133 research outputs found

    Achieving Autonomic Computing through the Use of Variability Models at Run-time

    Full text link
    Increasingly, software needs to dynamically adapt its behavior at run-time in response to changing conditions in the supporting computing infrastructure and in the surrounding physical environment. Adaptability is emerging as a necessary underlying capability, particularly for highly dynamic systems such as context-aware or ubiquitous systems. By automating tasks such as installation, adaptation, or healing, Autonomic Computing envisions computing environments that evolve without the need for human intervention. Even though there is a fair amount of work on architectures and their theoretical design, Autonomic Computing was criticised as being a \hype topic" because very little of it has been implemented fully. Furthermore, given that the autonomic system must change states at runtime and that some of those states may emerge and are much less deterministic, there is a great challenge to provide new guidelines, techniques and tools to help autonomic system development. This thesis shows that building up on the central ideas of Model Driven Development (Models as rst-order citizens) and Software Product Lines (Variability Management) can play a signi cant role as we move towards implementing the key self-management properties associated with autonomic computing. The presented approach encompass systems that are capable of modifying their own behavior with respect to changes in their operating environment, by using variability models as if they were the policies that drive the system's autonomic recon guration at runtime. Under a set of recon guration commands, the components that make up the architecture dynamically cooperate to change the con guration of the architecture to a new con guration. This work also provides the implementation of a Model-Based Recon guration Engine (MoRE) to blend the above ideas. Given a context event, MoRE queries the variability models to determine how the system should evolve, and then it provides the mechanisms for modifying the system.Cetina Englada, C. (2010). Achieving Autonomic Computing through the Use of Variability Models at Run-time [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7484Palanci

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    An examination of the Asus WL-HDD 2.5 as a nepenthes malware collector

    No full text
    The Linksys WRT54g has been used as a host for network forensics tools for instance Snort for a long period of time. Whilst large corporations are already utilising network forensic tools, this paper demonstrates that it is quite feasible for a non-security specialist to track and capture malicious network traffic. This paper introduces the Asus Wireless Hard disk as a replacement for the popular Linksys WRT54g. Firstly, the Linksys router will be introduced detailing some of the research that was undertaken on the device over the years amongst the security community. It then briefly discusses malicious software and the impact this may have for a home user. The paper then outlines the trivial steps in setting up Nepenthes 0.1.7 (a malware collector) for the Asus WL-HDD 2.5 according to the Nepenthes and tests the feasibility of running the malware collector on the selected device. The paper then concludes on discussing the limitations of the device when attempting to execute Nepenthes

    ICSEA 2022: the seventeenth international conference on software engineering advances

    Get PDF
    The Seventeenth International Conference on Software Engineering Advances (ICSEA 2022), held between October 16th and October 20th, 2022, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. Several tracks were proposed to treat the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learned. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. Other advanced aspects are related to on-time practical aspects, such as run-time vulnerability checking, rejuvenation process, updates partial or temporary feature deprecation, software deployment and configuration, and on-line software updates. These aspects trigger implications related to patenting, licensing, engineering education, new ways for software adoption and improvement, and ultimately, to software knowledge management. There are many advanced applications requiring robust, safe, and secure software: disaster recovery applications, vehicular systems, biomedical-related software, biometrics related software, mission critical software, E-health related software, crisis-situation software. These applications require appropriate software engineering techniques, metrics and formalisms, such as, software reuse, appropriate software quality metrics, composition and integration, consistency checking, model checking, provers and reasoning. The nature of research in software varies slightly with the specific discipline researchers work in, yet there is much common ground and room for a sharing of best practice, frameworks, tools, languages and methodologies. Despite the number of experts we have available, little work is done at the meta level, that is examining how we go about our research, and how this process can be improved. There are questions related to the choice of programming language, IDEs and documentation styles and standard. Reuse can be of great benefit to research projects yet reuse of prior research projects introduces special problems that need to be mitigated. The research environment is a mix of creativity and systematic approach which leads to a creative tension that needs to be managed or at least monitored. Much of the coding in any university is undertaken by research students or young researchers. Issues of skills training, development and quality control can have significant effects on an entire department. In an industrial research setting, the environment is not quite that of industry as a whole, nor does it follow the pattern set by the university. The unique approaches and issues of industrial research may hold lessons for researchers in other domains. We take here the opportunity to warmly thank all the members of the ICSEA 2022 technical program committee, as well as all the reviewers. The creation of such a high-quality conference program would not have been possible without their involvement. We also kindly thank all the authors who dedicated much of their time and effort to contribute to ICSEA 2022. We truly believe that, thanks to all these efforts, the final conference program consisted of top-quality contributions. We also thank the members of the ICSEA 2022 organizing committee for their help in handling the logistics of this event. We hope that ICSEA 2022 was a successful international forum for the exchange of ideas and results between academia and industry and for the promotion of progress in software engineering advances

    Actes des Cinquièmes journées nationales du Groupement De Recherche CNRS du Génie de la Programmation et du Logiciel

    Get PDF
    National audienceCe document contient les actes des Cinquièmes journées nationales du Groupement De Recherche CNRS du Gé}nie de la Programmation et du Logiciel (GDR GPL) s'étant déroulées à Nancy du 3 au 5 avril 2013. Les contributions présentées dans ce document ont été sélectionnées par les différents groupes de travail du GDR. Il s'agit de résumés, de nouvelles versions, de posters et de démonstrations qui correspondent à des travaux qui ont déjà été validés par les comités de programmes d'autres conférences et revues et dont les droits appartiennent exclusivement à leurs auteurs

    ICSEA 2021: the sixteenth international conference on software engineering advances

    Get PDF
    The Sixteenth International Conference on Software Engineering Advances (ICSEA 2021), held on October 3 - 7, 2021 in Barcelona, Spain, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. The conference had the following tracks: Advances in fundamentals for software development Advanced mechanisms for software development Advanced design tools for developing software Software engineering for service computing (SOA and Cloud) Advanced facilities for accessing software Software performance Software security, privacy, safeness Advances in software testing Specialized software advanced applications Web Accessibility Open source software Agile and Lean approaches in software engineering Software deployment and maintenance Software engineering techniques, metrics, and formalisms Software economics, adoption, and education Business technology Improving productivity in research on software engineering Trends and achievements Similar to the previous edition, this event continued to be very competitive in its selection process and very well perceived by the international software engineering community. As such, it is attracting excellent contributions and active participation from all over the world. We were very pleased to receive a large amount of top quality contributions. We take here the opportunity to warmly thank all the members of the ICSEA 2021 technical program committee as well as the numerous reviewers. The creation of such a broad and high quality conference program would not have been possible without their involvement. We also kindly thank all the authors that dedicated much of their time and efforts to contribute to the ICSEA 2021. We truly believe that thanks to all these efforts, the final conference program consists of top quality contributions. This event could also not have been a reality without the support of many individuals, organizations and sponsors. We also gratefully thank the members of the ICSEA 2021 organizing committee for their help in handling the logistics and for their work that is making this professional meeting a success. We hope the ICSEA 2021 was a successful international forum for the exchange of ideas and results between academia and industry and to promote further progress in software engineering research
    corecore