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Abstract

In this paper, we present a generic framework for denoising of images cor-
rupted with additive white Gaussian noise based on the idea of regional
similarity. The proposed framework employs a similarity function using the
distance between pixels in a multidimensional feature space, whereby mul-
tiple feature maps describing various local regional characteristics can be
utilized, giving higher weight to pixels having similar regional characteris-
tics. An extension of the proposed framework into a multiresolution setting
using wavelets and scale space is presented. It is shown that the resulting
multiresolution multilateral (MRM) filtering algorithm not only eliminates
the coarse-grain noise but can also faithfully reconstruct anisotropic features,
particularly in the presence of high levels of noise.
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1. Introduction

Denoising of an image refers to the removal of noise from the observed
image and is often used as a pre-processing step before understanding and
analysis of the image scene can take place. Various non-linear filtering meth-
ods have been proposed in the literature aimed at preserving edges during
image denoising. Anisotropic diffusion [1], one of the most popular non-linear
filtering methods, uses local conduction coefficients of the gradient magni-
tude function allowing it to preserve as well as sharpen the edges. However, it
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is well known that the original Perona & Malik scheme tends to oversharpen
edges, is a slowly converging non-linear iterative process, and may result in
a piecewise smoothed version of the image [2]. While the oversharpening
and slow convergence issues may have largely been overcome by works such
as regularized and robust anisotropic diffusion [3, 4], anisotropic diffusion
remains ill-suited for denoising of images containing textured patterns.

Shrinkage methods in the transform domain approximate the image by
modeling and efficiently representing important image features such as dis-
continuities [5], edges [6, 7, 8], curves [9, 10, 11], contours [12, 13], ridges
[14, 15], and textured regions [16, 17, 18, 19] present in the image or locally
linear planes [20] in video sequences. Generally speaking, shrinkage methods
first transform the image into some other domain, highlighting important
image features, and thresholding the transform coefficients. Two major limi-
tations of the shrinkage methods are that they exhibit (a) pseudo-Gibbs and
(b) fake feature types of artifacts in images corrupted with medium to high
levels of noise. The pseudo-Gibbs or ringing artifacts are generated due to
there being insufficient number of coefficients for reconstruction of image fea-
tures, while the fake feature artifacts such as those visible in contourlets [13]
and wave atoms [19] result from the association of noisy image pixels with
perceived image features.

The non-local means (NL-Means) algorithm proposed by Buades et al.

[21] demonstrated that spatial filtering could benefit from searching for pix-
els of similar intensities in the whole image and averaging them. A major
bottleneck of this type of approach, however, is the high computational com-
plexity of a global search for pixels of similar intensity. Several fast adap-
tations of NL-Means have been proposed in the literature [22, 23, 24, 25].
Notwithstanding all the recent advances, the base NL-Means suffers from
fake texture type of artifacts and is not as robust on high levels of noise, as
shown in Section 4. In recent years, several hybrid domain methods have
been proposed. These methods operate by altering both pixel intensity val-
ues and transform domain coefficients. The pointwise SA-DCT filtering [26]
uses shape-adaptive discrete cosine transform (SA-DCT) in conjunction with
the anisotropic local polynomial approximation (LPA) to remove noise from
images. Block-matching and 3D filtering (BM3D) [27, 28] is another hybrid
domain denoising method. It uses three main steps to denoise the image:
3D transformation of a group of similar blocks including a block centered
around the current pixel, shrinkage of the transform spectrum, and inverse
3D transformation. Hybrid domain methods have demonstrated superior
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performance over several other state-of-the-art methods.
Bilateral filtering [29] is another non-linear filtering method which can

be regarded as an extended version of the lowpass Gaussian filtering. In
essence, it is a simple combination of a domain filter, similar to the Gaus-
sian filter, and a range filter which is a Gaussian function of local intensity
differences. The main idea is that only perceptually analogous colors are
averaged together to avoid unexpected color combination in images. Barash
[30] unified anisotropic diffusion and non-linear bilateral filtering as another
effective edge preserving filtering technique. However, one of the main lim-
itations of bilateral filtering is that the range filter coefficients rely heavily
on actual pixel intensity values, as it does not take into account any regional
characteristics, which may in turn have been influenced by noise therefore
potentially resulting in smoothed textured regions.

In order to overcome the limitations of bilateral filtering, Garnett et al.
[31] proposed a trilateral filter employing a local image statistic for identify-
ing the noisy pixels. The trilateral filter proposed in [31] was mainly aimed
at denoising images corrupted with impulse noise, although it was shown to
be effective for removing Gaussian and mixed noise too. The weighting func-
tion used by Garnett et al.’s trilateral filter contains spatial, radiometric, and
impulsive components. A third weighting function, the impulsive component
based on a rank-order statistic of absolute differences (ROAD), removes high
frequency impulse noise. The resulting trilateral filter performs well in re-
moving mixed noise as well as in removing impulse noise. Another trilateral
filter was presented in [32] for high contrast images and meshes. Recently, a
working paper by Yu et al. [33] proposed a third weighting function based
on the energy of steerable filters [34] and applied an improved version of the
bilateral filter, named by the authors as multilateral filtering, to denoising of
runway images.

In this paper, we present a generic framework for denoising of images using
local similarity of pixels. We propose an extension of non-linear bilateral
filtering, also termed as multilateral filtering, for denoising of images that
were corrupted with Gaussian white noise and consist of smooth regions,
edge features, as well as textured areas. The proposed filtering operates
simultaneously in three or more dimensions: domain filtering, range filtering,
and K-dimensional feature filtering for K ≥ 1. The first two dimensions are
the same as those employed in bilateral filtering. In the larger dimensions,
filtering is done based on the similarity of a pixel in the neighborhood to
its center pixel. A set of local features is computed for each pixel using
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its local neighborhood. Filtering based on features can proceed by either
concatenating the features into a feature vector or by cascading the filters for
each feature. In this work, we have chosen the former route for simplicity and
efficiency reasons. This adaptive non-linear filtering results in feature (e.g.,
edge and texture) preserving images by giving larger weights to similar pixels
and smaller weights to pixels that are different, thus similarities among pixels
are not only defined by intensity of pixels but also by features associated with
these pixels.

In the next section, we propose a local similarity based framework for
image denoising. A comparison of various statistical and structural features,
as discussed in Section 2, reveals that local energy is an effective measure
of local similarity. We extend the proposed framework in a multiresolution
setting in Section 3 and show in Section 4 that the multiresolution version
of our algorithm is particularly effective for denoising images corrupted with
high levels of noise.

2. The Proposed Framework

Since our method is a generalization of bilateral filtering, we provide
here a brief description of bilateral filtering for the sake of completeness.
Bilateral filters proposed by Tomasi & Manduchi [29] belong to a class of
non-linear filters designed for edge preserving image denoising. They operate
by convolving a given image with a combination of domain and range filters.
The domain filter contains the Gaussian domain weights computed by the
geometric closeness function D(i, j), where D(i, j) represents the Euclidean
distance between the origin pixel at i and a nearby pixel at j. The range
filter, on the other hand, contains Gaussian range weights computed using an
intensity difference function R(i, j), where R(i, j) gives the absolute difference
between intensity values I(i) and I(j) corresponding to locations i and j. The
range filter is such that the larger the difference between two intensity values
at i and j, the smaller is the corresponding weight and vice versa. Let Gd,i

and Gr,i respectively denote the domain and range filters, as defined below:

Gd,i,j = exp
(
−0.5[D(i, j)/σd]

2
)
/
∑

j∈Ni

Gd,i,j, (1)

Gr,i,j = exp
(
−0.5[R(i, j)/σr]

2
)
/
∑

j∈Ni

Gr,i,j, (2)
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∀j ∈ Ni, where Ni denotes the set of pixel coordinates in the local neighbor-
hood of the center location i, and σd and σr denote widths of the two Gaussian
kernels. A bilateral filter is simply a product of the domain filter Gd,i and the
range filter Gr,i, where Gd,i = {Gd,i,j, ∀j ∈ Ni} and Gr,i = {Gr,i,j, ∀j ∈ Ni}.
A given image I is then convolved with the bilateral filter to obtain the
denoised image Î. For the pixel at location i, Î(i) is obatined as follows,

Î(i) = (Gd,i ·Gr,i) ∗ Ni (3)

∀i ∈ C, where C denotes a set of all image coordinates and Ni denotes the
neighborhood of pixel at location i as defined above.

As mentioned earlier in Section 1, one of the other major limitations of
bilateral filtering is that the range filter coefficients rely heavily on actual
pixel intensity values which may in turn have been influenced by noise. The
range filter computed in this way may consider two noisy pixels to be similar
when they happen to have similar intensity values only because of the influ-
ence of noise. It assumes that the similarity of two pixels can be determined
just by analyzing their intensity values. Furthermore, bilateral filtering does
not take into account any regional (e.g., textural) features, which can often
be computed from analysis of the local statistical or structural properties.
Several variations on the theme of bilateral filtering can be found in the
literature. Multiresolution bilateral filtering (MRB) [35] is a local hybrid de-
noising method which employs both spatial domain bilateral filtering as well
as wavelet shrinkage in order to remove coarse-grain (i.e., low frequency)
noise from images. Yu et al. [36] recently proposed a denoising algorithm
based on bilateral filtering on the result of denoising in the wavelet domain
by modeling the wavelet coefficients using a trivariate Gaussian distribution.
However, most of these methods also suffer from the limitations inherent to
bilateral filtering.

In the next section, we present a generic framework for image denoising
based on the weighted averaging of image pixels using the idea of regional
similarity in order to overcome the above limitations.

2.1. The Proposed Framework

The overall concept of our method is illustrated in Fig. 1. First, we
compute a set of suitable features for the input image I. These features
should characterize the regional similarities of a pixel’s neighborhood such
that two pixels belonging to the same region have a high similarity and vice
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Figure 1: The Proposed Iterative Multilateral Filtering Framework

versa. By the same token, if two pixels belong to a similar kind of edge feature
in the image, this should also be reflected by a relatively high value of the
similarity function. Once a suitable set of features has been computed, the
algorithm proceeds by computing the domain and range filters, as described
in the previous section, as well as the feature filter. As stated earlier in
Section 1, the computed features are concatenated in the form of a feature
vector fi = {f1(i), f2(i), . . . , fK(i)}, where fk(i) denotes the kth feature for
the pixel at i and K denotes the total number of features computed per pixel.
The adaptive feature filter is then defined as follows,

Gf,i,j = exp
(
−||fi − fj||2/2σ2

f

)
/
∑

j∈Ni

Gf,i,j, (4)

∀j ∈ Ni, where Ni is as defined above and σf is width of the Gaussian kernel
associated with the feature filter. Let Gf,i = {Gf,i,j, ∀j ∈ Ni}. The filtered

image Î can then be computed by taking a convolution of the input image I
with the product Gm,i of the three Gaussian kernels as given below,

Gm,i = (Gd,i ·Gr,i ·Gf,i). (5)

For a particular pixel at location i, the denoised intensity value is computed
as follows,

Î(i) = Gm,i ∗ Ni, (6)

∀i ∈ C. This completes one iteration of multilateral filtering.

2.2. Feature Normalization

It is worth noting that for different features put together in the form of a
feature vector, all individual features fk(i), ∀k = 1, 2, . . . , K are normalized
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to have a zero mean and a unit variance as follows,

fk(i)←−
(
fk(i)− µk

σk

)
(7)

where µk and σk respectively denote mean and standard deviation of values of
the kth feature for all pixels. Normalization of all features in this way ensures
that equal weight is given to all and no single one is allowed to dominate.

Normalization of features in this way works well when the images are
corrupted by Gaussian noise. But if the image is corrupted by a noise other
than Gaussian, for example impulse noise, we may need to use some other
linear transformation technique to normalize the features. This is because a
linear transformation does not change the distribution of the data whereas the
normalization in equation (7) has the potential of modifying the distribution
of fk(i).

2.3. Iterative Multilateral Filtering

Although the original idea of bilateral filtering was non-iterative, Barash
[30] showed that an iterative application of bilateral filtering may be required
in images with high levels of noise. Using the robust median estimate [37]
for noise standard deviation σn in the smoothed image, we can determine if
further smoothing is required. If so, another iteration of multilateral filtering
is performed on the result In of the previous iteration to obtain În+1. Needless
to say, we start with I0 = I.

Experiments with iterative bilateral and iterative multilateral filtering
were conducted by increasing the number of iterations for a fixed level of
noise. Results of these experiments on the House and Monarch images (cf.
Fig. 5) for a total of ten iterations and two different noise levels σn = 30
(medium noise level) and σn = 75 (high noise level) are shown in Fig. 2.
It can be observed in these results that near-optimal denoising results were
obtained within 2–3 iterations for medium noise level (σn = 30) with not
much improvement gained from any further iterations. For high level of
noise (σn = 75), however, small but steady improvements continue to be
made with increased number of iterations of both bilateral and multilateral
filtering. It can also be seen from these plots that multilateral filtering is
consistently outperforming bilateral filtering for both these images. Similar
behavior was observed in other images as well. It can also be noted from
Fig. 2 that the PSNR for Monarch at σn = 30 decreases after 2 iterations.

7



(a) House (σn = 30) (b) Monarch (σn = 30)

(c) House (σn = 75) (d) Monarch (σn = 75)

Figure 2: Plots of PSNR (dB) against number of iterations for bilateral (dashed line with
red ×’s) and multiatleral filtering (solid line with blue o’s) for House and Monarch using
(a,b) σn = 30 and (c,d) σn = 75.

We believe this behavior may be due to the piecewise smooth nature of this
particular image. For a fair comparison with other published algorithms
though, in the remainder of this paper we run our method with one iteration
only.

2.4. Experiments using Local Statistical and Structural Features

We conducted a large number of experiments with both synthetic and
real-world images corrupted with additive Gaussian white noise (AWGN).
Two aspects of the proposed framework were subject of our investigation.
First, which type of features are useful in describing regional similarity for
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denoising purposes. Second, how the proposed method fares as compared to
the original bilateral filtering (BF) and other state-of-the-art methods.

To answer the first question, we conducted experiments with a number
of local statistical features such as local energy (E) defined as the sum of
square of pixel intensity values in a local neighborhood Ni for some arbitrary
pixel location i, local variance (V) defined over Ni, local median (M) defined
as the median of pixel intensity values in Ni, local entropy defined over pixel
intensity values in Ni and two combinations of these features namely energy
and median (M,E), and energy and variance (V,E). Experiments were also
conducted using two local structural features: multiscale wavelet edge maps
(Edge) [38] and pyramidal histograms of orientation gradients (Phog) features
[39].

Experimental results for four 256-level greyscale images, each of a 512×
512 resolution and shown in Fig. 5, are given in Table 1. Two of these images
contain textural patterns: Cosine Grating, a synthetic image containing two
cosine waves, and a Fingerprint image. The other two images are taken
from the standard real-world test image databases: Lena image consisting
of relatively smooth regions and Barbara containing fine periodic textures
at different orientations. Denoising performance is measured in terms of
the Peak Signal to Noise Ratio (PSNR). For each greyscale test image, five
noisy versions were created by adding white Gaussian noise with standard
deviations 10, 20, 30, 40, and 100. The parameters of bilateral filtering were
set as follows: the window size is 11× 11, σd = 1.8, whereas σr is calculated
in a way that PSNR computed from output image and original image is
maximized. For our proposed method, we set the same parameter values for
σd, σr for bilateral filtering as suggested in [29] to give a fair comparison. The
value of σf is adjusted to maximize the PSNR. It can be seen from Table
1 that while the proposed multilateral filtering with a combination of local
energy and variance achieves a PSNR gain of up to 6.22dB over the best
bilateral filtering result in case of the Cosine Grating image at σn = 20, local
energy E is the overall winner. This is due to the fact that measures of local
variation, such as local entropy or local variance, are more sensitive to noise
than local energy which has a low-pass effect. A more detailed analysis of
local energy is given in the next section.

In order to address the second question posed at the start of this section,
a detailed comparative evaluation of multilateral filtering with local energy
(Multilateral E) is provided in Section 4, Tables 2 and 3. It is worth
noting that in Table 1 that multilateral filtering behaves at least as well as a
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Input
σn

BF Multilateral Filtering

Image [29] Edge Phog V E M M, E V, E

Cosine

10 30.23 31.58 30.57 33.50 33.10 31.70 33.05 33.70

20 23.61 26.65 24.23 25.53 29.45 26.91 28.78 29.83

Grating
30 21.81 24.42 23.00 23.60 26.79 24.34 25.82 26.54
40 20.61 22.86 22.20 22.00 24.46 22.74 23.85 24.55

100 17.80 18.93 18.80 18.10 19.20 18.8 19.05 19.00

Finger

10 32.12 32.12 32.12 32.68 33.10 32.30 32.77 32.93
20 28.14 28.26 28.22 28.14 29.61 28.76 29.03 29.10

Print
30 24.73 25.00 25.00 24.73 26.79 26.34 26.59 26.10
40 22.81 23.18 23.19 22.81 24.97 24.68 24.90 24.30
100 19.29 19.29 19.35 19.29 19.64 19.60 19.62 19.47

Lena

10 33.75 33.75 33.75 34.00 34.34 34.05 34.22 34.10
20 30.57 30.57 30.57 30.57 31.13 31.00 31.10 30.72
30 28.82 28.82 28.82 28.82 29.32 29.27 29.31 28.90
40 27.64 27.64 27.64 27.64 28.03 28.01 28.02 27.70
100 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88

Barbara

10 31.45 31.45 31.45 31.56 31.71 31.62 31.70 31.64
20 27.19 27.19 27.19 27.19 27.52 27.41 27.50 27.33
30 25.12 25.12 25.12 25.12 25.36 25.31 25.34 25.18
40 23.98 23.98 23.98 23.98 24.10 24.06 24.09 23.98
100 20.87 20.87 20.87 20.87 20.87 20.87 20.87 20.87

Average - 25.67 26.23 25.95 26.15 27.12 26.53 26.92 26.94

Table 1: Results of Multilateral Filtering using Local Statistical and Structural Features
in terms of PSNR (dB)

bilateral filter when the noise level is high, e.g., when σn = 100 for Lena and
Barbara. In the presence of heavy noise, local statistical features may not
provide much extra information about the regional characteristics of a pixel.
However, better estimates of regional similarity can be obtained at lower
resolutions and hence better denoising results can be achieved by extending
the proposed framework to multiple resolutions, as shown in Section 3.

2.5. Best of the Local Features

As noted above, multilateral filtering with local energy almost always
produces the best results as compared to other local features described in the
previous section. In this section, we establish a relationship between local
energy based similarity function and another regional similarity function used
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by Non-Local Means (NL-Means) [21], a popular denoising algorithm. Let
Dnlm denote the dissimilarity function used by NL-Means and DE denote
the dissimilarity function used by multilateral filtering with local energy.
Both these functions are exponentiated with a negative sign and appropriate
scaling factors (involving kernel bandwidths) in order to compute the values
of a similarity function, which in turn affects the weights associated with the
pixel values being averaged. The two dissimilarity functions can be expressed
as follows,

Dnlm(i, j) =
∑

k∈Ni,l∈Nj

(xk − xl)
2 (8)

and
DE(i, j) =

∑

k∈Ni

x2
k −

∑

l∈Nj

x2
l (9)

where Ni and Nj denote the neighborhoods of pixels at locations i and j,
respectively. Both Ni and Nj are of the same size and follow the same scan
order. For the sake of argument, let us assume that Ni and Nj are the same
for both Dnlm and DE. In other words, we assume that NL-Means is applied
only locally1. It can be shown that DE can be written in terms of Dnlm as
follows,

DE = Dnlm + 2
∑

k∈Ni,l∈Nj

xl|xk − xl|. (10)

For the sake of simplicity, we have dropped the arguments i, j from both
the dissimilarity functions. From the above equation, DE can be expressed
as a linear combination of Dnlm and sum of intensity differences between
corresponding neighboring pixels in Ni and Nj weighted by the values of
pixels in Nj. In other words, DE is sum of the l2-norm based Dnlm and a
scaled version of the l1-norm of pointwise intensity differences for Ni and
Nj. This allows DE to be more robust than the simple l2-norm based Dnlm

particularly in situations with high levels of noise, as illustrated later in
Section 4, Table 3.

In order to illustrate the robustness of local energy based regional sim-
ilarity in the presence of high levels of noise, we take 512 × 512 Monarch

1Without loss of generality, we make this assumption only to establish a relationship
between Dnlm and DE. In fact, an extension of our algorithm is also possible in a non-local
framework although such an extension has not been investigated in this work.
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image corrupted with AWGN and σn = 100 as an example. Fig. 3 shows
the comparative visual results of a 16 × 16 section of the Monarch image
containing one of the wing lines, the feature map of noisy image using local
energy by our proposed method works better than all the other techniques.
It can be observed that both MF-E and MRM-Wav (cf. Section 3) have sharper
edges as compared to Fig. 3(d)–(f) where Gaussian filtering, bilateral filter-
ing, and NL-Means were used for denoising. Notice also the profile of feature
filter function Gf computed on the center pixel of the wing line. Despite the
presence of heavy noise (see Fig. 3(c)), the feature filter Gf shown in Fig.
3(l) corresponds well to the line feature as compared to the intensity-based
range filter Gr shown in Fig. 3(k).

2.6. Choice of Parameters

The result of denoising an image using bilateral filtering may vary signif-
icantly with the change in input parameters that make up the kernel band-
widths for spatial distance and photometric similarity. Typical approach to
get the best set of parameters is to use a trial and error method until the
best denoising result is obtained. Clearly, this can be a laborious and time
consuming task. To the best of our knowledge, there is no widely accepted
solution for the selection of optimal σd and σr with firm theoretical backing.
Zhang & Gunturk [35] established an empirical relationship between σd ,σr

and the noise standard deviation σn in case of bilateral filtering. The authors
conducted extensive experimentation to minimize the Mean Squared Error
(MSE) between original signal and noisy signal by varying the parameters
σd, σr and σn. They showed that σd is relatively independent of the noise
standard deviation σn and that the ideal value for σd was empirically found
to be in the [1.5, 2.1] interval while σn can be estimated using robust median
estimator [37]. But in case of σr, the best value of σr is linearly related to the
noise standard deviation σn if σd is kept constant. Linearity among optimal
value of σr and σn still holds as σd is varied, resulting only in a change in
slope with an increase in slope as σd becomes higher.

In this work, we have followed the recommendations of Zhang & Gunturk
[35] for selecting σd and σr whereas the PSNR is calculated by comparing
the denoised image with the original image. As for σf , it is adjusted so as to
maximize the PSNR of the denoised image by running a sweep through the
interval [0.1, 1.0] with a step of 0.1. For calculation of the PSNR, Stein’s un-
biased risk estimate (SURE) based estimator for Mean Squared Error (MSE)
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l)

Figure 3: Illustration of the Idea of Local Energy based Filtering

(a) The 512×512 Monarch image corrupted with AWGN, σn = 100; (b)–(i) show a

16×16 section of the image containing one of the wing lines in the following order:

(b) Original, (c) Noisy, (d) Denoised with a 5 × 5 Gaussian kernel, (e) Bilateral

filtering result, (f) NL-Means filtering [21] result, (g) Local energy map using an

11× 11 window, (h) Result of Multilateral Filtering with E, (i) Result of MRM-Wav

(Section 3); (j)–(l) Filtering kernels in the order Gd, Gr, and Gf .

proposed recently by van de Ville & Kocher [25] for the non-local means al-
gorithm may be extended for our method too.

3. Multiresolution Multilateral (MRM) Filtering

Noise in an image does not necessarily manifest itself as high frequency
values. It may be present in low frequency regions too making it difficult to
differentiate between genuine pixel values and low-frequency or coarse-grain
noise. In this scenario, simple bilateral or multilateral filtering may not be
hugely effective. One of the most recently proposed solutions is to use a
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multiresolution framework [35], which performs filtering on low frequency
wavelet subbands at different resolutions. The coarse-grain noise can be eas-
ily removed at higher scales. Multiresolution bilateral (MRB) Filtering [35]
is an extension of bilateral filtering in which a bilateral filter is applied to
the approximation (low-frequency) subbands and BayesShrink [37] is applied
to high frequency subbands of the wavelet decomposition. One limitation of
the MRB filtering method though is that, just as in case of bilateral filtering
[29], the range filter coefficients rely heavily on actual pixel intensity values
which may in turn have been influenced by noise. The range filter coefficients
computed in this way may consider two noisy pixels to be similar when they
happen to have similar intensity values due to the influence of noise, and
so MRB filtering does not take into account local statistical or structural
characteristics of the two noisy pixels. The other notable problem that MRB
faces is the occurence of pseudo-Gibbs phenomena in the vicinity of discon-
tinuities due to its employing a wavelet decomposition and BayesShrink [37]
to denoise the high frequency bands.

In this section, we propose multiresolution multilateral (MRM) filtering
which aims to overcome the limitations of both bilateral and MRB filtering.
We show that MRM filtering is an effective filtering method for denoising
images with textured patterns as well as faithfully reconstructing discontinu-
ities such as edges and curvilinear features in images. Two variants of MRM
filtering are proposed: MRM in the wavelet domain and MRM in the scale
space. In the remainder of this paper, we present the algorithmic details
of these two variants of MRM filtering and present experimental results to
demonstrate their effectiveness for denoising images.

3.1. MRM in the Wavelet Domain

In this section, we extend the proposed method of multilateral filtering
described in Section 2 in a multiresolution framework, termed as MRM-Wav.
This extension bears similarity to that of bilateral filtering in MRB [35].
However, one major difference is that our proposed method employs feature
filter alongwith domain and range filters on multiple scales to denoise the
image. Let Wn(I) = {HL1, LH1, HH1, . . . , HLn, LHn, HHn, LLn}, where I
denotes the input image and HLj, LHj , HHj, LLj respectively denote the j-
level horizontal detail, vertical detail, diagnoal detail, and lowpass subbands.
The values of σr and σf are scaled by a factor of (

√
2)j taking into account

the increased dynamic range of the jth level wavelet subbands, whereas the
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value of σd remains the same for all levels of the wavelet decomposition. The
algorithmic details of MRM-Wav are given in Algorithm 1.

Algorithm 1 Multiresolution Multilateral Filtering in the Wavelet Domain
(MRM-Wav)

1: procedure MRMfilteringWaveletDomain(I, n)
2: {HL1, LH1, HH1, . . . , HLn, LHn, HHn, LLn} ← Wn(I) ⊲ Compute

n-level wavelet transform
3: for j ← n, n− 1 . . . , 1 do

4: ĤL
j ← BS(HLj) ⊲ Apply BayesShrink [37] on the jth level high

frequency subbands

5: L̂H
j ← BS(LHj)

6: ĤH
j ← BS(HHj)

7: if j = 1 then,

8: L̂L
j ←MF(LLj) ⊲ Apply multilateral filtering on LL1

9: Î←W−1
1 (ĤL

j
, L̂H

j
, ĤH

j
, L̂L

j
) ⊲ Reconstruct the

preliminary denoised image
10: else
11: L̂L

j−1 ←W−1
1 (ĤL

j
, L̂H

j
, ĤH

j
, L̂L

j
) ⊲ Take 1-level inverse

wavelet transform
12: end if
13: end for
14: Î←MF(Î) ⊲ Apply multilateral filtering again on Î
15: return Î
16: end procedure

3.2. MRM in Scale Space

This variant of MRM filtering, termed as MRM-Lap, first decomposes the
given image into a Laplacian pyramid [40]. A Laplacian scale space is used
due to its shift invariance in order to avoid the Gibbs type of artifacts. Adap-
tive multilateral filtering is used to denoise the low frequency or Gaussian
approximation subband and translation invariant packets (TIWP) [41] is ap-
plied on the high frequency subbands. TIWP is a very effective denoising
technique on high frequency subbands because it further explores the high
frequency subbands up to the maximum depth. Let Ln denote the forward
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(a) Original image (b) Noisy image; σn = 50
(PSNR=14.20dB)

(c) NL-Means [21] (d) Multilateral E (e) MRM-Wav (f) MRM-Lap
(PSNR=28.95dB) (PSNR=29.85dB) (PSNR=34.03dB) (PSNR=33.65dB)

(g) Binarization of (c) (h) Binarization of (d) (i) Binarization of (e) (j) Binarization of (f)

Figure 4: Results of Denoising and Binarization using Otsu’s thresholds for 256 × 256
Shapes

n-level Laplacian pyramid operator given by, Ln(I) = {H1, H2, . . . , Hn, Ln},
where I denotes the input image, Hj, j = 1, . . . , n, denote the high frequency
Laplacian subband and Ln denotes the lowest resolution and lowest frequency
Gaussian approximation subband. The values of σd, σr, and σf remain un-
altered for different levels of the Laplacian pyramid. The algorithmic details
of MRM-Lap are given in Algorithm 2.

3.3. The Effectiveness of MRM

The effectiveness of MRM filtering is illustrated in Fig. 4 where denois-
ing experiments were performed by adding white Gaussian noise of standard
deviation 50 in Shapes, a simple image containing various smooth regions
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Algorithm 2 Multiresolution Multilateral Filtering in the Scale Space
(MRM-Lap)

1: procedure MRMfilteringScaleSpace(I, n)
2: {H1, H2, . . . , Hn, Ln} ← Ln(I) ⊲ Compute n-level Laplacian pyramid
3: for j ← 1, 2, . . . , n do
4: Ĥj ← T IWP(Hj) ⊲ Denoise Hj using TIWP shrinkage [41]

5: Hj ← Ĥj

6: end for
7: Î← L−1

n (H1, H2, . . . , Hn, Ln) ⊲ Compute inverse Laplacian pyramid
8: {H1, L1} ← L1(Î) ⊲ Compute 1-level Laplacian pyramid
9: L̂1 ←MF(L1) ⊲ Apply multilateral filtering on L1

10: Î← L−1
1 (H1, L1) ⊲ Compute 1-level inverse Laplacian pyramid

11: Î←MF(Î) ⊲ Apply multilateral filtering again on Î
12: return Î
13: end procedure

consisting of geometric shapes against a flat background. Visual results of
denoising with NL-Means [21], Multilateral E, MRM-Wav, and MRM-Lap (Sec-
tion 3.2) can be seen in Fig. 4(c)–(f ). Binarized versions of the denoising
results using a simple thresholding operation are shown in Fig. 4(g)–(j ).
Thresholds were automatically selected using Otsu’s method [42]. It can be
observed from these binarized results that both MRM-Wav and MRM-Lap pro-
duce arguably better results for detection of the shapes’ regions as compared
to NL-Means. Such a method can be used for detection of objects against
the background in a highly noisy environment.

4. Experimental Results

Comparative denoising results for various local statistical and structural
features using single-resolution multilateral filtering were presented in Sec-
tion 2.4, where we noted that local energy yielded the best denoising results
on the whole. In this section, we pick local energy for computation of feature
maps and present comparative results for single-resolution multilateral fil-
tering and two versions of MRM filtering, the multiresolution version of our
multilateral filtering algorithm, presented above. Although results for itera-
tive multilateral filtering in Section 2.3 showed that better denoising results
could be achieved using multiple iterations, we use only one iteration here to
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give a fair comparison with other published methods.
Denoising experiments were conducted on seven of the eight 256-level

greyscale images shown in Fig. 5. Five of these images are taken from
the standard real-world test image databases: Lena, House and Peppers im-
ages have relatively smooth regions, while Barbara contains fine periodic
textures at different orientations and Fingerprint consists mostly of coarse
level anisotropic oscillatory patterns. Two other images were used in the
testbed: Monarch image containing spotty patterns and coarse strongly ori-
ented features (the wing lines), Zebra image containing periodic textures of
coarse level anisotropic oscillatory features and smooth regions. The last four
images were chosen to investigate the comparative performance of our algo-
rithms on images containing approximately periodic textures and strongly
oriented features or patterns, particularly in the presence of high levels of
noise. Although Multilateral E was shown to achieve significant PSNR
gains for the Grating image in Section 2, that image is omitted from these
experiments due to its purely synthetic and somewhat artificial nature. Three
levels of wavelet transform (for MRM-Wav) and Laplacian pyramid (MRM-Lap)
were computed, as one risks blurring the lowpass band and introducing ring-
ing artifacts if a higher number of levels of the transforms is used. For
comparison of objective quality, denoising results in terms of the PSNR are
presented for three methods presented in this paper, namely Multilateral E

or MF-E (Section 2), MRM-Wav, and MRM-Lap (Section 3) in comparison to six
other published methods: (1) the original bilateral filtering (BF) [29], (2) one
of its recent variants known as saliency bilateral filtering (SBF) [43], two of the
recently proposed transform-domain shrinkage methods in (3) Contourlet

MD or C-MD [13] in the multi-scale contourlet domain with sharp localization
in frequency and (4) wave atoms (WA) by Demanet & Ying [19] which aim
to achieve good localization in space and frequency using Villemoes’ wavelet
packets [44] in the frequency domain, (5) a multiresolution version of bilateral
filtering (MRB) [35], and (6) the standard non-local means filtering (NL-Means
or NLM) [21] algorithm.

Two sets of experiments were conducted on the test images varying the
level of Gaussian white noise from low–medium range (σn = 10, 20, 30) to
high levels of noise (σn = 50, 75, 100). It is worth noting that a large body of
denoising literature is concentrated in the low–medium range of noise level.
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Input
σn

BF C-MD SBF WA NLM MF-E MRB MRM-Wav MRM-Lap

Image [29] [37] [13] [19] [21] [Sec. 2] [35] [Sec. 3] [Sec. 3]

10 32.12 29.37 27.34 31.05 31.95 33.10 33.51 33.51 32.90
Finger- 20 28.14 26.44 23.45 27.06 29.11 29.61 28.98 29.07 27.95
print 30 24.73 24.73 21.50 25.00 26.75 26.79 26.42 26.82 24.90

Ave. 28.33 26.85 24.10 27.70 29.27 29.83 29.64 29.80 28.58

Lena

10 33.75 32.59 27.56 34.14 35.16 34.34 33.98 34.10 33.86
20 30.57 31.20 23.45 30.78 31.92 31.13 31.31 31.56 30.54
30 28.82 29.70 22.32 28.83 29.75 29.32 29.75 30.01 29.12
Ave. 31.05 31.16 24.44 31.25 32.28 31.60 31.68 31.89 31.17

Barbara

10 31.45 30.16 27.67 33.25 33.31 31.71 31.61 31.65 32.28
20 27.19 27.02 23.20 29.69 29.89 27.52 27.83 27.95 28.34
30 25.12 25.30 21.64 27.71 27.45 25.36 25.55 25.63 26.58
Ave. 27.92 27.49 24.17 30.22 30.22 28.20 28.33 28.41 29.07

House

10 33.81 32.19 27.54 34.05 35.33 34.45 33.54 33.65 34.47
20 30.37 29.57 23.45 30.34 32.17 31.11 31.26 31.41 30.41
30 28.35 28.00 22.33 28.21 29.77 29.08 29.18 29.75 29.21
Ave. 30.84 29.92 24.44 30.87 32.42 31.55 31.33 31.60 31.36

Peppers

10 33.03 30.52 27.65 31.90 33.41 33.61 33.00 33.10 32.55
20 29.34 28.12 23.34 28.37 30.51 30.00 29.80 29.95 29.00
30 26.90 26.43 22.07 26.30 28.29 27.70 27.56 27.72 27.00
Ave. 29.76 28.36 24.35 28.86 30.74 30.44 30.12 30.26 29.52

Monarch

10 32.82 31.25 27.55 32.00 32.8 33.27 32.32 32.32 32.48
20 29.65 29.03 23.34 28.82 30.53 30.20 29.66 29.66 28.21
30 27.38 27.52 22.02 27.00 28.66 28.15 28.20 28.30 26.31
Ave. 29.95 29.27 24.30 29.27 30.66 30.54 30.06 30.09 29.00

Zebra

10 32.40 30.60 27.61 32.10 32.88 32.90 32.50 32.50 33.00

20 28.45 27.70 23.27 28.60 30.13 29.15 28.70 28.70 28.53
30 25.60 25.90 21.80 26.00 27.80 26.55 26.58 26.68 26.22
Ave. 28.82 28.07 24.23 28.90 30.27 29.53 29.26 29.29 29.25

Average - 29.52 28.73 24.29 29.58 30.84 30.24 30.06 30.19 29.71

Table 2: Comparative Image Denoising Results in terms of PSNR (dB) for Low–Medium
Noise Levels

4.1. Experiments with Low–Medium Noise Levels

In Table 2, a comparison of denoising results for the test images cor-
rupted with low–medium noise levels (σn = 10, 20, 30) is presented. It can
be seen from this Table that although NL-Means is on average 0.6dB better
than MF-E with MRM-Wav close behind, there are a few instances (Peppers,
Monarch, and Zebra) where either of the two proposed methods yields the
best PSNR value at σn = 10. It is also worth noting that the proposed
methods compare favorably with all the other six published methods for
Fingerprint at all three noise levels, on the whole nearly 3dB better than
Contourlet MD, nearly 2.1dB better than wave atoms, and nearly 0.6dB
better than NL-Means. This behavior for Fingerprint continues at σn = 50,
as shown in the next section, until we get to relatively high noise levels
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Input
σn Median

BF C-MD SBF WA NLM MF-E MRB MRM-Wav MRM-Lap

Image [29] [37] [13] [19] [21] [Sec. 2] [35] [Sec. 3] [Sec. 3]

50 21.04 21.61 22.80 19.34 22.90 23.22 23.67 23.20 24.20 22.22
Finger- 75 19.17 20.17 21.45 18.20 21.40 20.61 21.25 19.40 21.20 21.05
print 100 17.63 19.29 20.47 17.50 20.46 19.00 19.64 19.19 19.86 19.90

Ave. 19.28 20.36 21.57 18.35 21.59 20.94 21.52 20.60 21.75 21.06

Lena

50 24.30 26.68 27.40 21.10 26.38 26.70 26.90 27.50 27.70 27.50
75 21.49 24.70 25.50 20.20 24.43 24.12 24.70 25.40 25.50 26.00

100 19.34 22.88 21.00 19.50 23.17 22.18 22.88 24.57 24.67 24.80

Ave. 20.42 24.75 24.63 20.27 24.66 24.33 24.83 25.82 25.96 26.10

Barbara

50 21.30 23.25 24.30 20.11 25.31 24.46 23.30 22.95 22.95 24.20
75 19.71 22.00 22.60 19.20 23.38 22.31 22.00 22.52 22.60 22.70
100 18.26 20.87 21.61 18.50 22.05 20.80 20.87 21.70 21.78 21.88
Ave. 19.76 22.04 22.84 19.27 23.58 22.52 22.06 22.39 22.44 22.93

House

50 23.36 26.20 26.60 21.00 25.76 26.30 26.70 26.27 27.23 27.35

75 20.81 24.24 24.60 20.11 23.88 23.90 24.40 25.23 25.45 25.61

100 18.83 22.55 22.90 19.20 22.35 21.80 22.60 23.61 24.17 23.60
Ave. 19.82 24.33 24.70 20.10 24.00 24.00 24.57 25.04 25.62 25.52

Peppers

50 22.83 24.19 24.24 20.40 23.61 25.26 24.80 23.66 24.55 24.66
75 20.46 22.38 22.27 19.40 21.50 22.65 22.55 22.88 23.14 22.84
100 18.69 21.23 21.00 18.60 20.32 21.00 21.23 21.54 21.72 21.82

Ave. 19.57 22.60 22.50 19.47 21.81 22.97 22.86 22.69 23.14 23.11

Monarch

50 22.89 24.52 25.30 20.58 24.60 25.56 25.46 25.00 25.85 25.19
75 20.60 22.82 23.50 19.60 22.75 22.97 23.25 23.00 24.00 23.91
100 18.85 21.50 22.20 18.70 21.50 21.13 21.65 22.30 22.82 22.73
Ave. 20.78 22.95 23.67 19.63 22.95 23.22 23.45 23.43 24.22 23.94

Zebra

50 21.21 22.58 23.80 19.84 23.41 24.33 23.58 22.63 23.61 23.30
75 19.44 20.95 22.00 18.62 21.62 21.53 21.37 21.70 22.10 21.66
100 18.04 19.96 20.00 17.80 20.25 19.87 20.12 19.00 19.80 20.55

Ave. 19.56 21.16 21.93 18.75 21.76 21.91 21.69 21.11 21.84 21.84

Average - 19.88 22.60 23.12 19.40 22.91 22.84 23.00 23.01 23.57 23.50

Table 3: Comparative Image Denoising Results in terms of PSNR (dB) for High Noise
Levels

(σn = 75, 100) whereby both the shrinkage methods perform well on Finger-

print. This indicates that at low–medium noise levels, multilateral filtering
methods in their single and multiple resolution versions can perform well on
images containing fine anisotropic features at a relatively low frequency. The
two variants of MRM filtering did not yield any significant gains as compared
to the single-resolution multilateral filtering in the case of low–medium noise
levels, with MRM-Wav being 0.05dB behind MF-E on the whole. This may be
due to the fact that while decomposition of a highly noisy image into smaller
resolution bands will remove a large part of the noise by virtue of smoothing
and downsampling, doing so may not be greatly beneficial for images in the
low–medium noise regime.
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(a) 512 × 512 Lena (b) 256 × 256 House (c) 256× 256 Peppers

(d) 512× 512 Barbara (e) 512× 512 Fingerprint (f) 512× 512 Monarch

(g) 256× 256 Zebra (h) 512 × 512 Cosine Grating

Figure 5: Test Images used in Our Experiments

4.2. Experiments with High Noise Levels

A comparison of denoising results on the seven test images corrupted with
high levels of noise (σn = 50, 75, 100) for the three proposed methods with the
other six methods is presented in Table 3. Since the Gaussian noise starts
to exhibit similar properties to those of the salt-and-pepper noise at high
levels of noise, we have also added comparative results using median filtering
(Median), the standard method of choice at high levels of noise. It can be
seen from Table 3 that at high noise levels, the proposed methods outperform
all the other methods including NL-Means in almost all the cases. Although
our single-resolution multilateral filtering method is 0.6dB worse on average
than NL-Means at low–medium noise levels, MRM-Wav yields 0.75dB higher
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PSNR on average than NL-Means in case of high noise levels. Note that with
the exception of Fingerprint and Barbara, both the MRM variants perform
consistently well for the remaining five images at all three high levels of noise.
The Fingerprint image contains low frequency patterns of fine anisotropic
features, while the Barbara image contains high frequency oscillatory patterns
of fine anisotropic features. It is due to the presence of oscillatory patterns
such as these that the two transform domain shrinkage methods, Contourlet
MD and wave atoms respectively, perform well on these two images as they are
particularly well suited to images containing periodic textures of anisotropic
features. On the other hand, the MRM variants perform better than both
the shrinkage methods on Monarch and Zebra, the two images containing
oscillatory patterns of coarse anisotropic features for very high noise levels
(σn = 75, 100). It is also worth noting that MRM filtering in both wavelet
and Laplacian domains does not only produce better results in terms of the
objective PSNR but also in terms of the subjective visual quality. Visual
results for Lena, Barbara, Peppers, House, and Monarch images are shown in
Figs. 6–10. As can be seen in these Figures, both variants of MRM filtering
produce smoother ridges, sharper edges, and less fake texture artifacts in
majority of the cases than the other methods.

5. Conclusions

In this paper, we have presented a generic framework for image denoising
based on the idea of regional similarity in the spatial domain. The proposed
framework is a generalization of trilateral filtering whereby multidimensional
features can be used to describe local similarity. We investigated a variety
of features known to capture regional properties such as textural features
and edge coherence. It was shown that despite being a simple and relatively
inexpensive feature to compute, local energy of a pixel in the spatial domain
effectively captures the variation of intensities in its local neighborhood in
the presence of additive Gaussian white noise. Analysis of the relationship
between dissimilarity function used by non-local means algorithm and that
based on the local energy reveals that they differ only by a weighted l1-norm
enabling local energy to be more robust in the presence of high levels of
noise. It was also shown that the local energy based multilateral filtering
compares favorably to other published methods in terms of both objective
PSNR measure and visual quality of the denoised images.

The proposed framework was extended to multiple resolutions using wavelet
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decomposition and scale space. Such an extension for bilateral filtering has
been shown to remove coarse-grain noise in [35]. The wavelet variant of mul-
tiresolution multilateral (MRM) filtering was shown to produce good denois-
ing results on images containing oscillatory patterns of anisotropic features,
while the latter variant in the Laplacian domain reconstructed isotropic con-
tents well and performed better on images containing smooth regions. Both
the variants compare favorably with more sophisticated and computationally
expensive shrinkage methods such as [13, 19] which are designed to capture
oscillatory patterns in images. A possible future direction of this work is the
development of a data-driven approach to automatically select the σf pa-
rameter. Another possible direction would be an extension of the proposed
framework to a non-local setting, i.e., replacing the dissimilarity function in
the NL-Means algorithm [21, 28] with our local energy based kernel.

Acknowledgements

Part of this work was carried out while the second author was studying for
his Masters degree in Computer Science and Applications at the University
of Warwick.

References

[1] P. Perona, J. Malik, Scale-space and edge detection using anisotropic
diffusion, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 12 (7) (1990) 629–639.

[2] Z. Farbman, R. Fattal, D. Lischinski, R. Szeliski, Edge-preserving de-
compositions for multi-scale tone and detail manipulation, Proceedings
of ACM SIGGRAPH 27 (3) (2008) 67:1–67:10.

[3] O. Scherzer, J. Weickert, Relations between regularization and diffusion
filtering, Journal of Mathematical Imaging and Vision 12 (1) (2000)
43–63.

[4] M. Black, G. Sapiro, D. Marimont, D. Heeger, Robust anisotropic dif-
fusion, IEEE Transactions on Image Processing 7 (3) (1998) 421–432.

[5] D. Donoho, J. Johnstone, Ideal spatial adaptation by wavelet shrinkage,
Biometrika 81 (3) (1994) 425–455.

23



[6] D. Donoho, X. Huo, Combined image representation using edgelets and
wavelets, in: Proceedings of SPIE, Vol. 3813, 1999, pp. 468–476.

[7] C. Jung, J. Scharcanski, Adaptive image denoising and edge enhance-
ment in scale-space using the wavelet transform, Pattern Recognition
Letters 24 (7) (2003) 965–971.

[8] Z. Hou, Adaptive singular value decomposition in wavelet domain for
image denoising, Pattern Recognition 36 (8) (2003) 1747–1763.

[9] E. Candes, Ridgelets: theory and applications, Ph.D. thesis, Standford
University (1998).

[10] J. Starck, E. Candès, D. Donoho, The curvelet transform for image
denoising, IEEE Transactions on image processing 11 (6) (2002) 670–
684.

[11] M. Do, M. Vetterli, The finite ridgelet transform for image representa-
tion, IEEE Transactions on Image Processing 12 (1) (2003) 16–28.

[12] M. Do, M. Vetterli, The contourlet transform: an efficient directional
multiresolution image representation, IEEE Transactions on image pro-
cessing 14 (12) (2005) 2091–2106.

[13] Y. Lu, M. Do, A new contourlet transform with sharp frequency local-
ization, in: IEEE International Conference on Image Processing, 2006,
pp. 1629–1632.

[14] G. Chen, B. Kégl, Image denoising with complex ridgelets, Pattern
Recognition 40 (2) (2007) 578–585.

[15] X. Wang, Wrap-around effect removal finite ridgelet transform for mul-
tiscale image denoising, Pattern Recognition 43 (11) (2010) 3693–3698.

[16] F. Meyer, R. Coifman, Brushlets: a tool for directional image analysis
and image compression, Applied and computational harmonic analysis
4 (2) (1997) 147–187.

[17] Z. Yao, N. Rajpoot, Image denoising using multiscale directional co-
sine bases, in: Proceedings IEEE International Conference on Image
Processing (ICIP), Vol. 3, 2005, pp. 313–316.

24



[18] M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for designing
overcomplete dictionaries for sparse representation, IEEE Transactions
on signal processing 54 (11) (2006) 4311–4322.

[19] L. Demanet, L. Ying, Wave atoms and sparsity of oscillatory patterns,
Applied and Computational Harmonic Analysis 23 (3) (2007) 368–387.

[20] N. Rajpoot, R. Wilson, Z. Yao, Planelets: A new analysis tool for planar
feature extraction, in: Proceedings 5th International Workshop on Im-
age Analysis for Multimedia Interactive Services (WIAMIS’2004), 2004.

[21] A. Buades, B. Coll, J. Morel, A non-local algorithm for image denois-
ing, in: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Vol. 2, 2005, pp. 60–65.

[22] M. Mahmoudi, G. Sapiro, Fast image and video denoising via nonlocal
means of similar neighborhoods, IEEE Signal Processing Letters 12 (12)
(2005) 839–842.

[23] T. Brox, O. Kleinschmidt, D. Cremers, Efficient nonlocal means for
denoising of textural patterns, IEEE Transactions on Image Processing
17 (7) (2008) 1083–1092.

[24] T. Tasdizen, Principal neighborhood dictionaries for nonlocal means im-
age denoising, IEEE Transactions on Image Processing 18 (12) (2009)
2649–2660.

[25] D. van de Ville, M. Kocher, SURE-based non-local means, IEEE Signal
Processing Letters 16 (11) (2009) 973–976.

[26] A. Foi, V. Katkovnik, K. Egiazarian, Pointwise shape-adaptive DCT
for high-quality denoising and deblocking of grayscale and color images,
IEEE Transactions on Image Processing 16 (5) (2007) 1395–1411.

[27] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by
sparse 3-d transform-domain collaborative filtering, IEEE Transactions
on Image Processing 16 (8) (2007) 2080–2095.

[28] V. Katkovnik, A. Foi, K. Egiazarian, J. Astola, From local kernel to non
local multiple-model image denoising, International Journal of Com-
puter Vision 86 (1) (2009) 1–32.

25



[29] C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images,
in: International Conference on Computer Vision (ICCV), 1998, pp.
839–846.

[30] D. Barash, Fundamental relationship between bilateral filtering, adap-
tive smoothing, and the nonlinear diffusion equation, IEEE Transactions
on Pattern Analysis and Machine Intelligence 24 (6) (2002) 844–847.

[31] R. Garnett, T. Huegerich, C. Chui, W. He, A universal noise removal
algorithm with an impulse detector, IEEE Transactions on Image Pro-
cessing 14 (11) (2005) 1747–1754.

[32] P. Choudhury, J. Tumblin, The trilateral filter for high contrast images
and meshes, in: Proceedings of the 14th Eurographics workshop on Ren-
dering, Eurographics Association Aire-la-Ville, Switzerland, Switzer-
land, 2003, pp. 186–196.

[33] Z. Yu, Z.-K. Shi, R.-Q. Wang, A multilateral filtering method applied
to airplane runway image, arxiv.org (May 2008).

[34] E. Simoncelli, W. Freeman, The steerable pyramid: A flexible archi-
tecture for multi-scale derivative computation, in: Proceedings Interna-
tional Conference on Image Processing (ICIP), Vol. 3, 1995, pp. 444–447.

[35] M. Zhang, B. Gunturk, Multiresolution bilateral filtering for image de-
noising, IEEE Transactions on Image Processing 17 (12) (2008) 2324–
2333.

[36] H. Yu, L. Zhao, H. Wang, Image denoising using trivariate shrinkage fil-
ter in the wavelet domain and joint bilateral filter in the spatial domain,
IEEE Transactions on Image Processing 18 (10) (2009) 2364–2369.

[37] S. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for im-
age denoising and compression, IEEE Transactions on Image Processing
9 (9) (2000) 1532–1546.

[38] S. Mallat, Wavelets for a vision, Proceedings of the IEEE 84 (4) (1996)
604–614.

[39] A. Bosch, A. Zisserman, X. Munoz, Representing shape with a spatial
pyramid kernel, in: Proceedings of the 6th ACM international conference

26



on Image and video retrieval, ACM New York, NY, USA, 2007, pp. 401–
408.

[40] P. Burt, E. Adelson, The Laplacian pyramid as a compact image code,
IEEE Transactions on Communications 31 (4) (1983) 532–540.

[41] N. Rajpoot, Z. Yao, R. Wilson, Adaptive wavelet restoration of noisy
video sequences, in: Proceedings IEEE International Conference on Im-
age Processing (ICIP), 2004, pp. 957–960.

[42] N. Otsu, A threshold selection method from gray-level histograms, Au-
tomatica 11 (1975) 285–296.

[43] J. Xie, P. Heng, M. Shah, Image diffusion using saliency bilateral filter,
IEEE Transactions on Information Technology in Biomedicine 12 (6)
(2008) 768–771.

[44] L. Villemoes, Wavelet packets with uniform time-frequency localization,
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(a) Noisy image; σn=75 (b) Bilateral Filtering [29] (c) Multilateral E

(PSNR=10.66dB) (PSNR=24.70dB) (PSNR=24.70dB)

(d) Contourlet MD [13] (e) Wave Atoms [19] (f) NL-Means [21]
(PSNR=25.50dB) (PSNR=24.43dB) (PSNR=24.12dB)

(g) MRB [35] (h) MRM-Wav (i) MRM-Lap
(PSNR=25.40dB) (PSNR=25.50dB) (PSNR=26.00dB)

Figure 6: Denoising Results for Central Part of the 512× 512 Lena image; σn = 75.
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(a) Noisy image; σn=75 (b) Bilateral Filtering [29] (c) Multilateral E

(PSNR=10.62dB) (PSNR=22.00dB) (PSNR=22.00dB)

(d) Contourlet MD [13] (e) Wave Atoms [19] (f) NL-Means [21]
(PSNR=22.60dB) (PSNR=23.38dB) (PSNR=22.31dB)

(g) MRB [35] (h) MRM-Wav (i) MRM-Lap
(PSNR=22.52dB) (PSNR=22.60dB) (PSNR=22.70dB)

Figure 7: Denoising Results for Central Part of the 512× 512 Barbara image; σn = 75.
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(a) Noisy image; σn=100 (b) Bilateral Filtering [29] (c) Multilateral E

(PSNR=8.13dB) (PSNR=21.23dB) (PSNR=21.23dB)

(d) Contourlet MD [13] (e) Wave Atoms [19] (f) NL-Means [21]
(PSNR=21.00dB) (PSNR=20.32dB) (PSNR=21.00dB)

(g) MRB [35] (h) MRM-Wav (i) MRM-Lap
(PSNR=21.54dB) (PSNR=21.72dB) (PSNR=21.82dB)

Figure 8: Denoising Results for Central Part of the 256× 256 Peppers image; σn = 100.
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(a) Noisy image; σn=75 (b) Bilateral Filtering [29] (c) Multilateral E

(PSNR=10.65dB) (PSNR=24.24dB) (PSNR=24.40dB)

(d) Contourlet MD [13] (e) Wave Atoms [19] (f) NL-Means [21]
(PSNR=24.60dB) (PSNR=23.88dB) (PSNR=23.90dB)

(g) MRB [35] (h) MRM-Wav (i) MRM-Lap
(PSNR=25.23dB) (PSNR=25.45dB) (PSNR=25.61dB)

Figure 9: Denoising Results for Central Part of the 256× 256 House image; σn = 75.
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(a) Noisy image; σn=100 (b) Bilateral Filtering [29] (c) Multilateral E

(PSNR=8.10dB) (PSNR=21.50dB) (PSNR=21.65dB)

(d) Contourlet MD [13] (e) Wave Atoms [19] (f) NL-Means [21]
(PSNR=22.20dB) (PSNR=21.50dB) (PSNR=21.13dB)

(g) MRB [35] (h) MRM-Wav (i) MRM-Lap
(PSNR=22.30dB) (PSNR=22.82dB) (PSNR=22.73dB)

Figure 10: Denoising Results for Central Part of the 512× 512 Monarch image; σn = 100.
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