808,122 research outputs found

    Propfan experimental data analysis

    Get PDF
    A data reduction method, which is consistent with the performance prediction methods used for analysis of new aircraft designs, is defined and compared to the method currently used by NASA using data obtained from an Ames Res. Center 11 foot transonic wind tunnel test. Pressure and flow visualization data from the Ames test for both the powered straight underwing nacelle, and an unpowered contoured overwing nacelle installation is used to determine the flow phenomena present for a wind mounted turboprop installation. The test data is compared to analytic methods, showing the analytic methods to be suitable for design and analysis of new configurations. The data analysis indicated that designs with zero interference drag levels are achieveable with proper wind and nacelle tailoring. A new overwing contoured nacelle design and a modification to the wing leading edge extension for the current wind tunnel model design are evaluated. Hardware constraints of the current model parts prevent obtaining any significant performance improvement due to a modified nacelle contouring. A new aspect ratio wing design for an up outboard rotation turboprop installation is defined, and an advanced contoured nacelle is provided

    Estimating Learning Models with Experimental Data

    Get PDF
    We study the statistical properties of three estimation methods for a model of learning that is often tted to experimental data: quadratic deviation measures without unobserved heterogeneity, and maximum likelihood with and without unobserved heterogeneity. After discussing identi cation issues, we show that the estimators are consistent and provide their asymptotic distribution. Using Monte Carlo simulations, we show that ignoring unobserved heterogeneity can lead to seriously biased estimations in samples which have the typical length of actual experiments. Better small sample properties are obtained if unobserved heterogeneity is introduced. That is, rather than estimating the parameters for each individual, the individual parameters are considered random variables, and the distribution of those random variables is estimated

    Waveomics: bringing experimental data to online collaboration

    Get PDF
    Systems biology offers an interdisciplinary approach to scientific research that typically involves the collaboration of teams of experimentalists and mathematical modellers. While the importance of data standards has been recognised in facilitating exchange of data between the parties, challenges still remain regarding the practicalities of disseminating experimental data.

The introduction of novel web-based tools aimed at promoting collaborative work has provided a platform upon which scientific applications can be built. The recently released Google Wave protocol provides a facility for real-time collaboration between teams of researchers.

This work introduces a customized Robot that automatically scans text in Google Waves for experimental data identifiers, extracts corresponding experimental data from remote resources associated with such identifiers, and appends charts showing this experimental data to the Wave

    Quantum Experimental Data in Psychology and Economics

    Full text link
    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the 'disjunction effect' in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage's Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. For this reason our analysis puts forward a strong argument in favor of the validity of using a quantum formalism for modeling the considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure

    Magnetorheological landing gear: 2. Validation using experimental data

    Get PDF
    Aircraft landing gears are subjected to a wide range of excitation conditions with conflicting damping requirements. A novel solution to this problem is to implement semi-active damping using magnetorheological (MR) fluids. In part 1 of this contribution, a methodology was developed that enables the geometry of a flow mode MR valve to be optimized within the constraints of an existing passive landing gear. The device was designed to be optimal in terms of its impact performance, which was demonstrated using numerical simulations of the complete landing gear system. To perform the simulations, assumptions were made regarding some of the parameters used in the MR shock strut model. In particular, the MR fluid's yield stress, viscosity, and bulk modulus properties were not known accurately. Therefore, the present contribution aims to validate these parameters experimentally, via the manufacture and testing of an MR shock strut. The gas exponent, which is used to model the shock strut's nonlinear stiffness, is also investigated. In general, it is shown that MR fluid property data at high shear rates are required in order to accurately predict performance prior to device manufacture. Furthermore, the study illustrates how fluid compressibility can have a significant influence on the device time constant, and hence on potential control strategies

    Roy's equations and the pion-pion experimental data

    Full text link
    Roy's equations are used to check if the scalar-isoscalar pion-pion scattering amplitudes fitted to experimental data fulfill crossing symmetry conditions. It is shown that the amplitudes describing the ``down-flat'' phase shift solution satisfy crossing symmetry below 1 GeV while the amplitudes fitted to the "up-flat'' data do not. In this way the long standing "up-down" ambiguity in the phenomenological determination of the scalar-isoscalar pion-pion amplitudes has been resolved confirming the independent result of the recent joint analysis of the pi+pi- and pi0pi0 data.Comment: 6 pages, 2 figures, talk given at Tenth International Conference on Hadron Spectroscopy (Hadron'03), Aschaffenburg, Germany, August 31 - September 6 200
    • …
    corecore