3 research outputs found

    Graph Convolutional Networks for Predictive Healthcare using Clinical Notes

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ๊น€์„ .Clinical notes in Electronic Health Record(EHR) system are recorded in free text forms with different styles and abbreviations of personal preference. Thus, it is very difficult to extract clinically meaningful information from EHR clinical notes. There are many computational methods developed for tasks such as medical text normalization, medical entity extraction, and patient-level prediction tasks. Existing methods for the patient-level prediction task focus on capturing the contextual or sequential information from clinical texts, but they are not designed to capture global and non-consecutive information in the clinical texts. Recently, graph convolutional neural networks(GCNs) are successfully used for text-based classification since GCN can extract the global and long-distance information among the whole texts. However, application of GCN for mining clinical notes is yet to be fully explored. In this study, we propose an end-to-end framework for the analysis of clinical notes using graph neural network-based techniques to predict whether a patient is with MRSA (Methicillin-Resistant Staphylococcus Aureus) positive infection or negative infection. For this MRSA infection prediction, it is critical to capture the patient-specific and global non-consecutive information from patient clinical notes. The clinical notes of a patient are processed to construct a patient-level graph, and each patient-level graph is fed into the GCN-based framework for graph-level supervised learning. The proposed framework consists of a graph convolutional network layer, a graph pooling layer, and a readout layer, followed by a fully connected layer. We tested various settings of the GCN-based framework with various combinations of graph convolution operations and graph pooling methods and we evaluated the performance of each variant framework. In experiments with MRSA infection data, all of the variant frameworks with graph structure information outperformed several baseline methods without using graph structure information with a margin of 2.93%โˆผ11.81%. We also investigated graphs in the pooling step to conduct interpretable analysis in population-based statistical and patient-specific aspects, respectively. With this inspection, we found long-distance word pairs that are distinct for MRSA positive patients and we also showed the pooled graph of the patient that contributes to the patient-specific prediction. Moreover, the Adaboost algorithm was used to improve the performance further. As a result, the framework proposed in this paper reached the highest performance of 85.70%, which is higher than the baseline methods with a margin of 3.71%โˆผ12.59%.์ „์ž ๊ฑด๊ฐ• ๊ธฐ๋ก์€ ๋””์ง€ํ„ธ ํ˜•ํƒœ๋กœ ์ฒด๊ณ„์ ์œผ๋กœ ์ˆ˜์ง‘๋œ ํ™˜์ž์˜ ๊ฑด๊ฐ• ์ •๋ณด๋‹ค. ์ „์ž ๊ฑด๊ฐ• ๊ธฐ๋ก์ด ํ™˜์ž์˜ ์ƒํƒœ๋ฅผ ํ‘œํ˜„ ํ•˜๋Š” ๋‹จ์–ด๋“ค๋กœ ๊ตฌ์„ฑ๋œ ๋ฌธ์„œ์˜ ์ง‘ํ•ฉ์ด๊ธฐ๋•Œ๋ฌธ์— ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋ถ„์•ผ์— ์ ์šฉ๋˜๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ๊ณ„ํ•™์Šต์  ๋ฐฉ๋ฒ•๋“ค์ด ์ ์šฉ๋˜์–ด์™”๋‹ค. ํŠนํžˆ, ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด, ์ด๋ฏธ์ง€๋‚˜ ํ…์ŠคํŠธ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ ๋˜๋˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ˆ  ๋“ค์ด์ƒ๋ช…์ •๋ณด๋ฐ์˜ํ•™์ •๋ณด๋ถ„์•ผ์—์ ์ฐจ์ ์šฉ๋˜๊ณ ์žˆ๋‹ค.ํ•˜์ง€๋งŒ,๊ธฐ์กด์˜์ด๋ฏธ์ง€๋‚˜ ํ…์ŠคํŠธ๋ฐ์ดํ„ฐ์™€๋Š” ๋‹ค๋ฅด๊ฒŒ, ์ „์ž ๊ฑด๊ฐ• ๊ธฐ๋ก ๋ฐ์ดํ„ฐ๋Š” ์ž‘์„ฑ์ž ๋ฐ ํ™˜์ž ๊ฐœ๊ฐœ์ธ์˜ ์ƒํƒœ์— ๋”ฐ๋ผ์„œ, ๋ฐ์ดํ„ฐ์˜ ํ™˜์ž ํŠน์ด์„ฑ์ด ๋†’๋‹ค. ๋˜ํ•œ, ์œ ์‚ฌํ•œ ์˜๋ฏธ๋ฅผ ์ง€๋‹ˆ๋Š” ๊ฑด๊ฐ• ๊ธฐ๋ก๋“ค๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•ด์•ผ ํ•  ํ•„์š”๊ฐ€์žˆ๋‹ค. ๋ณธ์—ฐ๊ตฌ์—์„œ๋Š” ์ „์ž ๊ฑด๊ฐ• ๊ธฐ๋ก ๋ฐ์ดํ„ฐ์˜ ํ™˜์žํŠน์ด์„ฑ์„ ๊ณ ๋ คํ•œ ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ํ™˜์ž์˜ ์ „์ž ๊ฑด๊ฐ• ๊ธฐ๋ก ๋ฐ์ดํ„ฐ์™€ ์˜๋ฃŒ ๋ฌธ์„œ๋“ค์˜ ๊ณตํ†ต ์ถœํ˜„ ๋นˆ๋„๋ฅผ ํ™œ์šฉ ํ•˜์—ฌ ํ™˜์ž ํŠน์ด์  ๊ทธ๋ž˜ํ”„๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ, ๊ทธ๋ž˜ํ”„ ์ปจ๋ณผ๋ฃจ์…˜ ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ™˜์ž์˜ ๋ณ‘๋ฆฌํ•™์ ์ƒํƒœ๋ฅผ์˜ˆ์ธกํ•˜๋Š”๋ชจ๋ธ์„๊ณ ์•ˆํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ๋Š” Methicillin-Resistant Staphylococcus Aureus(MRSA) ๊ฐ์—ผ ์—ฌ๋ถ€๋ฅผ ์ธก์ •ํ•œ ๋ฐ์ดํ„ฐ์ด๋‹ค. ๊ณ ์•ˆํ•œ ๊ทธ๋ž˜ํ”„๊ธฐ๋ฐ˜ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ†ตํ•ด ํ™˜์ž์˜ ๋‚ด์„ฑ์„ ์˜ˆ์ธกํ•œ ๊ฒฐ๊ณผ, ๊ทธ๋ž˜ํ”„์ •๋ณด๋ฅผ ํ™œ์šฉ ํ•˜์ง€ ์•Š์€ ๊ธฐ์กด๋ชจ๋ธ๋“ค ๋ณด๋‹ค 2.93%โˆผ11.81% ๋›ฐ์–ด๋‚œ์„ฑ๋Šฅ์„๋ณด์˜€๋‹ค. ๋˜ํ•œ ํ•ด์„ ๊ฐ€๋Šฅํ•œ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ํ’€๋ง ๋‹จ๊ณ„์—์„œ ๊ทธ๋ž˜ํ”„๋ฅผ ์กฐ์‚ฌํ–ˆ๋‹ค.์ด๋ฅผ ํ†ตํ•ด MRSA ์–‘์„ฑ ํ™˜์ž์— ๋Œ€ํ•ด ๊ตฌ๋ณ„๋˜๋Š” ์žฅ๊ฑฐ๋ฆฌ ๋‹จ์–ดํŒจํ„ด์„ ์ฐพ์•˜์œผ๋ฉฐ ํ™˜์ž๋ณ„ ์˜ˆ์ธก์— ๊ธฐ์—ฌํ•˜๋Š” ํ™˜์ž์˜ ํ•ฉ๋™ ๊ทธ๋ž˜ํ”„๋ฅผ ๋ณด์—ฌ ์ฃผ์—ˆ๋‹ค. ์„ฑ๋Šฅ์„ ๋”์šฑ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์•„๋‹ค๋ถ€์ŠคํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๊ฒฐ๊ณผ๋Š” 85.70%๋กœ ๊ฐ€์žฅ ๋†’์€ ์„ฑ๋Šฅ์„ ๊ธฐ๋กํ–ˆ์œผ๋ฉฐ, ์ด๋Š” ๊ธฐ์กด ๋ชจ๋ธ๋ณด๋‹ค 3.71%โˆผ12.59%์˜ ํ–ฅ์ƒ ์‹œ์ผฐ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.Chapter 1 Introduction 1 1.1 Background 1 1.1.1 EHR Clinical Text Data 1 1.1.2 Current methods and limitations 3 1.2 Problem Statement and Contributions 4 Chapter 2 Related Works 6 2.1 Traditional Methods 6 2.2 Deep Learning Methods 7 2.3 Graph Neural Networks 8 2.3.1 Graph Convolutional Networks 8 2.3.2 Graph Pooling Methods 9 2.3.3 Applications of GNN 10 Chapter 3 Methods and Materials 12 3.1 Notation and Problem Definition 12 3.2 Patient Graph Construction Process 14 3.2.1 Parsing and Filtering 15 3.2.2 Word Co-occurrence Finding 16 3.2.3 Patient-level Graph Representation 16 3.3 Word Embedding 17 3.4 Model Architecture 18 3.4.1 Graph Convolutional Network layer 19 3.4.2 Graph Pooling layer 22 3.4.3 Readout Layer 24 3.5 Prediction and Loss Function 25 3.6 Adaboost algorithm 25 Chapter 4 Experiments 27 4.1 EHR Dataset 27 4.1.1 Introduction to MIMIC-III Dataset 27 4.1.2 MRSA Data Collection 28 4.2 Hyper Parameter Settings 28 4.2.1 Model Training 29 4.3 Baseline Models 30 Chapter 5 Results 32 5.1 Performance Comparisons with baseline models 32 5.2 Performance Comparisons with graph networks 33 5.3 Interpretable analysis 34 5.4 Adaboost Result 38 Chapter 6 Conclusion 40 ๊ตญ๋ฌธ์ดˆ๋ก 49 ๊ฐ์‚ฌ์˜ ๊ธ€ 50Maste
    corecore