8,294 research outputs found

    Linearized large signal modeling, analysis, and control design of phase-controlled series-parallel resonant converters using state feedback

    Get PDF
    This paper proposes a linearized large signal state-space model for the fixed-frequency phase-controlled series-parallel resonant converter. The proposed model utilizes state feedback of the output filter inductor current to perform linearization. The model combines multiple-frequency and average state-space modeling techniques to generate an aggregate model with dc state variables that are relatively easier to control and slower than the fast resonant tank dynamics. The main objective of the linearized model is to provide a linear representation of the converter behavior under large signal variation which is suitable for faster simulation and large signal estimation/calculation of the converter state variables. The model also provides insight into converter dynamics as well as a simplified reduced order transfer function for PI closed-loop design. Experimental and simulation results from a detailed switched converter model are compared with the proposed state-space model output to verify its accuracy and robustness

    Sensorless multi-loop control of phase-controlled series-parallel resonant converter

    Get PDF
    This paper proposes a multi-loop controller for the phase-controlled series-parallel resonant converter. Output voltage is solely measured for control and inner loop is used to enhance closed loop stability and dynamic performance compared to single-loop control. No additional sensors are used for inner loop variables. These are estimated using a Kalman filter, based on a linearized converter model. The advantage of this sensorless scheme is not only reducing the number of sensors but more significantly providing an alternative to sensing high frequency resonant tank variables which require high microcontroller resolution in real time. First, the converter non-linear large signal behavior is linearized using a state feedback based scheme. Consequently, the converter preserves its large signal characteristics while modeled as a linear system. Comparison is made between the most suitable state variables for feedback, according to a stability study. Finally, simulation and experimental results are demonstrated to validate the improved system performance in contrast with single-loop control

    Polynomial Curve Slope Compensation for Peak-Current-Mode-Controlled Power Converters

    Get PDF
    Linear ramp slope compensation (LRC) and quadratic slope compensation (QSC) are commonly implemented in peak-current-mode-controlled dc-dc converters in order to minimize subharmonic and chaotic oscillations. Both compensating schemes rely on the linearized state-space averaged model (LSSA) of the converter. The LSSA ignores the impact that switching actions have on the stability of converters. In order to include switching events, the nonlinear analysis method based on the Monodromy matrix was introduced to describe a complete-cycle stability. Analyses on analog-controlled dc-dc converters applying this method show that system stability is strongly dependent on the change of the derivative of the slope at the time of switching instant. However, in a mixed-signal-controlled system, the digitalization effect contributes differently to system stability. This paper shows a full complete-cycle stability analysis using this nonlinear analysis method, which is applied to a mixed-signal-controlled converter. Through this analysis, a generalized equation is derived that reveals for the first time the real boundary stability limits for LRC and QSC. Furthermore, this generalized equation allows the design of a new compensating scheme, which is able to increase system stability. The proposed scheme is called polynomial curve slope compensation (PCSC) and it is demonstrated that PCSC increases the stable margin by 30% compared to LRC and 20% to QSC. This outcome is proved experimentally by using an interleaved dc-dc converter that is built for this work

    Discussion of the technology and research in fuel injectors common rail system

    Get PDF
    Common rail is one of the most important components in a diesel and gasoline direct injection system. It features a high-pressure (100 bar) fuel rail feeding solenoid valves, as opposed to a low-pressure fuel pump feeding unit injectors. Third-generation common rail diesels now feature piezoelectric injectors for increased precision, with fuel pressures up to 2,500 bar. The purpose of this review paper is to investigate the technology and research in fuel injectors common rail system. This review paper focuses on component of common rail injection system, pioneer of common rail injection, characteristics of common rail injection system, method to reduce smoke and NOx emission simultaneously and impact of common rail injection system. Based on our research, it can be concluded that common rail injection gives many benefit such as good for the engine performance, safe to use, and for to reduce the emission of the vehicle. Fuel injection common rail system is the modern technology that must be developed. Nowadays, our earth is polluting by vehicle output such as smoke. If the common rail system is developed, it can reduce the pollution and keep our atmosphere clean and safe

    Predictive voltage control of phase-controlled series-parallel resonant converter

    Get PDF

    Nonlinear Analysis and Control of Interleaved Boost Converter Using Real-Time Cycle to Cycle Variable Slope Compensation

    Get PDF
    Switched-mode power converters are inherently nonlinear and piecewise smooth systems that may exhibit a series of undesirable operations that can greatly reduce the converter's efficiency and lifetime. This paper presents a nonlinear analysis technique to investigate the influence of system parameters on the stability of interleaved boost converters. In this approach, Monodromy matrix that contains all the comprehensive information of converter parameters and control loop can be employed to fully reveal and understand the inherent nonlinear dynamics of interleaved boost converters, including the interaction effect of switching operation. Thereby not only the boundary conditions but also the relationship between stability margin and the parameters given can be intuitively studied by the eigenvalues of this matrix. Furthermore, by employing the knowledge gained from this analysis, a real-Time cycle to cycle variable slope compensation method is proposed to guarantee a satisfactory performance of the converter with an extended range of stable operation. Outcomes show that systems can regain stability by applying the proposed method within a few time periods of switching cycles. The numerical and analytical results validate the theoretical analysis, and experimental results verify the effectiveness of the proposed approach

    PFC Topologies for AC to DC Converters in DC Micro-Grid

    Get PDF
    With increasing dominance of renewable energy resources and DC household appliances, the novelty of DC micro grid is attracting significant attention. The key interface between the main supply grid and DC micro grid is AC to DC converter. The conventional AC to DC converter with large output capacitor introduces undesirable power quality problems in the main supply current. It reduces system efficiency due to low power factor and high harmonic distortion. Power Factor Correction (PFC) circuits are used to make supply currents sinusoidal and in-phase with supply voltages. This paper presents different PFC topologies for single phase AC to DC converters which are analyzed for power factor (PF), total harmonic distortion (THD) and system efficiency by varying output power. Two-quadrant shunt active filter topology attains a power factor of 0.999, 3.03% THD and 98% system efficiency. Output voltage regulation of the presented active PFC topologies is simulated by applying a step load. Two-quadrant shunt active filter achieves better output voltage regulation compared to other topologies and can be used as grid interface

    A general approach to synthesis and analysis of quasi-resonant converters

    Get PDF
    A method for systematic synthesis of quasi-resonant (QR) topologies by addition of resonant elements to a parent pulse-width modulation (PWM) converter network is proposed. It is found that there are six QR classes with two resonant elements, including two novel classes. More complex QR converters can be generated by a recursive application of the synthesis method. Topological definitions of all known and novel QR classes follow directly from the synthesis method and topological properties of PWM parents. The synthesis of QR converters is augmented by a study of possible switch realizations and operating modes. In particular, it is demonstrated that a controllable rectifier can be used to accomplish the constant-frequency control in all QR classes. Links between the QR converters and the underlying PWM networks are extended to general DC and small-signal AC models in which the model of the PWM parent is explicitly exposed. Results of steady-state analyses of selected QR classes and operating modes include boundaries of operating regions, DC characteristics, a comparison of switching transitions and switch stresses, and a discussion of relevant design trade-offs

    Robust and fast sliding-mode control for a DC-DC current-source parallel-resonant converter

    Get PDF
    Modern DC-DC resonant converters are normally built around a voltage-source series-resonant converter. This study aims to facilitate the practical use of current-source parallel-resonant converters due to their outstanding properties. To this end, this study presents a sliding-mode control scheme, which provides the following features to the closed-loop system: (i) high robustness to external disturbances and parameter variations and (ii) fast transient response during large and abrupt load changes. In addition, a design procedure for determining the values of the control parameters is presented. The theoretical contributions of this study are experimentally validated by selected tests on a laboratory prototype.Peer ReviewedPreprin
    • …
    corecore