349 research outputs found

    RTLabOS Dissemination Activities:RTLabOS D4.2

    Get PDF

    DESIGN OF REAL-TIME FUZZY LOGIC PSS BASED ON PMUs FOR DAMPING LOW FREQUENCY OSCILLATIONS

    Get PDF
    Poorly damped low frequency oscillations is one of the main problems threatening safe and stable operation of the interconnected power systems and reducing the capability of transmission the power. The generator's excitation system has been supplemented with the Power System Stabilizer (PSS) in order to improve the damping of these low oscillations. In the latest smart power grids, the Phasor Measurement Units (PMUs) become a fundamental element in the monitoring, protection and control applications as PMU signals are more accurate than the conventional measurement units and real time GPS stamped. In this study, Fuzzy Power System Stabilizer (FPSS) has been designed and its performance in damping inter-are oscillations compared with the conventional PSS (CPSS) based on the simulation with MATLAB/Simulink model. The results of the simulation with the Simulink model proved that the performance of the designed FPSS in damping inter-area oscillation is better than the CPSS. One of the main features of fuzzy controller is that it doesn't require mathematical modeling as it is designed based on the time-domain and the operator experience while, in contrast, the conventional PSS requires to be designed in the frequency domain. Real Time Digital Simulator (RTDS) has been used to develop the real-time models of the test systems. The time-domain simulations with the RTDS model when the system subjected to the large disturbance (three-phase to ground fault) have been performed to show that the designed FPSS improved the damping of the oscillations effectively. The simulation results have been verified by modal analysis

    DESIGN OF PMU BASED REAL TIME FUZZY LOGIC SVC DAMPING CONTROLLER TO ENHANCE INTER- AREA OSCILLATION DAMPING

    Get PDF
    Inter-area oscillation has been identified as a significant problem in the utility systems due to the damages that it may cause as well as the limitation introduced to power transfer capability. A contemporary solution to this issue is by adding power system stabilizer (PSS) to the generator's automatic voltage regulator (AVR). Although nowadays most of the generators are equipped with conventional PSSs, their effects are only noticed on the damping of local oscillations and they do not contribute effectively on damping the inter-area oscillations. Adding auxiliary signals (stabilizing signals) to Flexible AC Transmission System (FACTS) device such as Static VAr Compensator (SVC)&Static Synchronous Compensator (STATCOM) would help in extending the power transfer capability and enhancing the voltage. The stabilizing signals can be derived from damping controller. In this thesis, a Phasor Measurement Unit (PMU) based real-time, Hardware in the Loop, fuzzy logic shunt FACTS controller is proposed to ensure a satisfactory damping of inter-area oscillations which will enhance system stability and increase power transfer capability. The concerned power system has been modeled using Real-Time Digital Simulator (RTDS), where the designed Hardware-in-the-loop damping controller was tested for the sake of evaluating the effectiveness of the proposed controller in enhancing the damping of inter-area oscillations. Time-domain simulations results have shown that the designed Fuzzy damping controller enhance the damping of inter-area oscillations of interconnected power system. This study is aimed to analyze the potential applications of PMU in the interconnected power systems of GCC smart power grid. These systems are expected to face a stability problem of the inter-area mode of oscillations due to the weak tie-lines that connect the systems

    Synchronized Measurements Processing Methodology as a Tool for Monitoring Power System Oscillations

    Get PDF
    Monitoring, protection and control of the electrical power system require the design and implementation of specific applications that are based on analytical methods for the processing of synchronized measurements. Therefore, it is necessary to select the adequate type of mathematical analysis that best suits the requirements of a particular application. This paper describes analytical methods used for the processing of synchronized measured electrical quantities for detection and analysis of the variety of oscillations. The oscillatory phenomena of active power and frequency as a case study of one disturbance in the power system are analyzed. The results of processing the actual synchronized measurements for that case study are presented afterwards. Different data processing methods (spectral analysis methods) are compared, and finally, a recommendation for appropriate methods for processing synchronized measurements in application for recognition, processing and alarming of oscillations of active power is given

    Analysis of communication network challenges for synchrophasor-based wide-area applications

    Full text link

    Synchrophasors: Multilevel Assessment and Data Quality Improvement for Enhanced System Reliability

    Get PDF
    . This study presents a comprehensive framework for testing and evaluation of Phasor Measurement Units (PMUs) and synchrophasor systems under normal power system operating conditions, as well as during disturbances such as faults and transients. The proposed framework suggests a performance assessment to be conducted in three steps: (a) type testing: conducted in the synchrophasor calibration laboratory according to accepted industrial standards; (b) application testing: conducted to evaluate the performance of the PMUs under faults, transients, and other disturbances in power systems; (c) end-to-end system testing: conducted to assess the risk and quantify the impact of measurement errors on the applications of interest. The suggested calibration toolset (type testing) enables performance characterization of different design alternatives in a standalone PMU (e.g., length of phasor estimation windows, filtering windows, reporting rates, etc.). In conjunction with the standard performance requirements, this work defines new metrics for PMU performance evaluations under any static and dynamic conditions that may unfold in the grid. The new metrics offer a more realistic understanding of the overall PMU performance and help users choose the appropriate device/settings for the target applications. Furthermore, the proposed probabilistic techniques quantify the PMU accuracy to various test performance thresholds specified by corresponding IEEE standards, rather than having only the pass/fail test outcome, as well as the probability of specific failures to meet the standard requirements defined in terms of the phasor, frequency, and rate of change of frequency accuracy. Application testing analysis encompasses PMU performance evaluation under faults and other prevailing conditions, and offers a realistic assessment of the PMU measurement errors in real-world field scenarios and reveals additional performance characteristics that are crucial for the overall application evaluation. End-to-end system tests quantify the impact of synchrophasor estimation errors and their propagation from the PMU towards the end-use applications and evaluate the associated risk. In this work, extensive experimental results demonstrate the advantages of the proposed framework and its applicability is verified through two synchrophasor applications, namely: Fault Location and Modal Analysis. Finally, a data-driven technique (Principal Component Pursuit) is proposed for the correction and completion of the synchrophasor data blocks, and its application and effectiveness is validated in modal analyzes

    Intelligent Control and Protection Methods for Modern Power Systems Based on WAMS

    Get PDF
    corecore