50,325 research outputs found

    Homodyne-based quantum random number generator at 2.9 Gbps secure against quantum side-information

    Get PDF
    Quantum random number generators promise perfectly unpredictable random numbers. A popular approach to quantum random number generation is homodyne measurements of the vacuum state, the ground state of the electro-magnetic field. Here we experimentally implement such a quantum random number generator, and derive a security proof that considers quantum side-information instead of classical side-information only. Based on the assumptions of Gaussianity and stationarity of noise processes, our security analysis furthermore includes correlations between consecutive measurement outcomes due to finite detection bandwidth, as well as analog-to-digital converter imperfections. We characterize our experimental realization by bounding measured parameters of the stochastic model determining the min-entropy of the system’s measurement outcomes, and we demonstrate a real-time generation rate of 2.9 Gbit/s. Our generator follows a trusted, device-dependent, approach. By treating side-information quantum mechanically an important restriction on adversaries is removed, which usually was reserved to semi-device-independent and device-independent schemes

    How much randomness can be generated from a quantum black-box device?

    Full text link
    Quantum theory allows for randomness generation in a device-independent setting, where no detailed description of the experimental device is required. Here we derive a general upper bound on the amount of randomness that can be generated in such a setting. Our bound applies to any black-box scenario, thus covering a wide range of scenarios from partially characterised to completely uncharacterised devices. Specifically, we prove that the number of random bits that can be generated is limited by the number of different input states that enter the measurement device. We show explicitly that our bound is tight in the simplest case. More generally, our work indicates that the prospects of generating a large amount of randomness by using high-dimensional (or even continuous variable) systems will be extremely challenging in practice

    Continuous Variable Optimisation of Quantum Randomness and Probabilistic Linear Amplification

    Get PDF
    In the past decade, quantum communication protocols based on continuous variables (CV) has seen considerable development in both theoretical and experimental aspects. Nonetheless, challenges remain in both the practical security and the operating range for CV systems, before such systems may be used extensively. In this thesis, we present the optimisation of experimental parameters for secure randomness generation and propose a non-deterministic approach to enhance amplification of CV quantum state. The first part of this thesis examines the security of quantum devices: in particular, we investigate quantum random number generators (QRNG) and quantum key distribution (QKD) schemes. In a realistic scenario, the output of a quantum random number generator is inevitably tainted by classical technical noise, which potentially compromises the security of such a device. To safeguard against this, we propose and experimentally demonstrate an approach that produces side-information independent randomness. We present a method for maximising such randomness contained in a number sequence generated from a given quantum-to-classical-noise ratio. The detected photocurrent in our experiment is shown to have a real-time random-number generation rate of 14 (Mbit/s)/MHz. Next, we study the one-sided device-independent (1sDI) quantum key distribution scheme in the context of continuous variables. By exploiting recently proven entropic uncertainty relations, one may bound the information leaked to an eavesdropper. We use such a bound to further derive the secret key rate, that depends only upon the conditional Shannon entropies accessible to Alice and Bob, the two honest communicating parties. We identify and experimentally demonstrate such a protocol, using only coherent states as the resource. We measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 3.5 km of fibre transmission. The second part of this thesis concerns the improvement in the transmission of a quantum state. We study two approximate implementations of a probabilistic noiseless linear amplifier (NLA): a physical implementation that truncates the working space of the NLA or a measurement-based implementation that realises the truncation by a bounded postselection filter. We do this by conducting a full analysis on the measurement-based NLA (MB-NLA), making explicit the relationship between its various operating parameters, such as amplification gain and the cut-off of operating domain. We compare it with its physical counterpart in terms of the Husimi Q-distribution and their probability of success. We took our investigations further by combining a probabilistic NLA with an ideal deterministic linear amplifier (DLA). In particular, we show that when NLA gain is strictly lesser than the DLA gain, this combination can be realised by integrating an MB-NLA in an optical DLA setup. This results in a hybrid device which we refer to as the heralded hybrid quantum amplifier. A quantum cloning machine based on this hybrid amplifier is constructed through an amplify-then-split method. We perform probabilistic cloning of arbitrary coherent states, and demonstrate the production of up to five clones, with the fidelity of each clone clearly exceeding the corresponding no-cloning limit

    Random Numbers Certified by Bell's Theorem

    Full text link
    Randomness is a fundamental feature in nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Here, inspired by earlier work on nonlocality based and device independent quantum information processing, we show that the nonlocal correlations of entangled quantum particles can be used to certify the presence of genuine randomness. It is thereby possible to design of a new type of cryptographically secure random number generator which does not require any assumption on the internal working of the devices. This strong form of randomness generation is impossible classically and possible in quantum systems only if certified by a Bell inequality violation. We carry out a proof-of-concept demonstration of this proposal in a system of two entangled atoms separated by approximately 1 meter. The observed Bell inequality violation, featuring near-perfect detection efficiency, guarantees that 42 new random numbers are generated with 99% confidence. Our results lay the groundwork for future device-independent quantum information experiments and for addressing fundamental issues raised by the intrinsic randomness of quantum theory.Comment: 10 pages, 3 figures, 16 page appendix. Version as close as possible to the published version following the terms of the journa

    Source-independent quantum random number generation

    Full text link
    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts---a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5Ă—1035\times 10^3 bit/s.Comment: 11 pages, 7 figure

    Source-device-independent heterodyne-based quantum random number generator at 17 Gbps

    Get PDF
    For many applications, quantum random number generation should be fast and independent from assumptions on the apparatus. Here, the authors devise and implement an approach which assumes a trusted detector but not a trusted source, and allows random bit generations at ~17 Gbps using off-the-shelf components
    • …
    corecore