2,855 research outputs found

    Research on organic agriculture in the Netherlands : organisation, methodology and results

    Get PDF
    Chapters: 1. Organic agriculture in the Netherlands; 2. Dutch research on organic agriculture: approaches and characteristics; 3. Dutch knowledge infrastructure for organic agricultur'; 4. Sustainable systems; 5. Good soil: a good start; 6. Robust varieties and vigorous propagation material; 7. Prevention and control of weeds, pests and diseases; 8. Health and welfare of organic livestock; 9. Animal production and feeding; 10. Special branches: organic greenhouse production, bulbs, ornamentals and aquaculture; 11. Healthfulness and quality of products; 12. Economy, market and chain; 13. People and society. A publication of Wageningen UR and Louis Bolk Institut

    Effects of anti-transpirants on transpiration and energy use in greenhouse cultivation

    Get PDF
    Greenhouse production in North-West Europe consumes a lot of energy. The energy is needed for heating the greenhouse and controlling air humidity. Transpiration of a crop increases the energy use. The aim of this study was to explore the possibilities for the application of anti-transpirants to save energy by reducing crop transpiration without reducing crop yield. Literature and model calculations were used to explore the effects of increased leaf resistances on transpiration, energy use and production in tomato, cucumber and sweet pepper. In literature a large number of compounds are described that act as anti-transpirant. A two to five fold increase in stomatal resistance can be expected from treatment with anti-transpirants. Model calculations for tomato showed that increasing the stomatal resistance (from 2 to 5 times) throughout the whole year leads to substantial yield reduction: crop growth was reduced by 6-19%, while transpiration by 15-42% and consequently energy use by 9-16%. However, in the winter period (beginning of October/end of March) the growth reduction was only 0.3-1.3%, as in this period light levels are low and CO2 concentrations in the greenhouse are relatively high. Raising the (maximum) set-point for CO2 concentration from 1000 ppm to 3000 ppm, increased the actual concentration during day-time from 892 to 1567 ppm (flue gases were the only source of CO2). When the application of anti-transpirants was combined with raising the set-point for CO2 concentration, the model showed no growth reduction due to the application of anti-transpirants, while the annual energy use was reduced by 5.5-10.4% in tomato. Similar results were obtained for sweet pepper (5-9% energy saving) and cucumber (2-5% energy saving). These model calculations show that increasing stomatal resistance by anti-transpirants during the winter period may potentially save a substantial amount of energy (2-10%), without affecting yield of vegetables such as tomato, cucumber and sweet pepper. It is concluded that increasing the stomatal resistance by anti-transpirants in wintertime may lead to substantial energy saving due to the reduced transpiration and need for humidity management, without yield reduction. Such model calculations are useful to analyse beforehand the chances of a good combination of energy saving and yield loss of a possible application. Experiments will be needed to verify the result

    New technologies developed for conventional growing systems: possibilities for application in organic systems

    Get PDF

    Energy saving: From engineering to crop management

    Get PDF
    In greenhouse horticulture, energy costs form an increasingly larger part of the total production costs. Energy is primarily used for temperature control, reduction of air humidity, increase of light intensity and CO2 supply. Use of fossil energy can be reduced by limiting the energy demand of the system and decreasing energy losses, by intelligent climate control, by increasing the energy efficiency of the crop and by replacing fossil energy sources by sustainable ones. Energy requirement of the greenhouse can be lowered up to 20-30% by using greenhouse covers with higher insulating values and the use of energy screens. A prerequisite is that these materials should not involve considerable light loss, since this would result in a loss of production. In energy efficient greenhouse concepts, durable energy sources should be included. In (semi-)closed greenhouses, the excess of solar energy in summer is collected and stored in aquifers to be reused in winter to heat the greenhouse. Ventilation windows are closed, with specific benefits to the crop: high CO2 levels can be maintained, and temperature and humidity can be controlled to the needs of the crop. Development of new greenhouse concepts is ongoing. Current examples are greenhouse systems which convert natural energy sources such as solar energy into high-value energy such as electricity. Given a certain technical infrastructure of the greenhouse, energy consumption can be further reduced by energy efficient climate control and crop management. Essential elements are to allow fluctuating temperatures, lower crop transpiration, allow higher humidities, make efficient use of light and create fluent transitions in set points. Consequences for plant growth are related to rate of development, photosynthesis, assimilate distribution, transpiration and the occurrence of diseases or disorders. Since processes involved are complex, knowledge exchange between researchers and growers is essential to realize the goals set to reduce the energy consumption

    Emissions of plant protection products from glasshouses to surface water in The Netherlands

    Get PDF
    Momenteel wordt een vast percentage van 0.1% gebruikt voor de emissie van gewasbeschermingsmiddelen vanuit kassen naar het oppervlaktewater. Metingsgegevens van waterschappen wijzen erop dat de emissie van gewasbeschermingsmiddelen en biociden naar het oppervlaktewater hoger zijn dan aangenomen wordt in de toelatingsprocedure. Dit rapport onderzoekt of nieuwe benaderingen nodig zijn. De onderzoeksresultaten duiden er op dat de werkelijke emissie sterk verschilt tussen verschillende gewassen, teeltsystemen en toedieningswijzen. Dit zou in de evaluatie van de emissie meegenomen moeten worden

    Innovation in Plant-Greenhouse Interactions and Crop Management

    Get PDF
    (Semi)-closed greenhouses allow for better control of climate conditions compared to conventional greenhouses. To make the high investments for such greenhouses economically feasible, substantial yield increases are necessary. In north-Europe supplementary assimilation light in greenhouse horticulture is increasingly used to improve yield and product quality to meet market demands for year-round production and to obtain a more regular labor demand throughout the year. Using inter-lighting instead of lights only on top of the crop, and Light Emitting Diodes (LEDs), could increase substantially light and energy efficiency. As soon as LEDs will reach high enough efficiency and feasible price, they are expected to replace high pressure sodium lamps in greenhouse horticulture. Another important issue is the choice of the greenhouse cover which should be optimized from the crop point of view. A cover with high transmission of light, but low transmission of NIR, results in a better climate during the warm season (reduced temperatures, less crop transpiration, higher CO2-concentration possible because of reduced ventilation demand). Increasing the diffusive power of the cover material could result in a better distribution of the radiation over the crop canopy, therefore leading to substantial increase in absorbed radiation (up to 20% for highly diffusive covers) and improving radiation use efficiency and yield. Under these new conditions (high CO2 and high light levels) other genotypes than the present cultivars may be superior. However, the possible effect of breeding especially for these new conditions is still little investigated. Under improved crop management, maintaining leaf area index high enough and controlling source-sink balance is discussed. In conclusion, there are a lot of possibilities to further improve yield and quality of greenhouse produce, and meanwhile reduce the input of fossil fuel energy

    Economic and environmental analysis of energy efficiency measures in agriculture. Case Studies and trade offs.

    Get PDF
    This report is the result of the collaboration of the partners of the AGREE work-package “Economic and environmental analysis”, which is based on case study analyses of the partners in seven countries of the EU. The case studies show economic and environmental trade-offs in the different regions in the EU, for which each partner is responsible. Nevertheless prior to the reporting of the case studies an intensive discussion on a common methodological approach has been accomplished and applied to the case studies. The case studies show a wide range of different perspectives of energy efficiency in agriculture, but they are all based on the common methodology presented in Chapter 3. In Chapter 4, the case studies are presented, with authors indicated at the beginning of each section. Each section of Chapter 4 ends with a synthesis analysis of the results from the different case studies. Chapter 5 summarizes and concludes the report by highlighting the major findings of the analyses. The report builds upon the “State of the Art in Energy Efficiency in Europe” published separately by the AGREE consortium (Gołaszewski et al. 2012), which shows the status quo of energy use and possible energy efficiency measures in agriculture across different production systems and regions in Europe. This report presents an economic and environmental analysis based on in-depth case studies which show the potential for, and constraints on, energy efficiency measures in agriculture with respect to the specific environments in Europe

    Dehumidification of greenhouses

    Get PDF
    Dehumidification is an essential part of greenhouse climate control. High humidity is a cause of diseases which ultimately reduce the quantity and quality of production. The humidity surrounding the crop differs since the air temperature in the greenhouse is not homogenous. Humidity control increases energy consumption during heating periods. The various methods of dehumidification were evaluated from an economical, practical, and energetic point of view. It was concluded that the ventilation with outside air with heat recovery is the most economical, practical, and energy-saving method. Ventilation driven by buoyancy and wind cannot be controlled accurately though and gives rise to a heterogenic greenhouse climate. Therefore, the dehumidifying ventilation has to be mechanically controlled and the incoming air has to be distributed evenly over the greenhouse. Using this system the humidity can be controlled accurately in an energy-friendly way and the climate is more homogenous. For more sustainable greenhouses with lower heat demand realisable in the future this method will be indispensable. <br/
    corecore