9,930 research outputs found

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Adding Contextual Information to Intrusion Detection Systems Using Fuzzy Cognitive Maps

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In the last few years there has been considerable increase in the efficiency of Intrusion Detection Systems (IDSs). However, networks are still the victim of attacks. As the complexity of these attacks keeps increasing, new and more robust detection mechanisms need to be developed. The next generation of IDSs should be designed incorporating reasoning engines supported by contextual information about the network, cognitive information and situational awareness to improve their detection results. In this paper, we propose the use of a Fuzzy Cognitive Map (FCM) in conjunction with an IDS to incorporate contextual information into the detection process. We have evaluated the use of FCMs to adjust the Basic Probability Assignment (BPA) values defined prior to the data fusion process, which is crucial for the IDS that we have developed. The experimental results that we present verify that FCMs can improve the efficiency of our IDS by reducing the number of false alarms, while not affecting the number of correct detections

    A new knowledge sourcing framework to support knowledge-based engineering development

    Get PDF
    New trends in Knowledge-Based Engineering (KBE) highlight the need for decoupling the automation aspect from the knowledge management side of KBE. In this direction, some authors argue that KBE is capable of effectively capturing, retaining and reusing engineering knowledge. However, there are some limitations associated with some aspects of KBE that present a barrier to deliver the knowledge sourcing process requested by the industry. To overcome some of these limitations this research proposes a new methodology for efficient knowledge capture and effective management of the complete knowledge life cycle. Current knowledge capture procedures represent one of the main constraints limiting the wide use of KBE in the industry. This is due to the extraction of knowledge from experts in high cost knowledge capture sessions. To reduce the amount of time required from experts to extract relevant knowledge, this research uses Artificial Intelligence (AI) techniques capable of generating new knowledge from company assets. Moreover the research reported here proposes the integration of AI methods and experts increasing as a result the accuracy of the predictions and the reliability of using advanced reasoning tools. The proposed knowledge sourcing framework integrates two features: (i) use of advanced data mining tools and expert knowledge to create new knowledge from raw data, (ii) adoption of a well-established and reliable methodology to systematically capture, transfer and reuse engineering knowledge. The methodology proposed in this research is validated through the development and implementation of two case studies aiming at the optimisation of wing design concepts. The results obtained in both use cases proved the extended KBE capability for fast and effective knowledge sourcing. This evidence was provided by the experts working in the development of each of the case studies through the implementation of structured quantitative and qualitative analyses

    A new trend for knowledge-based decision support systems design

    Get PDF
    Knowledge-based decision support systems (KBDSS) have evolved greatly over the last few decades. The key technologies underpinning the development of KBDSS can be classified into three categories: technologies for knowledge modelling and representation, technologies for reasoning and inference and web-based technologies. In the meantime, service systems have emerged and become increasingly important to value adding activities in the current knowledge economy. This paper provides a review on the recent advances in the three types of technologies, as well as the main application domains of KBDSS as service systems. Based on the examination of literature, future research directions are recommended for the development of KBDSS in general and in particular to support decision-making in service industry

    Analysis and design of multiagent systems using MAS-CommonKADS

    Get PDF
    This article proposes an agent-oriented methodology called MAS-CommonKADS and develops a case study. This methodology extends the knowledge engineering methodology CommonKADSwith techniquesfrom objectoriented and protocol engineering methodologies. The methodology consists of the development of seven models: Agent Model, that describes the characteristics of each agent; Task Model, that describes the tasks that the agents carry out; Expertise Model, that describes the knowledge needed by the agents to achieve their goals; Organisation Model, that describes the structural relationships between agents (software agents and/or human agents); Coordination Model, that describes the dynamic relationships between software agents; Communication Model, that describes the dynamic relationships between human agents and their respective personal assistant software agents; and Design Model, that refines the previous models and determines the most suitable agent architecture for each agent, and the requirements of the agent network
    • …
    corecore