11,498 research outputs found

    Loss Distribution Approach for Operational Risk Capital Modelling under Basel II: Combining Different Data Sources for Risk Estimation

    Full text link
    The management of operational risk in the banking industry has undergone significant changes over the last decade due to substantial changes in operational risk environment. Globalization, deregulation, the use of complex financial products and changes in information technology have resulted in exposure to new risks very different from market and credit risks. In response, Basel Committee for banking Supervision has developed a regulatory framework, referred to as Basel II, that introduced operational risk category and corresponding capital requirements. Over the past five years, major banks in most parts of the world have received accreditation under the Basel II Advanced Measurement Approach (AMA) by adopting the loss distribution approach (LDA) despite there being a number of unresolved methodological challenges in its implementation. Different approaches and methods are still under hot debate. In this paper, we review methods proposed in the literature for combining different data sources (internal data, external data and scenario analysis) which is one of the regulatory requirement for AMA

    Bayesian Approaches to the Precautionary Principle

    Get PDF

    Distributed Hypothesis Testing with Social Learning and Symmetric Fusion

    Full text link
    We study the utility of social learning in a distributed detection model with agents sharing the same goal: a collective decision that optimizes an agreed upon criterion. We show that social learning is helpful in some cases but is provably futile (and thus essentially a distraction) in other cases. Specifically, we consider Bayesian binary hypothesis testing performed by a distributed detection and fusion system, where all decision-making agents have binary votes that carry equal weight. Decision-making agents in the team sequentially make local decisions based on their own private signals and all precedent local decisions. It is shown that the optimal decision rule is not affected by precedent local decisions when all agents observe conditionally independent and identically distributed private signals. Perfect Bayesian reasoning will cancel out all effects of social learning. When the agents observe private signals with different signal-to-noise ratios, social learning is again futile if the team decision is only approved by unanimity. Otherwise, social learning can strictly improve the team performance. Furthermore, the order in which agents make their decisions affects the team decision.Comment: 10 pages, 7 figure

    THE CASE FOR AND COMPONENTS OF A PROBABILISTIC AGRICULTURAL OUTLOOK PROGRAM

    Get PDF
    An operational program to develop and disseminate probabilistic outlook information for agricultural commodities would allow decision makers to better comprehend the degree of uncertainty associated with future prices. While there are psychological limitations to the estimation or probabilities, this is a skill that can be taught and developed, particularly among experienced forecasters such as outlook specialists. Techniques are available for eliciting probabilities, and weather forecasting experience demonstrates that experts can quantify probabilities in a reliable manner. The components of a program to develop and disseminate outlook probabilities should include a survey of user needs, training programs for participating outlook specialists, and user educational programs. Further research is needed to develop elicitation techniques, and to evaluate costs and benefits.Teaching/Communication/Extension/Profession,

    Talking Nets: A Multi-Agent Connectionist Approach to Communication and Trust between Individuals

    Get PDF
    A multi-agent connectionist model is proposed that consists of a collection of individual recurrent networks that communicate with each other, and as such is a network of networks. The individual recurrent networks simulate the process of information uptake, integration and memorization within individual agents, while the communication of beliefs and opinions between agents is propagated along connections between the individual networks. A crucial aspect in belief updating based on information from other agents is the trust in the information provided. In the model, trust is determined by the consistency with the receiving agents’ existing beliefs, and results in changes of the connections between individual networks, called trust weights. Thus activation spreading and weight change between individual networks is analogous to standard connectionist processes, although trust weights take a specific function. Specifically, they lead to a selective propagation and thus filtering out of less reliable information, and they implement Grice’s (1975) maxims of quality and quantity in communication. The unique contribution of communicative mechanisms beyond intra-personal processing of individual networks was explored in simulations of key phenomena involving persuasive communication and polarization, lexical acquisition, spreading of stereotypes and rumors, and a lack of sharing unique information in group decisions

    Best practices for the provision of prior information for Bayesian stock assessment

    Get PDF
    This manual represents a review of the potential sources and methods to be applied when providing prior information to Bayesian stock assessments and marine risk analysis. The manual is compiled as a product of the EC Framework 7 ECOKNOWS project (www.ecoknows.eu). The manual begins by introducing the basic concepts of Bayesian inference and the role of prior information in the inference. Bayesian analysis is a mathematical formalization of a sequential learning process in a probabilistic rationale. Prior information (also called ”prior knowledge”, ”prior belief”, or simply a ”prior”) refers to any existing relevant knowledge available before the analysis of the newest observations (data) and the information included in them. Prior information is input to a Bayesian statistical analysis in the form of a probability distribution (a prior distribution) that summarizes beliefs about the parameter concerned in terms of relative support for different values. Apart from specifying probable parameter values, prior information also defines how the data are related to the phenomenon being studied, i.e. the model structure. Prior information should reflect the different degrees of knowledge about different parameters and the interrelationships among them. Different sources of prior information are described as well as the particularities important for their successful utilization. The sources of prior information are classified into four main categories: (i) primary data, (ii) literature, (iii) online databases, and (iv) experts. This categorization is somewhat synthetic, but is useful for structuring the process of deriving a prior and for acknowledging different aspects of it. A hierarchy is proposed in which sources of prior information are ranked according to their proximity to the primary observations, so that use of raw data is preferred where possible. This hierarchy is reflected in the types of methods that might be suitable – for example, hierarchical analysis and meta-analysis approaches are powerful, but typically require larger numbers of observations than other methods. In establishing an informative prior distribution for a variable or parameter from ancillary raw data, several steps should be followed. These include the choice of the frequency distribution of observations which also determines the shape of prior distribution, the choice of the way in which a dataset is used to construct a prior, and the consideration related to whether one or several datasets are used. Explicitly modelling correlations between parameters in a hierarchical model can allow more effective use of the available information or more knowledge with the same data. Checking the literature is advised as the next approach. Stock assessment would gain much from the inclusion of prior information derived from the literature and from literature compilers such as FishBase (www.fishbase.org), especially in data-limited situations. The reader is guided through the process of obtaining priors for length–weight, growth, and mortality parameters from FishBase. Expert opinion lends itself to data-limited situations and can be used even in cases where observations are not available. Several expert elicitation tools are introduced for guiding experts through the process of expressing their beliefs and for extracting numerical priors about variables of interest, such as stock–recruitment dynamics, natural mortality, maturation, and the selectivity of fishing gears. Elicitation of parameter values is not the only task where experts play an important role; they also can describe the process to be modelled as a whole. Information sources and methods are not mutually exclusive, so some combination may be used in deriving a prior distribution. Whichever source(s) and method(s) are chosen, it is important to remember that the same data should not be used twice. If the 2 | ICES Cooperative Research Report No. 328 plan is to use the data in the analysis for which the prior distribution is needed, then the same data cannot be used in formulating the prior. The techniques studied and proposed in this manual can be further elaborated and fine-tuned. New developments in technology can potentially be explored to find novel ways of forming prior distributions from different sources of information. Future research efforts should also be targeted at the philosophy and practices of model building based on existing prior information. Stock assessments that explicitly account for model uncertainty are still rare, and improving the methodology in this direction is an important avenue for future research. More research is also needed to make Bayesian analysis of non-parametric models more accessible in practice. Since Bayesian stock assessment models (like all other assessment models) are made from existing knowledge held by human beings, prior distributions for parameters and model structures may play a key role in the processes of collectively building and reviewing those models with stakeholders. Research on the theory and practice of these processes will be needed in the future

    Policymaking under scientific uncertainty

    Get PDF
    Policymakers who seek to make scientifically informed decisions are constantly confronted by scientific uncertainty and expert disagreement. This thesis asks: how can policymakers rationally respond to expert disagreement and scientific uncertainty? This is a work of nonideal theory, which applies formal philosophical tools developed by ideal theorists to more realistic cases of policymaking under scientific uncertainty. I start with Bayesian approaches to expert testimony and the problem of expert disagreement, arguing that two popular approaches— supra-Bayesianism and the standard model of expert deference—are insufficient. I develop a novel model of expert deference and show how it can deal with many of these problems raised for them. I then turn to opinion pooling, a popular method for dealing with disagreement. I show that various theoretical motivations for pooling functions are irrelevant to realistic policymaking cases. This leads to a cautious recommendation of linear pooling. However, I then show that any pooling method relies on value judgements, that are hidden in the selection of the scoring rule. My focus then narrows to a more specific case of scientific uncertainty: multiple models of the same system. I introduce a particular case study involving hurricane models developed to support insurance decision-making. I recapitulate my analysis of opinion pooling in the context of model ensembles, confirming that my hesitations apply. This motivates a shift of perspective, to viewing the problem as a decision theoretic one. I rework a recently developed ambiguity theory, called the confidence approach, to take input from model ensembles. I show how it facilitates the resolution of the policymaker’s problem in a way that avoids the issues encountered in previous chapters. This concludes my main study of the problem of expert disagreement. In the final chapter, I turn to methodological reflection. I argue that philosophers who employ the mathematical methods of the prior chapters are modelling. Employing results from the philosophy of scientific models, I develop the theory of normative modelling. I argue that it has important methodological conclusions for the practice of formal epistemology, ruling out popular moves such as searching for counterexamples
    corecore