.521 ±
0.009  

0.531 

mBERT 0.688 ±
0.017  

0.703 0.559 ±
0.007  

0.564 0.617 ±
0.006  

0.621 0.623 ±
0.006  

0.630 0.424 ±
0.011  

0.440 0.504 ±
0.009  

0.518 

mBERT- 
Galén 

0.701 ±
0.005  

0.707 0.566 ±
0.004  

0.572 0.627 ±
0.003  

0.630 0.643 ±
0.016  

0.661 0.434 ±
0.008  

0.442 0.518 ±
0.010  

0.526 

XLM-R 0.667 ±
0.015  

0.688 0.564 ±
0.003  

0.569 0.611 ±
0.007  

0.620 0.613 ±
0.013  

0.631 0.426 ±
0.011  

0.439 0.502 ±
0.006  

0.511 

XLM-R-Galén 0.694 ±
0.009  

0.704 0.565 ±
0.004  

0.569 0.623 ±
0.006  

0.628 0.636 ±
0.023  

0.659 0.435 ±
0.010  

0.447 0.517 ±
0.007  

0.524  
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normalization. In this way, given an input sequence of text, our 
hierarchical-task approach uses the medical entity tokens and embed-
dings to highlight the tokens of the input sequence forming the clinical 
entity, providing the model with the textual information of both the 
clinical entity to be normalized and the context part of the input 
sequence. Prior works have also tackled the normalization of medical 
entities as a text classification problem using transformers [41–43]. 
However, in these previous studies, the models were exclusively pro-
vided with the tokens corresponding to each clinical entity, and no 
contextual information was employed as input data. Transformers are 
based on the self-attention mechanism [9], which permits the models to 
extract contextual representations of the input tokens, taking into ac-
count the specific context where they appear within the input text. 
Providing no information about the context in which a particular med-
ical entity emerges within a clinical text considerably limits the capacity 
of the transformer-based models to build effective contextual repre-
sentations of the clinical entities to be normalized. Additionally, 
considering the particular textual context where medical entities occur 
may be beneficial to perform certain ICD coding assignments. 

In fact, there are cases in which the context of a clinical entity is not 
only beneficial, but critical to perform the entity normalization. In this 
way, we have identified multiple annotations in which clinical entities 
with the same textual mention are assigned different ICD codes. For 
instance, in the S0211-57352015000100011–2 clinical case of the 
CodiEsp-X-D corpus, the medical entity cognitive impairment is assigned 
the F09 code (“unspecified mental disorder due to known physiological 
condition”). However, in the S1130-01082007001100012–1 document 
of the same corpus, a medical entity with the same textual mention is 
assigned the G31.84 code (“mild cognitive impairment”). Although both 
clinical entities have the same textual description, the textual context of 
the former entity describes a severe disorder with associated physio-
logical conditions, while the context of the latter depicts a mild cognitive 
disorder. Thus, the two previous ICD coding assignments could only be 
performed by considering the context in which the entities appear 
within the clinical cases. 

In order to show the ability of the MEN transformer of our 
hierarchical-task approach to utilize the textual context of the medical 
entities to perform their normalization, in Table 9, we describe some 
examples of annotations having the same textual mention but different 
ICD codes assigned. They were correctly predicted by our transformers 
when following the hierarchical-task setting. Hence, exclusively 
considering the tokens corresponding to each clinical entity is not suf-
ficient to correctly normalize the type of entities described in Table 9, 

Table 8 
Performance of the MEN component of the hierarchical-task setting in the full, filtering, few-shots and zero-shot setups. Accuracy is used as the evaluation metric. The 
performance of the mBERT-Galén model is reported. With the aim of exclusively evaluating the performance of the MEN component, the gold-standard mentions of the 
test set are used as input to the MEN text classification transformer. Additionally, we also report the Acc@1 results obtained by the SapBERT model in both full and 
filtering setups [53]. Specifically, the performance of the SapBERT + target configuration is described, obtained by further fine-tuning the SapBERT model on the 
corresponding explainable clinical coding corpus. SapBERT + target represents the best performing model in both Cantemist-Norm and CodiEsp-X-D tasks among the 
approaches analyzed in [53].  

Model   

Experiment 

Cantemist-NORM CodiEsp-X-D CodiEsp-X-P 

All Subset All Subset All Subset 

Mean ± 
Std 

Max Mean ± 
Std 

Max Mean ± 
Std 

Max Mean ± 
Std 

Max Mean ± 
Std 

Max Mean ± 
Std 

Max    

mBERT- 
Galén 

Full 0.894 ±
0.002  

0.896 0.927 ±
0.002  

0.929 0.715 ±
0.002  

0.717 0.755 ±
0.003  

0.758 0.546 ±
0.006  

0.556 0.798 ±
0.009  

0.809 

Filtering 0.640 ±
0.004  

0.645 0.735 ±
0.005  

0.742 0.307 ±
0.004  

0.310 0.390 ±
0.005  

0.395 0.278 ±
0.008  

0.288 0.552 ±
0.020  

0.578 

Few-Shots 0.544 ±
0.014  

0.562 0.637 ±
0.016  

0.658 0.405 ±
0.005  

0.412 0.481 ±
0.006  

0.489 0.285 ±
0.007  

0.295 0.590 ±
0.014  

0.610 

Zero-Shot 0.170 ±
0.013  

0.182 0.304 ±
0.023  

0.325 0.007 ±
0.002  

0.010 0.011 ±
0.004  

0.016 0.023 ±
0.003  

0.027 0.227 ±
0.032  

0.273  

SapBERT 
+ target 

Full –  0.795 –  – –  0.672 –  – –  – –  – 
Filtering –  0.533 –  – –  0.476 –  – –  – –  –  

Table 9 
Examples of explainable clinical-coding annotations with the same textual 
mentions but different ICD codes assigned, that were correctly predicted by 
transformer-based models when following the hierarchical-task approach. For 
each normalized entity, its textual mention, part of the context in which it ap-
pears within the text and the assigned code is described. The first pair of an-
notations were correctly predicted by the BETO-Galén model from the test 
subset of the CodiEsp-X-D corpus, while the remaining annotations were 
correctly predicted by the mBERT-Galén model from the test split of the 
CodiEsp-X-P corpus.  

Textual mention Context Code    

right 
hypochondrium 
pain 

… service for right 
hypochondrium pain for 6 
months, accompanied by 
changes in bowel habits … 

R10.11 (“right upper 
quadrant pain”) 

… he developed persistent 
right hypochondrium pain, 
nausea and vomiting … 

R10.31 (“right lower 
quadrant pain”)      

bladder 
catheterization 

… conservative treatment was 
decided with bladder 
catheterization and flushing 
circuit with saline … 

0T9B (“drainage of 
bladder”) 

… bladder balloon obstruction 
in both renal fossae. Due to the 
suspicion of acute urinary 
retention, a bladder 
catheterization was performed, 
confirming a voiding cyst of 
1,200 cc … 

0T9B70Z (“drainage of 
bladder with drainage 
device, via natural or 
artificial opening”)     

cesarean 

… treated with acetylsalicylic 
acid at a dose of 200 mg/day, 
with normal pregnancy and 
cesarean delivery … 

10D0 (“extraction of 
products of conception”) 

… pregnancy with normal 
course and no family history of 
interest. Elective cesarean 
delivery by breech 
presentation … 

10D00Z1 (“extraction of 
products of conception, 
low, open approach”)     

hemodialysis 

… was managed with 
hydroxyurea and hemodialysis. 
Biopsy of the renal graft was 
performed on the fifth day … 

5A1D (“performance of 
urinary procedure”) 

… returning to hemodialysis in 
November 2002 after the 
development of a 
glomerulonephritis 
nonproliferative secondary to 
HCV on renal graft … 

5A1D00Z (“performance 
of urinary filtration, 
single”)  
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and only by also attending to the context in which the entities appear 
within the clinical cases, their normalization can be accomplished. 

Finally, we must also state that, although the developed methodol-
ogy in this work was exclusively applied to tackle the problem of 
explainable clinical-coding, the exact same methodology can also be 
applied to address other prediction tasks from the clinical domain that 
involve both the detection and normalization of clinical entities. For 
instance, medical concept normalization [42,43]—a task in which the 
context where the clinical entities appear within the text can affect the 
results of normalization [55]—may potentially benefit from the context- 
aware normalization of the medical entities performed by our 
hierarchical-task approach. Additionally, the proposed methodology is 
language-independent. Consequently, it can also be applied to medical 
documents written in other languages distinct from Spanish, by 
straightforwardly substituting any transformer-based models supporting 
a specific language for the particular transformer-based models 
employed in this study (see Section 4.2). 

7. Conclusion 

In this work, we systematically examine the performance of trans-
formers for explainable clinical-coding. Particularly, we compare the 
performance obtained by the general-domain version of 3 different 
transformer-based models with the results achieved by the clinical- 
domain version of the models obtained by further pretraining the ar-
chitectures on a collection of real-world clinical cases, with the goal of 
adapting transformers to the specificities of the medical domain. We 
address the explainable clinical-coding problem as a dual mER-MEN 
task, in which each clinical entity has to be both detected and 
assigned a particular ICD code. With the intention of tackling explain-
able clinical-coding using transformers, we have developed two 
different approaches, a multi-task and a hierarchical-task strategy. For 
the 3 tasks considered in this study, the clinical-domain version of the 
models significantly outperforms the general-domain models. Moreover, 
the transformer-based models achieve a significantly higher perfor-
mance when following the hierarchical-task approach than by following 
the multi-task strategy. In particular, in combination with an ensemble 
approach that leverages the predictive capabilities of the different 
models, the transformers following the hierarchical-task strategy set 
new SOTA performances for both the Cantemist-Norm [14] and 
CodiEsp-X [13] explainable clinical-coding tasks. By further examining 
the differences in performance between the multi-task and the 
hierarchical-task strategies, we identify-two critical features of the 
hierarchical-task approach that lead to the observed increase in per-
formance, namely to separately perform the MER and MEN subtasks and 
the context-aware text-classification approach used to tackle the MEN 
task. Both features contribute to reducing the intrinsic complexity of the 
analyzed tasks. Finally, the proposed methodology can also be applied to 
address other prediction tasks from the clinical domain involving both 
the detection and normalization of clinical entities using transformer- 
based models. 

Statement of Significance 

Problem: Traditionally, clinical coding of Electronic Health Records 
(EHRs) in hospitals has been carried out manually. However, clinical 
coding can be automated, improving many medical and productivity 
aspects of the health professionals involved. 

What is Already Known: Although many works have already 
tackled the problem of automatic clinical coding, most of the existing 
computer-based methods act as “black boxes”, which greatly limits their 
applicability to real-world clinical scenarios. 

What This Paper Adds: This study aims to develop two different 
methodologies to effectively apply transformer-based models to the 
problem of explainable clinical coding, requiring the models to perform 
the assignments of clinical codes to medical cases, but also to provide the 

reference in the text that justifies each coding assignment. We demon-
strate that our proposed hierarchical-task approach leads in-domain 
transformers to establish new state-of-the-art (SOTA) performances for 
three distinct explainable clinical-coding tasks. Additionally, the 
developed methodology can be potentially applied to address other 
clinical tasks that require both the recognition and normalization of 
clinical entities. 
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Guillermo López-García: Conceptualization, Data curation, Formal 
analysis, Methodology, Software, Validation, Visualization, Writing – 
original draft, Writing – review & editing. José M. Jerez: Conceptual-
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Ferro, A. Névéol (Eds.), Working Notes of CLEF 2020 - Conference and Labs of the 
Evaluation Forum, CEUR Workshop Proceedings, 2020. http://ceur-ws.org/Vol- 
2696/paper_101.pdf. 
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