1,253 research outputs found

    Impact demagnetization of the Martian crust: Current knowledge and future directions

    Get PDF
    The paleomagnetism of the Martian crust has important implications for the history of the dynamo, the intensity of the ancient magnetic field, and the composition of the crust. Modification of crustal magnetization by impact cratering is evident from the observed lack of a measurable crustal field (at spacecraft altitude) within the youngest large impact basins (e.g., Hellas, Argyre and Isidis). It is hoped that comparisons of the magnetic intensity over impact structures, forward modeling of subsurface magnetization, and experimental results of pressure-induced demagnetization of rocks and minerals will provide constraints on the primary magnetic mineralogy in the Martian crust. Such an effort requires: (i) accurate knowledge of the spatial distribution of the shock pressures around impact basins, (ii) crustal magnetic intensity maps of adequate resolution over impact structures, and (iii) determination of demagnetization properties for individual rocks and minerals under compression. In this work, we evaluate the current understanding of these three conditions and compile the available experimental pressure demagnetization data on samples bearing (titano-) magnetite, (titano-) hematite, and pyrrhotite. We find that all samples demagnetize substantially at pressures of a few GPa and that the available data support significant modification of the crustal magnetic field from both large and small impact events. However, the amount of demagnetization with applied pressure does not vary significantly among the possible carrier phases. Therefore, the presence of individual mineral phases on Mars cannot be determined from azimuthally averaged demagnetization profiles over impact basins at present. The identification of magnetic mineralogy on Mars will require more data on pressure demagnetization of thermoremanent magnetization and forward modeling of the crustal field subject to a range of plausible initial field and demagnetization patterns.United States. National Aeronautics and Space Administration (NNG04GD17G)United States. National Aeronautics and Space Administration (NNX07AQ69G)United States. National Aeronautics and Space Administration (NNX06AD14G

    Preservation and detectability of shock-induced magnetization

    Get PDF
    An understanding of the effects of hypervelocity impacts on the magnetization of natural samples is required for interpreting paleomagnetic records of meteorites, lunar rocks, and cratered planetary surfaces. Rocks containing ferromagnetic minerals have been shown to acquire shock remanent magnetization (SRM) due to the passage of a shock wave in the presence of an ambient magnetic field. In this study, we conducted pressure remanent magnetization (PRM) acquisition experiments on a variety of natural samples as an analog for SRM acquisition at pressures ranging up to 1.8 GPa. Comparison of the alternating field (AF) and thermal demagnetization behavior of PRM confirms that AF demagnetization is a more efficient method for removing SRM overprints than thermal demagnetization because SRM may persist to unblocking temperatures approaching the Curie temperatures of magnetic minerals. The blocking of SRM to high temperatures suggests that SRM could persist without being eradicated by viscous relaxation over geologic timescales. However, SRM has been rarely observed in natural samples likely because of two factors: (1) other forms of impact-related remanence (e.g., thermal remanent magnetization from impact-related heating or chemical remanent magnetization from postimpact hydrothermal activity) are often acquired by target rocks that overprint SRM, and (2) low SRM acquisition efficiencies may prevent SRM from being distinguished from the underlying primary remanence or other overprints due to its low magnetization intensity

    Quantum States of Neutrons in Magnetic Thin Films

    Full text link
    We have studied experimentally and theoretically the interaction of polarized neutrons with magnetic thin films and magnetic multilayers. In particular, we have analyzed the behavior of the critical edges for total external reflection in both cases. For a single film we have observed experimentally and theoretically a simple behavior: the critical edges remain fixed and the intensity varies according to the angle between the polarization axis and the magnetization vector inside the film. For the multilayer case we find that the critical edges for spin up and spin down polarized neutrons move towards each other as a function of the angle between the magnetization vectors in adjacent ferromagnetic films. Although the results for multilayers and single thick layers appear to be different, in fact the same spinor method explains both results. An interpretation of the critical edges behavior for the multilyers as a superposition of ferromagnetic and antifferomagnetic states is given.Comment: 6 pages, 5 figure

    The magnetic environment of tektites.

    Get PDF

    Report of the Terrestrial Bodies Science Working Group. Volume 4: The moon

    Get PDF
    A rationale for furture exploration of the moon is given. Topics discussed include the objectives of the lunar polar orbiter mission, the mission profile, and general characteristics of the spacraft to be used
    • …
    corecore