5 research outputs found

    Experimental Robot Model Adjustments Based on Force-Torque Sensor Information

    Get PDF
    The computational complexity of humanoid robot balance control is reduced through the application of simplified kinematics and dynamics models. However, these simplifications lead to the introduction of errors that add to other inherent electro-mechanic inaccuracies and affect the robotic system. Linear control systems deal with these inaccuracies if they operate around a specific working point but are less precise if they do not. This work presents a model improvement based on the Linear Inverted Pendulum Model (LIPM) to be applied in a non-linear control system. The aim is to minimize the control error and reduce robot oscillations for multiple working points. The new model, named the Dynamic LIPM (DLIPM), is used to plan the robot behavior with respect to changes in the balance status denoted by the zero moment point (ZMP). Thanks to the use of information from force-torque sensors, an experimental procedure has been applied to characterize the inaccuracies and introduce them into the new model. The experiments consist of balance perturbations similar to those of push-recovery trials, in which step-shaped ZMP variations are produced. The results show that the responses of the robot with respect to balance perturbations are more precise and the mechanical oscillations are reduced without comprising robot dynamicsThe research leading to these results received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. Fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU

    Service Robots in Catering Applications: A Review and Future Challenges.

    Get PDF
    “Hello, I’m the TERMINATOR, and I’ll be your server today”. Diners might soon be feeling this greeting, with Optimus Prime in the kitchen and Wall-E then sending your order to C-3PO. In our daily lives, a version of that future is already showing up. Robotics companies are designing robots to handle tasks, including serving, interacting, collaborating, and helping. These service robots are intended to coexist with humans and engage in relationships that lead them to a better quality of life in our society. Their constant evolution and the arising of new challenges lead to an update of the existing systems. This update provides a generic vision of two questions: the advance of service robots, and more importantly, how these robots are applied in society (professional and personal) based on the market application. In this update, a new category is proposed: catering robotics. This proposal is based on the technological advances that generate new multidisciplinary application fields and challenges. Waiter robots is an example of the catering robotics. These robotic platforms might have social capacities to interact with the consumer and other robots, and at the same time, might have physical skills to perform complex tasks in professional environments such as restaurants. This paper explains the guidelines to develop a waiter robot, considering aspects such as architecture, interaction, planning, and executionpost-print13305 K

    Aplicación de algoritmos bioinspirados basados en visión por computador para la detección de equilibrio de robots humanoides

    Get PDF
    Existen gran cantidad de estudios que señalan la importancia de la visión en seres humanos para el control del equilibrio. El objeto de este proyecto es sentar las bases y analizar la viabilidad de la utilización de sistemas bioinspirados basados en visión por computador como herramienta para el control del equilibrio de robots humanoides. El presente proyecto realiza una revisión del estado del arte y analiza qué algoritmos existentes y disponibles utilizados para la obtención de la posición en tiempo real mediante visión por computador resultan interesantes de cara a ser implementados para control del equilibrio. Optándose por implementar el algoritmo Fovis de odometría visual y el método iterativo de resolución del problema “Perspective-n-Point”. Se han realizado una serie de pruebas con el robot humanoide TEO de la Universidad Carlos III de Madrid. Los resultados obtenidos por ambos algoritmos fueron comparados entre ellos y con los obtenidos por el sensor inercial actualmente utilizado por TEO para tareas de control de equilibrio. Los resultados obtenidos por Fovis en las pruebas llevan a concluir que la odometría visual representa una opción a tener en cuenta para el control del equilibrio de robots humanoides, abriendo una vía a futuros trabajos. Este trabajo forma parte de un proyecto más amplio que busca utilizar el robot humanoide TEO para imitar el comportamiento de un camarero, para lo cual el control de la postura corporal y el equilibrio son factores de gran relevancia.There exist many studies that evidence the important role that vision plays on balance control in human beings. The aim of this project is to lay the groundwork and analyze the viability of using bioinspired systems based on computer vision in order to control balance on humanoid robots. This Project makes an state of art revission and analyzes wich of the existant and available real time pose estimation algorithms fit for being used on balance control tasks on humanoid robots. Odometry visual algorithm Fovis and iterative “Perspective-n-Point” problem solver were chosen to be implemented. Several tests were done in humanoid robot TEO of University Carlos III of Madrid. A comparission between both method’s results was done and also with current inertial sensor used by TEO for balance control tasks. The results obtained by Fovis lead to conclude that visual odometry represents a good option for balance control tasks on humanoid robots, laying the ground for further work. This work is carried out within the framework of a bigger project that looks for using humanoid robot TEO to imitate a waiter’s behavior, for that objective pose and balance control are quite relevant issues.Ingeniería Electrónica Industrial y Automátic
    corecore