1,258 research outputs found

    Dynamics and Control of Spacecraft Rendezvous By Nonlinear Model Predictive Control

    Get PDF
    This doctoral research investigates the fundamental problems in the dynamics and control of spacecraft rendezvous with a non-cooperative tumbling target. New control schemes based on nonlinear model predictive control method have been developed and validated experimentally by ground-based air-bearing satellite simulators. It is focused on the autonomous rendezvous for a chaser spacecraft to approach the target in the final rendezvous stage. Two challenges have been identified and investigated in this stage: the mathematical modeling of the targets tumbling motion and the constrained control scheme that is solvable in an on-line manner. First, the mathematical description of the tumbling motion of the target spacecraft is proposed for the chaser spacecraft to rendezvous with the target. In the meantime, the practical constraints are formulated to ensure the safety and avoid collision during the final approaching stage. This set of constraints are integrated into the trajectory planning problem as a constrained optimization problem. Second, the nonlinear model predictive control is proposed to generate the feedback control commands by iteratively solving an open-loop discrete-time nonlinear optimal control problem at each sampling instant. The proposed control scheme is validated both theoretically and experimentally by a custom-built spacecraft simulator floating on a high-accuracy granite table. Computer software for electronic hardware for the spacecraft simulator and for the controller is designed and developed in house. The experimental results demonstrate the effectiveness and advantages of the proposed nonlinear model predictive control scheme in a hardware-in-the-loop environment. Furthermore, a preliminary outlook is given for future extension of the spacecraft simulator with consideration of the robotic arms

    Experimental validation of the efficient robotic transportation algorithm for large-scale flexible space structures

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.Includes bibliographical references (p. 77-79).A new large space structure transportation method proposed recently is modified and experimentally validated. The proposed method is to use space robots' manipulators to control the vibration, instead of their reaction jets. It requires less fuel than the reaction jet-based vibration control methods, and enables quick damping of the vibration. The key idea of this work is to use the decoupled controller, which controls the vibration mode and rigid body mode independently. The performance of the proposed method and the control algorithm is demonstrated and quantitatively evaluated by both simulation and experiments.by Masahiro Ono.S.M

    Design and development of a mobile robotic system for aircraft wing fuel tank inspection

    Get PDF
    This paper presents the design concept behind a novel remote visual inspection robotic system for fighter jet aircraft wing fuel tank inspection. This work is part of a larger research project which focuses on design, simulation, physical prototyping and experimental validation of a robotic system. Whereas this paper specifically focuses on the development concept of locomotion design choice for the robot. Therefore without an effective mobility method the robot will not be able to fulfill its purpose to access the hazardous confined spaces of the fuel tank. Aircraft wing fuel tank inspection is a challenging area of maintenance which requires a considerable amount of preparation and involvement of several tasks in order to conduct effective Visual and Non Destructive Inspection. The environment of an aircraft wing fuel tank poses several challenges due to both physical and atmospheric constraints which can be detrimental to human personal. This paper introduces an effective locomotion design which should allow the robot to enter and maneuver within confined spaces. The robot is relatively small, approximately 70mm in height and width yet, flexible enough to move within the restricted spaces of the wing. The mobile robot platform is a combination of small track systems that articulate like a snake. An additional mobile platform deploys an inspection sensor to reach the spaces that are unreachable by the robot body. Like other proposed robotic systems this particular proposal differs as it allows the robot to enter from the root of the wing and reach the narrower spaces towards with the wing tip. This paper highlights the stakeholder requirements to illustrate the foundation of the robotic system design. An overview of current complications of wing fuel tank inspection is presented and the analysis of current proposed robotic systems for wing fuel tank inspection. An engineering design methodology approach is followed for this project. Several locomotion methods are evaluated and an innovative locomotion method is illustrated with the use of CAD models. The desired outcome of this research is to eliminate the entry or close contact with the fuel tank by human personal

    Space Station Systems: a Bibliography with Indexes (Supplement 8)

    Get PDF
    This bibliography lists 950 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included

    Distributed Control of Servicing Satellite Fleet Using Horizon Simulation Framework

    Get PDF
    On-orbit satellite servicing is critical to maximizing space utilization and sustainability and is of growing interest for commercial, civil, and defense applications. Reliance on astronauts or anchored robotic arms for the servicing of next-generation large, complex space structures operating beyond Low Earth Orbit is impractical. Substantial literature has investigated the mission design and analysis of robotic servicing missions that utilize a single servicing satellite to approach and service a single target satellite. This motivates the present research to investigate a fleet of servicing satellites performing several operations for a large, central space structure. This research leverages a distributed control approach, implemented using the Horizon Simulation Framework (HSF), to develop a tool capable of integrated mission modeling and task scheduling for a servicing satellite fleet. HSF is a modeling and simulation framework for verification of system level requirements with an emphasis on state representations, modularity, and event scheduling. HSF consists of two major modules: the main scheduling algorithm and the system model. The distributed control architecture allocates processing and decision making for this multi-agent cooperative control problem across multiple subsystem models and the main HSF scheduling algorithm itself. Models were implemented with a special emphasis on the dynamics, control, trajectory constraints, and trajectory optimization for the servicing satellite fleet. The integrated mission modeling and scheduling tool was applied to a sample scenario in which a fleet of 3 servicing assets is tasked with performing 12 servicing activities for a large satellite in Geostationary Orbit. The tool was able to successfully determine a schedule in which all 12 servicing activities were completed in under 32 hours, subject to the fuel and trajectory constraints of the servicing assets

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 320)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    The coordinated control of space robot teams for the on-orbit construction of large flexible space structures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.Includes bibliographical references (leaves 95-103).Teams of autonomous space robots are needed for future space missions such as the construction of large solar power stations and large space telescopes in earth orbit. This work focuses on the control of teams of robots performing construction tasks such as manipulation and assembly of large space structures. The control of the robot structure system is difficult. The space structures are flexible and there are significant dynamic interactions between the robots and the structures. Forces applied by the robots may excite undesirable vibrations in the structures. Furthermore, the changing configuration of the system results in the system dynamics being described by a set of non-linear partial differential equations. Limited sensing and actuation in space present additional challenges. The approach proposed here is to transform the system dynamics into a set of linear time-varying ordinary differential equations. The control of the high-frequency robots can be decoupled from the control of the low-frequency structures. This approach allows the robots to apply forces to the structures and control the dynamic interactions between the structures and the robots. The approach permits linear optimal control theory to be used. Simulation studies and experimental verification demonstrate the validity of the approach.by Peggy Boning.Ph.D

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure
    • …
    corecore