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Abstract

Graph Convolutional Networks for

Predictive Healthcare using Clinical Notes

PIAO YINHUA

Department of Computer Science & Engineering

College of Engineering

Seoul National University

Clinical notes in Electronic Health Record(EHR) system are recorded in free

text forms with different styles and abbreviations of personal preference. Thus,

it is very difficult to extract clinically meaningful information from EHR clin-

ical notes. There are many computational methods developed for tasks such

as medical text normalization, medical entity extraction and patient-level pre-

diction tasks. Existing methods for the patient-level prediction task focus on

capturing the contextual or sequential information from clinical texts, but

they are not designed to capture global and non-consecutive information in

the clinical texts. Recently, graph convolutional neural networks(GCNs) are

successfully used for text-based classification since GCN can extract the global

and long-distance information among the whole texts. However, application of
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GCN for mining clinical notes is yet to be fully explored.

In this study, we propose an end-to-end framework for the analysis of clini-

cal notes using graph neural network-based techniques to predict whether a

patient is with MRSA (Methicillin-Resistant Staphylococcus Aureus) positive

infection or negative infection. For this MRSA infection prediction, it is criti-

cal to capture the patient-specific and global non-consecutive information from

patient clinical notes. The clinical notes of a patient are processed to construct

a patient-level graph, and each patient-level graph is fed into the GCN-based

framework for graph-level supervised learning.

The proposed framework consists of graph convolutional network layer, a graph

pooling layer and a readout layer, followed by a fully connected layer. We tested

various settings of the GCN-based framework with various combinations of

graph convolution operations and graph pooling methods and we evaluated

the performance of each variant framework. In experiments with MRSA in-

fection data, all of the variant frameworks with graph structure information

outperformed several baseline methods without using graph structure infor-

mation with a margin of 2.93%∼11.81%. We also investigated into graphs in

the pooling step to conduct interpretable analysis in population-based statis-

tical aspect and patient-specific aspect, respectively. With this inspection, we

found long distance word pairs that are distinct for MRSA positive patients

and we also showed the pooled graph of the patient that contributes to the

patient-specific prediction. Moreover, the Adaboost algorithm was used to im-

prove the performance further. As a result, the framework proposed in this

paper reached the highest performance of 85.70%, which is higher than the

baseline methods with a margin of 3.71%∼12.59%.

Keywords: Clinical notes, Graph Neural Network, Graph Pooling, Inter-

pretable Analysis

Student Number: 2018-27910
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Chapter 1

Introduction

1.1 Background

1.1.1 EHR Clinical Text Data

Electronic Health Record(EHR) is digital version of a patient’s paper chart.

EHRs are real-time, patient-centered records that make information available

instantly and securely to authorized users (https://www.healthit.gov/faq/

what-electronic-health-record-ehr). EHR contains various data and large

amount of patient information, such as demographic results, medical history,

medication and allergy history, immune status, experimental test results and

other information. There are generally two types of data in the EHR sys-

tem. One is the structured data that is neatly stored in the form of medical

codes, among which the most representative codes are diagnostic code (ICD-

10) and lab result code(LOINC), etc. The other type is the unstructured data

that refers to the patients’ entire process in the hospital that contains rich

information recorded in free text-based form. The computational framework

proposed in this thesis is for the analysis of the unstructured patient clinical
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Figure 1.1: Patient Clinical Notes in EHR System

notes.

Clinical notes in EHR contains sequential information with the time stamps

for patients. As depicted in the Figure 1.1, a patient can be represented by

several clinical notes with irregular time-order information, and each clinical

note can be represented by several sentences that are recorded by the medical

staffs. There are also abundant types in the patient clinical notes which makes

the clinical notes rich in author- and domain-specific idiosyncrasies. For exam-

ple, nursing notes are recorded by nurses, ECG notes are recorded by real-time

machines automatically, physician notes are recorded by the different doctors.

Based on all of the aforementioned characteristics of the patient clinical notes,

it is challenging to gain the insight from the patient clinical notes.
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1.1.2 Current methods and limitations

With the advent of the era of big data and artificial intelligence, there are

many computational methods in the field of natural language process(NLP)

are developed for many tasks on the clinical texts, such as medical text nor-

malization, medical entity extraction and patient-level prediction tasks. In the

patient-level prediction task, the representation learning in patient-level be-

comes the most principal part. Existing methods learn the information from

the patient clinical notes in different aspects.

Original methods used the bag-of-words model to simply represent the pa-

tient with the frequency of words, which could make insufficient use of the rich

information and result in the curse of dimensionality. With the popularity of

word embedding methods arising, some methods used the contextual informa-

tion of the clinical texts to capture the semantic information by calculating

the similarity of words and the patient representations can be mapped into a

lower dimensional space. However, the contextual information from texts lacks

of the time series information from the clinical notes.

Therefore, the sequential deep learning-based methods that are widely ap-

plied in the speech field are used for patient prediction by learning the time

series information from the input sequence data in clinical notes. Since the

patient data in EHR is represented hierarchically , most sequential models are

either based on word-level that only consider the word-order information in

single notes, or based on note-level that only consider the time-order informa-

tion among the notes. Moreover, many experiments in previous works showed

that the sequential-based model such as recurrent neural networks(RNNs) can

only capture time series information limited to a short duration. Therefore,

the sequential model can capture the local continuous semantic information

from the clinical texts.

The graph-based method, which has recently emerged in text mining, uses
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Graph Convolutional Neural networks(GCNs) to capture the graphical infor-

mation in heterogeneous graph constructed by documents where the word-

word nodes are connected by point-wise mutual information(PMI) and the

word-document nodes are connected by TF-IDF values. The semi-supervised

learning is conducted for text-based classification.

Likewise, the unstructured clinical text data can also be transformed into

a structured graph by calculating the word co-occurrences. Using the con-

structed graph, GCN can capture global and long distance information from

the clinical texts. In addition, as the relationships between nodes are preserved

in edges, current GCN-based methods can not only predict interpretable re-

sults but also can map the patient into dense and informative embedding space

where the global graph structure is preserved in patterns of connectivity.

1.2 Problem Statement and Contributions

Considering the hierarchical structure in patient-level representation and the

diverse information in the patient clinical notes, we propose a framework based

on graph convolutional neural networks to do the patient-level prediction task

by extracting the global and non-consecutive information from the patient

clinical notes. Furthermore, in order to retain the personalized characteristic

of patient data in EHR, we construct graph for each patient to explore the

individual-specific global information that contributes to the prediction.

INPUT The input of the proposed framework is the patient electronic health

record consisting of several clinical notes.

OUTPUT The output of the proposed framework is the patient label. In this

study, we predict whether the patient is infected with MRSA or not. The pa-

tient with MRSA positive result is represented by 1 and the one with MRSA

negative result is represented by 0.
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CONTRIBUTIONS

1) We proposed a graph-level graph convolutional neural network model for

predictive healthcare on clinical notes using graph neural network-based tech-

niques, which can capture patient-specific and global non-consecutive infor-

mation.

2) In the graph pooling layer, we extract patterns from graphs that contribute

to the predict results and conducting the interpretable analysis in population-

based statistical aspect and patient-specific aspect, respectively.

3) Comparing with baseline methods, our framework using the global non-

consecutive information outperforms other baseline models using the sequen-

tial or other form of information from clinical texts.

4) Applying the Adaboost algorithm to the framework for the better perfor-

mance.
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Chapter 2

Related Works

In this section, we introduce the state-of-the-art methods in text-based classi-

fication tasks and related works on patient classification using clinical notes.

2.1 Traditional Methods

Previous works on text-based classification are mainly focused on feature ex-

traction. There are two taxonomies in extracting the features from the texts.

One is hand-crafted feature engineering, which can use rule-based strategy

to construct text representations in simple way. Bag-of-words is the repre-

sentative method of hand-crafted feature engineering that represents a text

by the discrete words without order information. Some commonly used linear

classification methods are utilized for text classification using bag-of-words

representations(Poulin et al., 2014; Joffe et al., 2015; Byrd et al., 2014).

The other taxonomy in extracting the features from texts is automatic

feature engineering, which can use simple model-based strategy to construct

text representation automatically. Word2Vec (Mikolov et al., 2013) leverages
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the contextual information from the texts to map sparse and high dimensional

word vectors to a denser and lower dimensional vector space where the similar

words are mapped to the similar positions. Also the informative embedding

can be fed into the linear classification methods to do the downstream tasks.

Choi et al. (2016a), Choi et al. (2016b) use the skip-gram methods that is one

of the models in Word2Vec to encode medical codes.

2.2 Deep Learning Methods

Since the amount of clinical data is increased day by day as well as the pop-

ularity of the deep learning methods is risen recent years, more and more

research focus on the deep learning methods to apply on the clinical fields.

The most representative methods of the deep learning methods are Con-

volutional Neural Networks(CNNs) and Recurrent Neural Networks(RNNs).

Recurrent neural networks are proposed mainly for solving the time-series

data. The temporal information of time-series data can be transformed from

previous layer to the current layer by the gate units. Choi et al. (2017) first

proposed the sequential model based on RNNs to predict heart failure patients

using EHR medical codes, where the representation at each time point is com-

bined with the time stamp and fed into the model. For the clinical notes, Sen

et al. (2019) lists the different research based on RNNs using clinical notes, and

these methods can be separated to two categories to learn the sequential rep-

resentation. One is the note-level representation learning which regards each

note as an input at a time point capturing temporal dependencies between

the clinical notes, such as Dubois et al. (2017). To learn the representations in

patient-level, Sen et al. proposed HAC-RNN utilizing the sequential informa-

tion in both word and note levels, as well as hierarchical external attributes.

7



2.3 Graph Neural Networks

Inspired by the success of convolutional neural network(CNNs)(LeCun et al.,

1995) that leverages the properties of data such as images, speech, and video on

Euclidean domains(grid structure), the convolutional and pooling operations

in CNNs are redefined to apply on the graph data, such as social networks,

biological networks, to exploit the property and characteristic of the data in

non-euclidean domains.

2.3.1 Graph Convolutional Networks

As the combination of graph convolution operation and the neural networks is

more efficient and convenient, the popularity of graph convolutional networks

have grown rapidly in recent years. Graph convolutional network(GCN) is

divided into two categories, spectral-based GCN (Bruna et al., 2013; Defferrard

et al., 2016; Levie et al., 2018) and spatial-based GCN (Kipf and Welling,

2016; Gilmer et al., 2017; Hamilton et al., 2017; Veličković et al., 2017; Monti

et al., 2017; Xu et al., 2018). The spectral-based GCN method introduces a

convolutional filter from the perspective of graph signal processing to define

the graph convolution operation that is interpreted as removing noise from the

graph signal (Shuman et al., 2013; Sandryhaila and Moura, 2013; Chen et al.,

2015).

Similar to the convolution operation of a conventional CNN on an image,

spacial-based method is to define graph convolution operation based on the

spatial relationship of the nodes. In general, the central node representation

and the neighboring node representations are aggregated to update the new

representation of the central node in order to combine more graph information.

Unlike spectral-based GCN that takes a lot of time to calculate eigenvalue and

Laplacian matrix, spatial-based GCN is very simple and produces the latest
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technological achievements in the graph classification tasks recently.The steps

of spatial-based graph convolution is defined as follows:

hkv = COMBINEk(hk−1
v , AGGREGATEk(hk−1

u : u ∈ N(v))) (2.1)

where the feature hkv of node v in the k-th iteration, depends on the AGGREG-

ATEk(·) function that aggregates the feature of neighboring nodes hk−1
u (u ∈

N(v)) of node hk−1
v and the COMBINEk(·) function that combines neigh-

boring nodes and the own features to update new features. Different spatial-

based methods propose the different forms of AGGREGATEk(·) function and

COMBINEk(·) function, such as Hamilton et al. (2017), Veličković et al.

(2017), Xu et al. (2018) and so on.

2.3.2 Graph Pooling Methods

In order to construct a model of the computational capability and the inter-

pretability of the graph network, it is essential to downsample the graph and

reduce the graph size. There are fewer graph pooling methods than graph con-

volution methods. Previous work (Dhillon et al., 2007) used topology-based

graph coarsening algorithm through the spectral clustering, which coarsens

the graph by the feature decomposition resulting in the high computational

complexity .

Global pooling methods do simple operation, such as add, mean, max

process or neural network, to pool all the nodes into one dimensional vector

space. Since all of the node representations are pooled at once in global pooling

methods. In addition, Set2Set(Vinyals et al., 2015) and Sortpool (Zhang et al.,

2018) use a bit more complex methods, such as attention mechanism and

ranking the scores, to conduct the global pooling process.

Inspired by the pooling methods in CNNs, the hierarchical pooling meth-

ods are transferred into the graph pooling methods in which the node repre-
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sentations can be learned layer-by-layer using both node features and graph

structures. It is important to capture hierarchical information of the graph

structure in the pooling step. Diffpool(Ying et al., 2018) is an end-to-end

method that the soft assignment node matrix calculated by GCN is leveraged

to divide fixed-size node clusters, and then each node in the pooled graph is

represented by aggregating all nodes in each cluster. However, the computa-

tional complexity reaches O(n2). Recently, SAGPool proposed by Lee et al.

(2019). not only considers the node features and graph structures but also

greatly reduces the computational complexity using the self-attention mecha-

nism(Vaswani et al., 2017).

2.3.3 Applications of GNN

The applications of the graph neural networks has resulted in outstanding

performance in the various fields, such as recommendation systems(Berg et al.,

2017; Yao et al., 2018; Monti et al., 2017), chemical researches(You et al.,

2018; Zitnik et al., 2018), natural language processing(Bastings et al., 2017;

Yao et al., 2019; Peng et al., 2018).

In the natural language processing, TextGCN proposed in Yao et al. (2019)

constructed the heterogeneous graph to classify the documents by capturing

global mutual information of the documents , where the edge weight between

word node and word node are calculated by co-occurrence positive point-wise

mutual information and the edge weight between word node and document

node is represented by TF-IDF. The framework of training graph convolu-

tional neural network is constructed by the semi-supervised learning for the

document node classification. However this framework is not satisfied to the

patient graph data with high idiosyncrasy from patient to patient.

Recently Choi et al. (2019) proposed a framework to learn the graphical

structure from EHR data with graph convolutional transformer, which lever-

10



ages prior knowledge and graph convolutional networks to initialize the first

step and directs the transformer to do the link prediction between two medical

codes. As can be seen, graph neural network models have not been applied

to the clinical texts, which is not only to transform the text contents to the

graph but capturing global and patient-specific information from the graph.
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Chapter 3

Methods and Materials

3.1 Notation and Problem Definition

Throughout this paper, we use uppercase characters to denote matrices and

lowercase characters to denote vectors. We represent the set{1, · · · , n} by

[n] in the rest of the paper. Unless particularly specified, the notations used

in this paper are illustrated in Table 3.1. Now we define the minimal set of

definitions required to understand this paper.

Definition 1.(Clinical Notes) Clinical notes for each patient are represented

as a sequence of the text notes. The t-th patient P (t) is represented by a se-

quence of |d(t)| clinical notes. For patient P (t), each note d
(t)
i contains |d

(t)
i |

words, in which w
(t)
ij denotes the j-th word in i-th note from t-th patient,

where j ∈ [|d
(t)
i |] and i ∈ [|d(t)|].

Definition 2.(Graph) A graph is represented as G = {V,E} where V (|V | = n)

is the set of vertices or nodes(we use nodes throughout the paper), and E is

the set of edges. Let vi ∈ V to denote a node and eij = (vi, vj) ∈ E denote

an edge from vi to vj . Let X ∈ R
n×m be a matrix containing all n nodes

12



Table 3.1: Commonly Used Notations

Notations Descriptions

P (t) t-th patient in EHR dataset.

d
(t)
i i-th note in t-th patient.

w
(t)
ij j-th word in i-th note from t-th patient.

|P (t)| the number of words in t-th patient.

|d(t)| the number of notes in t-th patient.

|d
(t)
i | the number of words in i-th note from t-th patient.

N(v) the neighbors of a node v.

n the number of nodes, n = |V |.

m the dimension of a node feature vector.

xv the feature vector of the node v.

hv ∈ R
d the hidden feature vector of node v.

hG ∈ R
2d the hidden feature vector of graph G.

X ∈ R
n×m the node feature matrix of a graph.

X(k), H ∈ R
n×d the node feature matrix in k-th graph convolutional layer.

Hout ∈ R
⌈rn⌉×d the node feature matrix in pooling layer.

W,P,Q,Θ, θ, ǫ Learnable model parameters.

with their features, where m is the dimension of the feature vectors, each row

xv ∈ R
m is the feature vector of v. The adjacency matrix A is a matrix with

Aij = 1 if eij ∈ E and Aij = 0 if eij /∈ E.

Definition 3.(Patient Graph) A patient graph is represented as G(t) = {V (t),

E(t)} where V (t)(|V (t)| = n) is the set of words from the records of patient

P (t), and E(t) is the set of co-occurrences of these words from the records of

the patient, and the patient graph is undirected and unweighted. If two nodes

are connected, there is a pair of edge with inverse in the undirected graph

13



Figure 3.1: Patient Graph Construction Process

where the adjacency matrix is symmetric.

The goal is to learn a model that predicts the label y(t) belongs to {0, 1}

for a new patient graph given the clinical note set for the patient. True label

y(t) indicate the positive or negative case of infection. Since we focus on a

single patient in this study, we omit the superscript (t) throughout the paper.

3.2 Patient Graph Construction Process

In order to leverage graphical structure from the patient clinical notes, a pa-

tient representation can be viewed as a patient graph. In this section, we

14



introduce how to construct the patient graph that contains non-consecutive

and long distance semantic information by using patient clinical notes. As

shown in Figure 3.1, there are 4 steps in constructing the patient graph. First,

parsing and filtering the raw text of patient clinical records and finding the

word co-occurrences for each clinical note. After constructing note-level graphs

using the word co-occurrences for the patient, we combined all these note-level

graphs to construct a patient-level graph to represent the patient.

3.2.1 Parsing and Filtering

In order to learn more effective structural information from the graphs and

achieve better performance in predicting the patient labels, the words from

all notes are filtered by fold change value in the whole data set. Formally, We

calculate the global frequency of each word both from positive samples and

negative samples. The words are ranked by fold change value following the

formulation:

FC(wk) =

#Cpos(wk)
#Cpos

#Cneg(wk)
#Cneg

, (3.1)

where Cpos and Cneg denote the total number of windows sliding on the posi-

tive and negative samples, respectively. Cpos(wk) and Cneg(wk) represent the

number of windows in positive and negative samples where the word wk oc-

curred. Top 30% and bottom 30% words are filtered from the global word set

in the whole samples, which means that the filtered words can better distin-

guish the positive and negative samples than other words. In this way, the

word set from clinical notes is filtered into a smaller size in order to a better

performance of prediction.
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3.2.2 Word Co-occurrence Finding

We first construct graph for each clinical note. In order to construct graph

using word co-occurrences, we apply the sliding window algorithm that is

commonly used in the text-to-graph transformation. A fixed-size sliding win-

dow is pre-defined and used for sliding on the clinical note. As shown in the

second step in Figure 3.1, for example, [“VOICE”, “AUDIBLE”], [“AUDI-

BLE”, “ABLE”] and [“VOICE”, “ABLE”] cooccurred in the 3-size window

from the first note. Regarding each word, that is remained in the previous

filtering step, as a node in the graph, we construct an edge between two nodes

if they co-occur in the current window. Using these co-occurrences of words,

a graph can be constructed in note-level, which can be represented by ：

Gi = {Vi, Ai}, (3.2)

where i ∈ [|d|], and the clinical note di can be viewed as a graph Gi consisting

of |di| of nodes with an adjacency matrix Ai that describes the connections

between the nodes from the clinical note di.

3.2.3 Patient-level Graph Representation

The motivation of this paper is to capture patient-specific and non-consecutive

information from the patient clinical notes. Moreover, the graph construction

is already known to connect long distance information. Therefore, aggregating

all of these note-level graphs constructed in the previous step for the patient

can not only extract global non-consecutive information among the clinical

notes from the patient but can learn the patient-specific characteristic feature

by training samples one by one. Thus, we aggregate the note-level graphs to

a patient-level graph that is undirected and unweighted, following the formu-

lation:

G = [G1, ..., G|d|] = {V,A}, (3.3)
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where the patient can be viewed as a graph G consisting of the set of words

V (|V | = |P |) with an adjacency matrix A that describes the connections

between the nodes from patient P , which aggregates the all of the information

from the clinical notes of the patient P into one patient-level graph G.

3.3 Word Embedding

Before introducing the graph neural networks for the patient clinical graph,

as the input graph constructed in the previous section is composed of co-

occurrences of words that are represented by real-valued vectors where se-

mantically similar words are mapped close to each other. Therefore, we learn

the word embedding using the skip-gram model of the ‘word2vec’(Mikolov

et al., 2013), which trained prior to end-to-end training model separately.

As introduced in the related works chapter, the main progress of word2vec

model is to map each raw representation(one-hot encoding) to a denser embed-

ding space where implicitly contains the similarity among words by training a

predictive machine learning model. Intuitively, given a target word wi from a

sentence S = [wi−2, wi−1, wi, wi+1, wi+2], skip-gram method regards the target

word wi as the input to predict the contextual words (wi−2, wi−1, wi+1, wi+2)

of the target words wi which is depicted in Figure 3.2.

In order to further accelerate the training, we apply the training tricks of

hierarchical softmax and negative sampling. As a result, words are mapped to

vectors using xi = θwi
where θwi

∈ R
m are the learned embedding vectors of

word wi from the skip-gram model. And each patient graph can be represented

by

G = {X,A}, (3.4)

where X ∈ R
n×m and xi ∈ X.
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Figure 3.2: Word2Vec(skip-gram model)

3.4 Model Architecture

In this section, we introduce the model architecture that is mainly based on

graph neural network. As depicted in Figure 3.3, given the patient graph G

that is constructed in the previous section, the model proposed in this pa-

per conducts supervised learning in an end-to-end fashion through the graph

convolution layer, graph pooling layer, and readout layer:

1) The graph convolutional layer is used to embed the high-level represen-

tations of the nodes where the graph representation is transformed to Gconv.

2) The graph pooling layer acts as a downsampling function, which coarsens

graph into a smaller graph Gpool with more essential information of the pa-

tients.

3) In order to implement the construction of the personalized model for

patients, we perform graph-level prediction using the readout layer to aggre-

gate the node representations in the graph into one dimensional embedding

vector hG to represent the graph.

Finally, multi-layer perceptrons and softmax layers are applied to graph-

level representation and we can build an end-to-end framework for the graph
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Figure 3.3: Model architecture

classification. Details of the methods that are used in each module are intro-

duced in turn as below.

3.4.1 Graph Convolutional Network layer

We apply the graph convolutional networks that are mentioned in the related

works to the patient graphs where the node representations can message each

information to each other, aggregate information from each other and up-

date the representations. we update the node representations and transform

the graph G to a new representation Gconv by using vanilla GCN(Kipf and

Welling, 2016) and GIN(Xu et al., 2018), respectively.

Vanilla Graph Convolutional Network

The first methods is vanilla GCN that bridged the gap between spectral-based

methods and spatial-based methods. Since it is proposed, spatial-based meth-
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Figure 3.4: 1-layer spatial-based GCN. For example, the representation of

node“ENGLISH” is aggregated and updated with the representations from its

1-hop neighbor nodes(“ABLE”, “SPEAK”, “CLEAR”, “LUNGS”). Output pa-

tient graph is the transformed graph with hidden node features after 1-layer

GCN.

ods have rapidly developed due to their compelling efficiency and versatility.

Vanilla GCN uses a first-order approximation to simplify calculations based

on the convolution of spectral graphs (Levie et al., 2018) for network models

that directly operate on graph-structured data and proposes a simple and ef-

fective propagation method through layer-by-layer. For a one-layer GCN, the

new m-dimensional node feature matrix X(1) ∈ R
n×m is computed as

X(1) = σ(ÃX(0)W0) (3.5)

where Ã = D−
1
2AD−

1
2 is the normalized symmetric adjacency matrix and

W0 ∈ R
m×d is a weight matrix, d is the size of the convolution filter. σ is an

activation function. A is adjacency matrix where the diagonal elements are set

to 1 as every node is assumed to be connected to itself. Degree matrix D can

be calculated from the graph where Dii =
∑

j Aij .

Through the first-order approximate simplification method, a single-layer

vanilla GCN can be used to process information on the 1-hop neighbors in
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the graph as shown in the Figure 3.4. To deal with higher-order neighbors, a

multi-layer vanilla GCN can be stacked to capture the localized feature of the

graph network to build node representations from the k-hop neighborhood of

each node:

X(k) = σ(ÃX(k−1)Wk−1) (3.6)

The graph representation G is transformed through the vanilla GCN layer as

follow:

Gconv = GCN(G = {V,A}) = {X(k), A} (3.7)

Graph Isomorphism Network

Spatial-based GCN methods are also called Massage Passing Neural Net-

work(MPNN), which update node representations by recursively iterating and

combining the first-order neighborhood representations to increase the size of

receptive field. As shown in the related works, different MPNN-based methods

propose different forms of AGGREGATEk(·) and COMBINEk(·).

However, in terms of classifying the graphs that have different graph struc-

tures, the embedding learned by previous MPNN-based methods proved to be

incapable of effectively capturing the different information from the different

graph structures. Besides, there are definitely differences among the structures

of patient graphs that we constructed before, so we used the simple and pow-

erful Graph Isomorphism Network(GIN) proposed by Xu et al., which proved

that Weisfeiler-Lehman(WL) test(Douglas, 2011) is powerful and proved that

if AGGREGATEk(·), COMBINEk(·) are injective functions, then GCN can

be as powerful as WL test. GIN adjusts the weight of the central node by a

learnable parameter ǫk and performs graph convolution by

hkv = MLP k((1 + ǫk) · hk−1
v +

∑

u∈N(v)

hk−1
u ) (3.8)

where MLP (·) represents a multi-layer perceptron combined with the process

of summing up the neighboring node features can fit the formulation to an
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Figure 3.5: Self-Attention Graph Pooling

injective function.

The graph representation G is transformed through the GIN layer as follow:

Gconv = GIN(G = {V,A}) = {X(k), A}, (3.9)

where X(k) ∈ R
n×d is the matrix of n node features hkv ∈ R

d.

3.4.2 Graph Pooling layer

In order to reduce the graph size and find more significant patterns in the

graph, we use self attention graph pooling proposed in Lee et al. (2019), which

can use node features and topology to extract hierarchical representations with

a reasonable complexity of time and space. As shown in the Figure 3.5, we first

calculate self-attention score Z ∈ R
n×1 using graph convolution operation. if
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we use the vanilla GCN , the node scoring matrix is calculated by

Z = σ(ÃHΘatt) (3.10)

where σ and Ã are the same meaning as mentioned in previous section. H =

X(k) ∈ R
n×d is the output matrix in k-layer convolution operation with n

nodes and d dimensional features, and Θatt ∈ R
m×1 is the only parameter of

the pooling layer.

The graph convolution operation in the SAGPool leverages the graph struc-

ture information to assign score to each node for pooling which takes not only

node feature but also graph structure into consideration to coarsen the graph

that preserves the graph structure information. We apply three different GCNs

to the SAGPool model which is spectral-based GCN, vanilla GCN and GIN

respectively and performance comparisons are shown in the Chapter 5.

According to the attention value Z to select nodes that have higher scores

by adopting the node selection method of Gao and Ji (2019). If the pooling

ratio r ∈ (0, 1] is to determine the number of nodes to keep in next layer, the

top ⌈rn⌉ nodes are selected based on matrix Z by

idx = top-rank(Z, ⌈rn⌉), Zmask = Zidx (3.11)

where top-rank is the function that returns the indices of selected nodes and

then indexing the selected nodes to the feature attention mask Zmask. Finally,

an input graph is pooled by the operation notated as masking as follow:

H ′ = Hidx,:, Hout = H ′ ⊙ Zmask, Aout = Aidx,idx (3.12)

where Hidx,: is the node-wise indexed feature matrix, ⊙ is the broadcasted

element-wise product, and Aidx,idx is the row-wise and col-wise indexed adja-

cency matrix. Hout and Aout are the new feature matrix and the corresponding

adjacency matrix after pooling, respectively.
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Figure 3.6: Comparisons about three aggregation methods in graph neural

networks: Sum, Mean, Max from Xu et al. (2018).

The graph representation Gconv is coarsened through the SAGpooling layer as

follow:

Gpool = SAGPool(Gconv) = {Hout, Aout}, (3.13)

where Hout ∈ R
⌈rn⌉×d is the matrix of ⌈rn⌉ node features.

3.4.3 Readout Layer

Inspired by the theorem proposed in Xu et al. (2018) about graph-level readout

functions, as shown in the Figure, the color of nodes represents the node

feature and three aggregations are ranked by their representational power. The

sum aggregation captures the most important information of graph structure

than mean and max aggregation methods. The sum aggregation captures the

full multi-set, however, the mean captures the proportion or distribution of

elements of a given type and the max aggregation ignores multiplicities(reduces

the multi-set to a simple set). Therefore we apply the concatenate the results

using sum aggregation and mean aggregation, which can globally capture the

structural information from graph and distribution information from node

feature in the same time.

hG = CONCAT (sum(hv|v ∈ Gpool)|max(hv|v ∈ Gpool)) (3.14)
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where hv ∈ R
d denotes the hidden feature vector of node v after the pooling

layer, and hG ∈ R
d×2 denotes the one dimensional embedding vector rep-

resenting the graph G which can be used in the downstream task, such as

classification, clustering, etc.

3.5 Prediction and Loss Function

The coarsened one-dimension embedding vector hG can be seen as a dense

embedding for patient graph G. Given the vector hG of the graph G, the

embedding vector hG for graph G is then passed to MLPs, which outputs

scores Ypred ∈ R
C for each class:

Ypred = PReLU(QhG), (3.15)

where P ∈ R
2d×C , Q ∈ R

2d×2d, C is the number of the patient classes. Finally,

given the ground truth label Y and outputs scores Ypred, we minimize the

binary cross-entropy loss between the predicted labels and ground truth labels,

shown as follow.

Loss = −(Y log(ypred) + (1 − Y )log(1 − ypred)) (3.16)

3.6 Adaboost algorithm

We also apply the ensemble model to our model in order to capture more

important information and improve the model performance. Adaboost(Hastie

et al., 2009) is an iterative algorithm, and the core idea of Adaboost is to

train different classifiers(weak classifiers) against the same training set, and

then combine these weak classifiers to form a stronger final classifier.

As shown in Figure, we view a GNN model that is introduced previously as

a weak classifier. If there are k(k=3) weak models constructed in Adaboost,

we calculate the error rate ek for each weak model and using error rate ek
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Figure 3.7: Overview of Adaboost Algorithm

calculate the weight αk of k-th weak model:

ek = P (Mk(pi) 6= Yi) =
N∑

i=1

wkiI(Mk(pi) 6= Yi) (3.17)

αk =
1

2
log

1 − ek
ek

(3.18)

where Mk denotes the k-th weak model in the iteration, pi denotes the input

graph data of i-th patient and wki represents the patient pi’s weight in the

k-th weak model.

In order to input the sampled the patient data to next weak model, the pa-

tient’s weight wk+1, i is updated by increasing the weight of incorrectly pre-

dicted patient and decreasing the weight of correctly predicted patients in the

previous weak model Mk.

wk+1,i =
wk,i

Zk

exp(−αkYiMk(pi)), (3.19)

where Zk is a factor for normalization. After several iterations, the results

from each weak model are weighted summed to a final result of Adaboost.

f(p) = sign(
3∑

k=1

αkMk(p)) (3.20)
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Chapter 4

Experiments

4.1 EHR Dataset

4.1.1 Introduction to MIMIC-III Dataset

In order to evaluate our framework, we use the real-world data from the

publicly-available critical care database MIMIC III (Johnson et al., 2016).

MIMIC-III integrates de-identified, comprehensive clinical data of patients ad-

mitted to the Beth Israel Deaconess Medical Center in Boston, Massachusetts.

It contains all unstructured clinical notes from caregivers of 45,000 patients.

The resource of clinical notes is obtained from the table named ‘NOTE-

EVENTS’ including nursing and physician notes, ECG reports, radiology re-

ports and discharge summaries. We use notes from all categories except for

discharge summaries that contains the information at the end of the hospital

stay, which allows the trained model to predict in real-world applications.
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4.1.2 MRSA Data Collection

Staphylococcus aureus is one of the most common causes of Hospital-Acquired

Infections(HAIs), and Methicillin-Resistant Staphylococcus Aureus(MRSA) is

one antibiotic-resistant strain of this bacteria. MRSA infections may result in

serious complications including sepsis and death. Therefore we experiment

with prediction problem using MRSA cohorts extracted from the MIMIC-III

dataset.

To identify MRSA-positive patients, we extract the microbiology test as-

sociated with the organism 80293(MRSA), found in the Microbiology Events

table. Consequently, we extract all 1,228 patients who have a record of this

test as our MRSA-positive patients. As the majority of patients in MIMIC

dataset do not contract MRSA, we randomly subsample patients who have no

record of a test for organism 80293 as MRSA-negative patients that has the

same size as MRSA-positive patients.

Before training the model, we conduct the preprocessing for the raw MRSA

data. We calculate the mean number of notes over all patients as the max

length of notes to discard the first notes for who has more notes based on

Hartvigsen et al. (2018) and Sen et al. (2017), which revealed that the symp-

toms should appear nearing discharge because MRSA is caused by bacteria

with short incubation periods. In addition, patients whose graph size is less

than 10 are filtered in order to reduce noise of the model performance. The

statistical information for raw and preprocessed MRSA dataset are shown in

Table 4.1, respectively.

4.2 Hyper Parameter Settings

The clinical notes are split into a set of words using NLTK package(Loper and

Bird, 2002), and stop words are removed. Meanwhile, the words are trans-
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Table 4.1: Statistic of MRSA Dataset

Statistic MRSA(raw) MRSA(preprocessed)

# Notes/Patient
Mean 16 16

Median 20 20

# Unique Words/Patient
Mean 549 114

Median 546 110

# Unique Words 32,256 10,336

# Patients 2,456 2,398

formed into lowercase and punctuation is removed from clinical notes. we use

5 fixed-length window sliding the clinical texts to find word co-occurrences.

And the input node embedding is obtained by leveraging all notes from train-

ing set to pre-train the Word2Vec model where the skip window size is set to

1, number of skips to 2 and the number of negative examples to 64.

4.2.1 Model Training

To achieve the optimal prediction results, the hyper-parameters during train-

ing the model are set as follows: the dimension of word embedding is set to

32, the dimension of graph convolution filter is set to 64, the number of layers

of graph convolution and graph pooling is set to 2, the number of MLP layers

is set to 2, dropout probability is set to 0.5 and batch size is set to 32. We

use the Adam optimizer with a learning rate decay strategy where an initial

learning rate is set to 0.001 and the reduce factor is 5e-4 and the training is

stopped when the loss of validation set does not decrease anymore. The size

rate of training set, validation set and test set is split into 8:1:1 and we report

mean and standard deviation of the results over 5 runs with 5 different random

seeds.
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4.3 Baseline Models

In general, We design the variant models based on aforementioned framework

to show the performance of different combinations of graph convolution opera-

tions and graph pooling methods. Besides, we also implement state-of-the-art

methods as baselines to compare with our framework.

• Bag-Of-Word Average embedding + MLP: We combine patient

notes into one document. Using all unique words that filtered in the

step of parsing and filtering (Table 4.1), a bag-of-words representation

is created by the word frequency in patient notes. And we average the

representations with normalization. These representations are then fed

into MLPs that has the same construction as the MLPs in our framework.

• Word2Vec + MLP: We concatenate the word embedding that is

learned in Word2Vec and use the sum aggregation and mean aggregation

to represent a patient, which has the same process as the readout layer

does in our framework. Also, the same construction of MLPs are then

trained. This model will be the basis to evaluate whether the patient

graph structure learned by our framework is useful at all.

• Word2Vec + LSTM: We concatenate the learned word embedding

in the same way to represent each note of a patient. For each patient,

we set the max length of notes to 20 and pad the sequences up to 20

with vectors of 0’s for the patients whose note length is fewer than 20.

These sequences consisting of note-level representations are then fed into

a LSTM for final prediction.

• GCN w/o pooling: From our framework, we combine two-layer vanilla

GCNs and readout layer to obtain the patient graph representations and

fed them into MLPs to do the prediction.
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• GIN w/o pooling: From our framework, we combine two-layer GINs

and readout layer to obtain the patient graph representations and fed

them into MLPs to do the prediction.

• GIN w/ SAGPool: We implement the hierarchical pooling architec-

ture from the recent hierarchical pooling study. There are two blocks

each of which consist of GIN and graph pooling methods based on Self

Attention Pooling. We conduct different variant pooling methods based

on SAGPool where the scoring matrix is calculated by spectral-based

GCN method and spatial-based GCN methods as follows:

– Pool(GraphConv)(default): GraphConv (Morris et al., 2019) is

spectral-based and default method that is leveraged to calculate

scoring matrix in proposed SAG Pooling method.

– Pool(Vanilla GCN): We replace spectral-based GraphConv with

Vanilla GCN to calculate scoring matrix in SAG Pooling.

– Pool(GIN): GIN is leveraged to calculate scoring matrix in SAG

Pooling.

The outputs of readout layer are fed into the MLPs for classification.
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Chapter 5

Results

5.1 Performance Comparisons with baseline models

MLP with pre-trained word embedding outperforms the one with bag-of-words

word embedding which reveals that pre-trained embedding consisting of word

similarity information is more important than bag-of-words embedding that

contains discrete and simple frequency information.

LSTM showed worst performance among the baseline models and the rea-

son seems to be that the sequential model is sensitive for input data with

irregular-length that needs to be padded in a fix-length sequence before being

fed into the model, which will lose a part of information in representing the

note of a patient. Therefore it is proved that sequential information can not

be captured easily from the patient clinical text data.

Since the architecture used in MLP is the same as the one used in graph-

based methods, the only one difference between MLP and graph-based meth-

ods is that graph-based methods leverage the patient graph structure informa-

tion for prediction and MLP predicts patient label without graph structure in-
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Table 5.1: Performance comparison of baseline methods and graph-based

methods(Test-set AUC). (Input embedding is pre-trained by Word2Vec except

for “MLP+BOW”.)

Type Methods AUC(mean±std)

Baselines

MLP+BOW 0.7982±0.0165

MLP 0.8145±0.0190

LSTM 0.7475±0.0300

GCNs
Vanilla GCN 0.8157±0.0304

GIN 0.8327±0.0161

GIN w/ SAGPool

Pool(default) 0.8258±0.0330

Pool(Vanilla GCN) 0.8255±0.0222

Pool(GIN) 0.8492±0.0136

formation. As the performance comparison between the MLP and any method

of graph-based methods shown in the results of ‘GCNs’ in the Table 5.1, the

graph structure information learned in graph-based methods does contribute

to the patient prediction.

5.2 Performance Comparisons with graph networks

In general, the graph-based methods outperform baseline methods which seems

to indicate that the global non-consecutive and patient-specific information

from constructed patient graph in our work is important than other forms of

extracted information, such as word similarity information, local sequential in-

formation. To evaluate the different performance by verifying the composition

of graph-based methods and discover the best graph-based model, we con-

duct experiments for graph-based framework with different graph convolution

operations and graph pooling methods.
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We first evaluate the graph-based methods with different graph convolution

operations, feeding the input graph into vanilla GCN and GIN, respectively.

From the results of ‘GCNs’ in the Table 5.1, we can know the GIN outperforms

vanilla GCN. The only one difference between GIN and vanilla GCN is that

the GIN has an additional MLP layer that can preserve the graph structure

comparing with vanilla GCN, therefore, it proved the patient graph structure

is important to the prediction once again.

Since GIN can better capture the graph structure information than vanilla

GCN, we select GIN as the graph convolution operation in the model archi-

tecture, based on which we evaluate the variant graph pooling methods based

on SAGPool. In the basic SAGPool method, the authors leverage spectral-

based graph convolution operation to calculate the node scoring matrix which

can take graph structure into consideration while pooling the graph. From

the result of “GIN w/ SAGPool” in the Table 5.1, the Pool(GIN) outperform

other pooling methods. The main reason is that the GIN can better preserve

the graph structure information and leverage it into pooling step. As a result,

the down sampled the graph contains more distinguished nodes preserving the

graph structure than other methods.

5.3 Interpretable analysis

The main reason why the graph-based methods are popular recently is that the

graph-based methods, such as graph convolutional neural network, can learn

the insight information from graph structure where the relationship between

nodes are retained in edges. Especially for coarsened graph from well per-

formed graph pooling layers, it is intuitive to interpret the remained patterns

of connectivity. Likewise, we can also interpret our best performed framework

that is consists of GIN ans GIN-based SAG pooling. The detailed steps of

interpretation are as follows:
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Figure 5.1: PCA result of MRSA truly predicted patients: the orange scat-

ters represent MRSA positive patients and the blue scatters represent MRSA

negative patients.

We save the aforementioned best performed model parameters at the point

that test auc is 0.8518, and after that, we only use the truly predicted patients

from test patient dataset for interpretable analysis among which the number

of positive patients is 94 and the number of negative patients is 92. Based on

the 186 patients, we first extract the 1 dimensional hidden vectors from the

read out layer and feed them into the Principle Component Analysis(PCA).

As shown in the Figure 5.1, the MRSA positive patients(orange scatters) and

the MRSA negative patients(blue scatters) are generally split into two parts,

and the MRSA negative patients are mapped into similar space but MRSA

positive patients are not.

Nonetheless, we extract the graphs in the last layer of the SAG pooling for

MRSA positive and negative patients, respectively. In order to detect the inter-

pretable patterns, for each class of population, we count the frequency of the

node pairs (a.k.a. word co-occurrence pairs) and assign the proportion value
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Figure 5.2: Frequent Node Pairs in MRSA Positive(left) and Negative(right)

Patients.

for each node pair based on which the node pairs are ranked. As a result, the

node pairs whose proportions are more than 20% are filtered and shown in Fig-

ure 5.2 for positive and negative patients. In general, the node pairs that meet

the conditions in positive patients are more than negative patients and there

are dozens of node pairs whose proportions exceed 40% in positive patients

but few of such node pair showed in negative patients, both of which indi-

cate that the representative patterns are detected in positive patients and not

in negative patients. The interpretation for why the representative patterns

can hardly be detected in negative patients is that we randomly subsample

patients who have no record of positive infection, which make the negative

patient data more diverse and complex than positive patients.

For further interpretable analysis for MRSA positive patients, we extract

more representative node pairs whose proportions are more than 50% which

can reflect more than half of the populations. As depicted in the Figure 5.3,

co-occurrences among more than 10 nodes play the significant role in predict-

ing the MRSA positive patients. Additionally, we investigate the meanings of

related words as shown in the Table 5.2. The ‘cavity’ is a hole that can grow
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Figure 5.3: Frequent Node Pairs in MRSA Positive Patients(more than 50%).

bigger and deeper over time and MRSA commonly colonized in the nasal cav-

ity. And the ‘pressur’ seems to denote the pressure ulcer that is the major

reservoir of MRSA in hospitals (Pirett et al., 2012). Ganji et al. (2019) re-

ported the MRSA pericarditis causing cardiac tamponade from the radiology

notes showing that large pericardial effusion with right ventricle. Also Ba-

jraktari et al. (2009) reported a case study about left ventricular and mildly

thickened mitral valve leaflets. ‘tr’, ‘ar’ are also reported in Chesi et al. (2006)

and Sundaragiri et al. (2015). All of the investigations above can indicate that

the key words extracted from our framework are meaningful and have rela-

tionship with the MRSA.

Since our framework is trained based on graph-level supervised learning,

the previous patterns that are extracted from population-based interpretable
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Table 5.2: Investigations on key Words extracted from MRSA Positive Patients.

Word Meaning reference on MRSA

caviti Cavity Colonization of MRSA

mildli Mildly Related to radiology notes

pressur Pressure Ulcers Pirett et al. (2012)

rv Right Ventricle Ganji et al. (2019)

lvot Left Ventricular Outflow Tract Bajraktari et al. (2009)

tr Tricuspid Regurgitation Chesi et al. (2006)

hypertens Hypertension Hypertension caused by MRSA

ar Aortic regurgitation Sundaragiri et al. (2015)

analysis are inherent important, the patient-specific patterns also contribute

to the patient-level prediction. We example the graphs distilled in the last

SAG pooling layer from 2 MRSA positive patients to show what else nodes

and edges are preserved to do the individual-specific predictions. From the

Figure 5.4, the patient-specific coarsened graph not only contains the nodes

that are extracted from the previous population-based statistics but also con-

tains the nodes with personalized attribute for the patient and both of which

contribute to final prediction for the patient.

5.4 Adaboost Result

In order to capture more important information and improve the model per-

formance, we apply the Adaboost algorithm to the framework consisting of

GIN and GIN-based SAG pooling that best performed among the all results

of variant graph-based frameworks. Each GIN w/ SAGPool(GIN) is regarded
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Figure 5.4: Graphs of 2 MRSA positive patients distilled in the last pooling

layer.

Table 5.3: Performance comparison of best performed framework without Ad-

aboost algorithm and with Adaboost algorithm(Test-set AUC).

Methods AUC(mean±std)

GIN w/ SAGPool(GIN) 0.8492±0.0136

Adaboost(GIN w/SAGPool(GIN)) 0.8570±0.0099

as a weak classification and the number of weak classification is set to 20.

Adaboost algorithm weighted sum the results from each weak classification

to return a final result, and we also add an annealing learning rate multi-

plied to the weight with the iteration increasing to converge the model. As

depicted in Table 5.3, the Adaboost algorithm combined with our framework

has 1∼2% stable improvement, which indicates that the mechanism of the

Adaboost algorithm aggregates more distinguished information from different

weighted samples by which the more significant patterns could be captured

and contribute to better prediction performance.
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Chapter 6

Conclusion

In this section, we will sum up the works in this paper and set forth the future

works for further improvement.

1. An end-to-end framework for the analysis of clinical notes using graph

neural network-base techniques is proposed to predict whether a patient

is with MRSA positive infection or negative infection, which can capture

the patient-specific and global non-consecutive information from patient

clinical notes.

2. Various settings of the GCN-based framework with various combina-

tions of graph convolution operations and graph pooling methods are

evaluated, all of which with graph structure information outperformed

several baseline methods without graph structure information. Moreover,

our framework can easily reach the better performance without the re-

striction of the note length like sequence-based methods do. Unlike the

common deep learning methods, our framework can preserve the graph

structure while prediction which makes it interpretable for the results.
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3. The framework consisting of GIN as the graph convolution operation and

GIN-based self attention graph pooling as the graph pooling method out-

performed other frameworks with GCN-based methods, which indicates

that learning and preserving the structure information is important to

predict the patients.

4. We used the graphs from the pooling layer and leverage them to conduct

interpretable analysis from the population-based statistical aspect and

patient-specific aspect in MRSA positive patients and MRSA negative

patients, respectively.

5. We also apply the Adaboost algorithm that belongs to the ensemble

classification to our best performed framework and the framework per-

formance with Adaboost algorithm stably improves 1-2% compared with

the framework without Adaboost algorithm.

Since the patient-level graphs are constructed only depending on the frequency

information without the time information, it would be studied in the future

work. The graph pooling methods still have room to improve which would be

another direction in our future work.
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국문초록

전자 건강 기록은 디지털 형태로 체계적으로 수집된 환자의 건강 정보다. 전자

건강 기록이 환자의 상태를 표현 하는 단어들로 구성된 문서의 집합이기때문에

자연어 처리 분야에 적용되는 다양한 기계학습적 방법들이 적용되어왔다. 특히,

딥러닝 기술의 발전으로 인해, 이미지나 텍스트 분야에서 활용 되던 딥러닝 기술

들이생명정보및의학정보분야에점차적용되고있다.하지만,기존의이미지나

텍스트데이터와는 다르게, 전자 건강 기록 데이터는 작성자 및 환자 개개인의 상

태에 따라서, 데이터의 환자 특이성이 높다. 또한, 유사한 의미를 지니는 건강

기록들간의 상관관계를 고려해야 할 필요가있다. 본연구에서는 전자 건강 기록

데이터의 환자특이성을 고려한 그래프 기반 딥러닝 모델을 고안하였다. 환자의

전자 건강 기록 데이터와 의료 문서들의 공통 출현 빈도를 활용 하여 환자 특

이적 그래프를 생성하였다. 이를 기반으로, 그래프 컨볼루션 네트워크를 사용하

여환자의병리학적상태를예측하는모델을고안하였다.연구에서사용한데이터는

Methicillin-Resistant Staphylococcus Aureus(MRSA)감염여부를측정한데이

터이다.고안한그래프기반딥러닝모델을통해환자의내성을예측한결과,그래

프정보를 활용 하지 않은 기존모델들 보다 2.93%∼11.81% 뛰어난성능을보였다.

또한 해석 가능한 분석을 수행하기 위해 풀링 단계에서 그래프를 조사했다.이를

통해 MRSA 양성 환자에 대해 구별되는 장거리 단어패턴을 찾았으며 환자별 예

측에 기여하는 환자의 합동 그래프를 보여 주었다. 성능을 더욱 향상시키기 위해

아다부스트 알고리즘을 사용하였다. 본 논문에서 제안된 결과는 85.70%로 가장

높은 성능을 기록했으며, 이는 기존 모델보다 3.71%∼12.59%의 향상 시켰음을

보여주었다.

Keywords: Clinical notes, Graph Neural Network, Graph Pooling, Inter-

pretable Analysis
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