51,941 research outputs found

    Maximizing Profit in Green Cellular Networks through Collaborative Games

    Full text link
    In this paper, we deal with the problem of maximizing the profit of Network Operators (NOs) of green cellular networks in situations where Quality-of-Service (QoS) guarantees must be ensured to users, and Base Stations (BSs) can be shared among different operators. We show that if NOs cooperate among them, by mutually sharing their users and BSs, then each one of them can improve its net profit. By using a game-theoretic framework, we study the problem of forming stable coalitions among NOs. Furthermore, we propose a mathematical optimization model to allocate users to a set of BSs, in order to reduce costs and, at the same time, to meet user QoS for NOs inside the same coalition. Based on this, we propose an algorithm, based on cooperative game theory, that enables each operator to decide with whom to cooperate in order to maximize its profit. This algorithms adopts a distributed approach in which each NO autonomously makes its own decisions, and where the best solution arises without the need to synchronize them or to resort to a trusted third party. The effectiveness of the proposed algorithm is demonstrated through a thorough experimental evaluation considering real-world traffic traces, and a set of realistic scenarios. The results we obtain indicate that our algorithm allows a population of NOs to significantly improve their profits thanks to the combination of energy reduction and satisfaction of QoS requirements.Comment: Added publisher info and citation notic

    Engineering simulations for cancer systems biology

    Get PDF
    Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico models become a scientific instrument for investigation, and so should be developed to high standards, be carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a framework that supports developing simulations as scientific instruments, and we select cancer systems biology as an exemplar domain, with a particular focus on cellular signalling models. We consider the challenges of lack of data, incomplete knowledge and modelling in the context of a rapidly changing knowledge base. Our framework comprises a process to clearly separate scientific and engineering concerns in model and simulation development, and an argumentation approach to documenting models for rigorous way of recording assumptions and knowledge gaps. We propose interactive, dynamic visualisation tools to enable the biological community to interact with cellular signalling models directly for experimental design. There is a mismatch in scale between these cellular models and tissue structures that are affected by tumours, and bridging this gap requires substantial computational resource. We present concurrent programming as a technology to link scales without losing important details through model simplification. We discuss the value of combining this technology, interactive visualisation, argumentation and model separation to support development of multi-scale models that represent biologically plausible cells arranged in biologically plausible structures that model cell behaviour, interactions and response to therapeutic interventions

    A multi-view approach to cDNA micro-array analysis

    Get PDF
    The official published version can be obtained from the link below.Microarray has emerged as a powerful technology that enables biologists to study thousands of genes simultaneously, therefore, to obtain a better understanding of the gene interaction and regulation mechanisms. This paper is concerned with improving the processes involved in the analysis of microarray image data. The main focus is to clarify an image's feature space in an unsupervised manner. In this paper, the Image Transformation Engine (ITE), combined with different filters, is investigated. The proposed methods are applied to a set of real-world cDNA images. The MatCNN toolbox is used during the segmentation process. Quantitative comparisons between different filters are carried out. It is shown that the CLD filter is the best one to be applied with the ITE.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Science Foundation of China under Innovative Grant 70621001, Chinese Academy of Sciences under Innovative Group Overseas Partnership Grant, the BHP Billiton Cooperation of Australia Grant, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050 and the Alexander von Humboldt Foundation of Germany
    • …
    corecore