6 research outputs found

    Synergy-based policy improvement with path integrals for anthropomorphic hands

    Get PDF
    In this work, a synergy-based reinforcement learning algorithm has been developed to confer autonomous grasping capabilities to anthropomorphic hands. In the presence of high degrees of freedom, classical machine learning techniques require a number of iterations that increases with the size of the problem, thus convergence of the solution is not ensured. The use of postural synergies determines dimensionality reduction of the search space and allows recent learning techniques, such as Policy Improvement with Path Integrals, to become easily applicable. A key point is the adoption of a suitable reward function representing the goal of the task and ensuring onestep performance evaluation. Force-closure quality of the grasp in the synergies subspace has been chosen as a cost function for performance evaluation. The experiments conducted on the SCHUNK 5-Finger Hand demonstrate the effectiveness of the algorithm showing skills comparable to human capabilities in learning new grasps and in performing a wide variety from power to high precision grasps of very small objects

    Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand

    Get PDF
    In this paper we introduce the Pisa/IIT SoftHand, a novel robot hand prototype designed with the purpose of being robust and easy to control as an industrial gripper, while exhibiting high grasping versatility and an aspect similar to that of the human hand. In the paper we briefly review the main theoretical tools used to enable such simplification, i.e. the neuroscience-based notion of soft synergies. A discussion of several possible actuation schemes shows that a straightforward implementation of the soft synergy idea in an effective design is not trivial. The approach proposed in this paper, called adaptive synergy, rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive synergy is discussed. This approach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the synthesis method of adaptive synergies, the Pisa/IIT SoftHand is described in detail. The hand has 19 joints, but only uses 1 actuator to activate its adaptive synergy. Of particular relevance in its design is the very soft and safe, yet powerful and extremely robust structure, obtained through the use of innovative articulations and ligaments replacing conventional joint design. The design and implementation of the prototype hand are shown and its effectiveness demonstrated through grasping experiments, reported also in multimedia extensio

    Experimental evaluation of Postural Synergies during Reach to Grasp with the UB Hand IV

    No full text
    In this paper, the postural synergies configuration subspace given by the fundamental eigengrasps of the UB Hand IV (University of Bologna Hand, version IV) is derived through experiments. This study is based on the kinematic structure of the robotic hand and on the taxonomy of the grasps of common objects. Experimental results show that it is possible to obtain grasp synthesis for a large set of objects both in the case of precision or power grasps by using only a very limited set of dominant eigengrasps. The tasks here presented are planned with an initial hold of the hand followed by reach and grasp phases, that are unique for each object/grasp combination, during which the robotic hand posture evolves continuously within a subset of the hand configuration space given by the two predominant eigenpostures. The paper reports the method adopted to define from experiments the postural synergies for the UB Hand IV and the results of the grasp tasks performed adopting the defined synergies

    Pattern recognition-based real-time myoelectric control for anthropomorphic robotic systems : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechatronics at Massey University, Manawatū, New Zealand

    Get PDF
    All copyrighted Figures have been removed but may be accessed via their source cited in their respective captions.Advanced human-computer interaction (HCI) or human-machine interaction (HMI) aims to help humans interact with computers smartly. Biosignal-based technology is one of the most promising approaches in developing intelligent HCI systems. As a means of convenient and non-invasive biosignal-based intelligent control, myoelectric control identifies human movement intentions from electromyogram (EMG) signals recorded on muscles to realise intelligent control of robotic systems. Although the history of myoelectric control research has been more than half a century, commercial myoelectric-controlled devices are still mostly based on those early threshold-based methods. The emerging pattern recognition-based myoelectric control has remained an active research topic in laboratories because of insufficient reliability and robustness. This research focuses on pattern recognition-based myoelectric control. Up to now, most of effort in pattern recognition-based myoelectric control research has been invested in improving EMG pattern classification accuracy. However, high classification accuracy cannot directly lead to high controllability and usability for EMG-driven systems. This suggests that a complete system that is composed of relevant modules, including EMG acquisition, pattern recognition-based gesture discrimination, output equipment and its controller, is desirable and helpful as a developing and validating platform that is able to closely emulate real-world situations to promote research in myoelectric control. This research aims at investigating feasible and effective EMG signal processing and pattern recognition methods to extract useful information contained in EMG signals to establish an intelligent, compact and economical biosignal-based robotic control system. The research work includes in-depth study on existing pattern recognition-based methodologies, investigation on effective EMG signal capturing and data processing, EMG-based control system development, and anthropomorphic robotic hand design. The contributions of this research are mainly in following three aspects: Developed precision electronic surface EMG (sEMG) acquisition methods that are able to collect high quality sEMG signals. The first method was designed in a single-ended signalling manner by using monolithic instrumentation amplifiers to determine and evaluate the analog sEMG signal processing chain architecture and circuit parameters. This method was then evolved into a fully differential analog sEMG detection and collection method that uses common commercial electronic components to implement all analog sEMG amplification and filtering stages in a fully differential way. The proposed fully differential sEMG detection and collection method is capable of offering a higher signal-to-noise ratio in noisy environments than the single-ended method by making full use of inherent common-mode noise rejection capability of balanced signalling. To the best of my knowledge, the literature study has not found similar methods that implement the entire analog sEMG amplification and filtering chain in a fully differential way by using common commercial electronic components. Investigated and developed a reliable EMG pattern recognition-based real-time gesture discrimination approach. Necessary functional modules for real-time gesture discrimination were identified and implemented using appropriate algorithms. Special attention was paid to the investigation and comparison of representative features and classifiers for improving accuracy and robustness. A novel EMG feature set was proposed to improve the performance of EMG pattern recognition. Designed an anthropomorphic robotic hand construction methodology for myoelectric control validation on a physical platform similar to in real-world situations. The natural anatomical structure of the human hand was imitated to kinematically model the robotic hand. The proposed robotic hand is a highly underactuated mechanism, featuring 14 degrees of freedom and three degrees of actuation. This research carried out an in-depth investigation into EMG data acquisition and EMG signal pattern recognition. A series of experiments were conducted in EMG signal processing and system development. The final myoelectric-controlled robotic hand system and the system testing confirmed the effectiveness of the proposed methods for surface EMG acquisition and human hand gesture discrimination. To verify and demonstrate the proposed myoelectric control system, real-time tests were conducted onto the anthropomorphic prototype robotic hand. Currently, the system is able to identify five patterns in real time, including hand open, hand close, wrist flexion, wrist extension and the rest state. With more motion patterns added in, this system has the potential to identify more hand movements. The research has generated a few journal and international conference publications

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France
    corecore