221 research outputs found

    The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, part 1

    Get PDF
    This publication is a compilation of the papers presented at the Fifth NASA/DoD Controls-Structures Interaction (CSI) Technology Conference held in Lake Tahoe, Nevada, March 3-5, 1992. The conference, which was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense, was organized by the NASA Langley Research Center. The purpose of this conference was to report to industry, academia, and government agencies on the current status of controls-structures interaction technology. The agenda covered ground testing, integrated design, analysis, flight experiments and concepts

    Multiphysics Modeling And Simulation Process To Develop Thin Piezoelectric Film Sensors To Measure The Vibration Of Structures With Complex Shapes And Boundary Conditions.

    Get PDF
    Piezoelectricity was discovered in 1880 by Jacques and Pierre Curie. Its application has since been extended to actuators and sensors, widely used in industry, automotive, and aerospace applications. The last two decades have seen intensive research in piezoelectric theory in an effort to effectively capture and control the distinctive coupling of electricity and elasticity. However, due to the complexity of the theory involved, finite element and numerical methods are often used in the process. Limited analytical exact solutions are also found in literature. The objective of this work is to devise a multiphysics modeling and simulation process to develop thin piezoelectric film sensors to measure the vibration of structures with complex shapes and boundary conditions. First, the output charge of generic piezoelectric films, respectively attached to a beam and a plate, is modeled using ANSYS and experimentally verified. Second, the modeling method is extended to a cylindrical shell followed by experimental verifications. Appropriate material properties obtained from past researches were incorporated as required. Finally, shaped sensors for the measurement of specific dynamic characteristics of a beam, plate and cylindrical shell respectively, are developed and experimentally validated. The results show that Multiphysics modeling can be an efficient design tool and be effectively used to simulate complex systems. This tool can be also used to detect or simulate design flaws and errors

    Distributed Sensing and System Identification of Cantilever Beams and Plates in the Presence of Weak Nonlinearities

    Get PDF
    While the mathematical foundation for modal analysis of continuous systems has long been established, flexible structures have become increasingly widespread and developing tools for understanding their mechanics has become increasingly important. Cantilever beams and plates, in particular, have been extensively studied due to their practical importance as approximations of more complex structures. The focus of this thesis is on understanding the dynamics of vibrating cantilever beams and plates through analytical and experimental investigation. Various models for the mechanics of these structures, of varying physical fidelity, are described and compared. A fiber optic sensing system is utilized to experimentally acquire distributed strain measurements, which are used to estimate the mode shapes and natural frequencies for the cantilever structures. These experimental estimates are compared with analytical and numerical solutions corresponding to the models previously introduced. Next, a detailed case study is described which demonstrates the nonlinear response in a cantilever beam\u27s first mode and implements an empirical procedure for estimating a variable parameter model which accounts for its varying system parameters. By implementing the described identification methods, parameter variations due to a system\u27s nonlinear response are included in a modified linear model and significantly reduce the errors in predicted response. Based on this research, methods to experimentally estimate and validate the mode shapes and system parameters can be implemented for other beam- and plate-like structures

    Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, part 2

    Get PDF
    A collection of papers presented at the Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems is given. The papers address modeling, systems identification, and control of flexible aircraft, spacecraft and robotic systems

    Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, part 1

    Get PDF
    The proceedings of the workshop are presented. Some areas of discussion are as follows: modeling, systems identification, and control of flexible aircraft, spacecraft, and robotic systems

    Technology for large space systems: A bibliography with indexes (supplement 10)

    Get PDF
    The bibliography lists 408 reports, articles and other documents introduced into the NASA scientific and technical information system to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of large space system technology. Subject matter is grouped according to systems, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Proceedings of the Workshop on Applications of Distributed System Theory to the Control of Large Space Structures

    Get PDF
    Two general themes in the control of large space structures are addressed: control theory for distributed parameter systems and distributed control for systems requiring spatially-distributed multipoint sensing and actuation. Topics include modeling and control, stabilization, and estimation and identification

    The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, part 2

    Get PDF
    This publication is a compilation of the papers presented at the Fifth NASA/DoD Controls-Structures Interaction (CSI) Technology Conference held in Lake Tahoe, Nevada, March 3-5, 1992. The conference, which was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense, was organized by the NASA Langley Research Center. The purpose of this conference was to report to industry, academia, and government agencies on the current status of controls-structures interaction technology. The agenda covered ground testing, integrated design, analysis, flight experiments and concepts

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore