56,900 research outputs found

    A target guided subband filter for acoustic event detection in noisy environments using wavelet packets

    Get PDF
    This paper deals with acoustic event detection (AED), such as screams, gunshots, and explosions, in noisy environments. The main aim is to improve the detection performance under adverse conditions with a very low signal-to-noise ratio (SNR). A novel filtering method combined with an energy detector is presented. The wavelet packet transform (WPT) is first used for time-frequency representation of the acoustic signals. The proposed filter in the wavelet packet domain then uses a priori knowledge of the target event and an estimate of noise features to selectively suppress the background noise. It is in fact a content-aware band-pass filter which can automatically pass the frequency bands that are more significant in the target than in the noise. Theoretical analysis shows that the proposed filtering method is capable of enhancing the target content while suppressing the background noise for signals with a low SNR. A condition to increase the probability of correct detection is also obtained. Experiments have been carried out on a large dataset of acoustic events that are contaminated by different types of environmental noise and white noise with varying SNRs. Results show that the proposed method is more robust and better adapted to noise than ordinary energy detectors, and it can work even with an SNR as low as -15 dB. A practical system for real time processing and multi-target detection is also proposed in this work

    Blind deconvolution of medical ultrasound images: parametric inverse filtering approach

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.910179The problem of reconstruction of ultrasound images by means of blind deconvolution has long been recognized as one of the central problems in medical ultrasound imaging. In this paper, this problem is addressed via proposing a blind deconvolution method which is innovative in several ways. In particular, the method is based on parametric inverse filtering, whose parameters are optimized using two-stage processing. At the first stage, some partial information on the point spread function is recovered. Subsequently, this information is used to explicitly constrain the spectral shape of the inverse filter. From this perspective, the proposed methodology can be viewed as a ldquohybridizationrdquo of two standard strategies in blind deconvolution, which are based on either concurrent or successive estimation of the point spread function and the image of interest. Moreover, evidence is provided that the ldquohybridrdquo approach can outperform the standard ones in a number of important practical cases. Additionally, the present study introduces a different approach to parameterizing the inverse filter. Specifically, we propose to model the inverse transfer function as a member of a principal shift-invariant subspace. It is shown that such a parameterization results in considerably more stable reconstructions as compared to standard parameterization methods. Finally, it is shown how the inverse filters designed in this way can be used to deconvolve the images in a nonblind manner so as to further improve their quality. The usefulness and practicability of all the introduced innovations are proven in a series of both in silico and in vivo experiments. Finally, it is shown that the proposed deconvolution algorithms are capable of improving the resolution of ultrasound images by factors of 2.24 or 6.52 (as judged by the autocorrelation criterion) depending on the type of regularization method used

    The curvelet transform for image denoising

    Get PDF
    We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform and the curvelet transform. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an approximate digital Radon transform. We introduce a very simple interpolation in the Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of a` trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with "state of the art" techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement

    A multiresolution framework for local similarity based image denoising

    Get PDF
    In this paper, we present a generic framework for denoising of images corrupted with additive white Gaussian noise based on the idea of regional similarity. The proposed framework employs a similarity function using the distance between pixels in a multidimensional feature space, whereby multiple feature maps describing various local regional characteristics can be utilized, giving higher weight to pixels having similar regional characteristics. An extension of the proposed framework into a multiresolution setting using wavelets and scale space is presented. It is shown that the resulting multiresolution multilateral (MRM) filtering algorithm not only eliminates the coarse-grain noise but can also faithfully reconstruct anisotropic features, particularly in the presence of high levels of noise

    Nanoparticle shape and thermal radiation on Marangoni Water, Ethylene Glycol and Engine Oil Based Cu, Al2O3 and SWCNTs

    Get PDF
    The aim of this paper is to investigate the relationship between particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of water, ethylene glycol and engine oil based Cu, Al2O3 and SWCNTs. There are three types of nanoparticle shapes are considered in this research such as sphere, cylinder and lamina. The governing nonlinear partial differential equations are reduced into a set of nonlinear ordinary differential equations by applying similarity transformation which is solved using shooting technique in conjunction with Newton’s method and Runge Kutta algorithm. Temperature profiles are graphically and tabularly provided for the effects of solid volume fraction parameter, radiation parameter and empirical shape factor. The result shows that solid volume fraction and radiation energy gives a good impact on thermal boundary layer. Sphere nanoparticle shape predicts a better result on heat transfer rather than other nanoparticle shapes

    Optimal two-stage filtering of elastograms

    Get PDF
    In ultrasound elastography, tissue axial strains are obtained through the differentiation of measured axial displacements. However, during the measurement process, the displacement signals are often contaminated with de-correlation noise caused by changes in the speckle pattern in the tissue. Thus, the application of the gradient operator on the displacement signals results in the presence of amplified noise in the axial strains, which severely obscures the useful information. The use of an effective denoising scheme is therefore imperative. In this paper, a method based on a two-stage consecutive filtering approach is proposed for the accurate estimation of axial strains. The presented method considers a cascaded system of a frequency filter and a time window, which are both designed such that the overall system operates optimally as a minimum variance estimator. Experimentation on simulated signals shows that the two-stage scheme employed in this study has good potential as a denoising method for ultrasound elastograms
    corecore