3,486 research outputs found

    Discrete-time sliding mode control of high precision linear drive using frictional model

    Get PDF
    The paper deals with high precision motion control of linear drive system. The accuracy and behavior of the linear drive system are highly affected by the non-linear frictional component compromising of stiction, viscous and stribeck effect present in the system especially in the vicinity of zero velocity. In order to achieve the high accuracy and motion it is mandatory to drive our system with low velocity resulting in many non linear phenomena like tracking error, limit cycles and undesired stick-slip motion etc. This paper discuss the design and implementation of discrete time sliding mode control along with the implementation of dynamic frictional model in order to estimate and compensate the disturbance arising due to frictional component. Experimental results are presented to illustrate the effectiveness and achievable control performance of the proposed scheme

    Continuous time controller based on SMC and disturbance observer for piezoelectric actuators

    Get PDF
    Abstract – In this work, analog application for the Sliding Mode Control (SMC) to piezoelectric actuators (PEA) is presented. DSP application of the algorithm suffers from ADC and DAC conversions and mainly faces limitations in sampling time interval. Moreover piezoelectric actuators are known to have very large bandwidth close to the DSP operation frequency. Therefore, with the direct analog application, improvement of the performance and high frequency operation are expected. Design of an appropriate SMC together with a disturbance observer is suggested to have continuous control output and related experimental results for position tracking are presented with comparison of DSP and analog control application

    Identification and model-based compensation of Striebeck friction

    Get PDF
    The paper deals with the measurement, identification and compensation of low velocity friction in positioning systems. The introduced algorithms are based on a linearized friction model, which can easily be introduced in tracking control algorithms. The developed friction measurement and compensation methods can be implemented in simple industrial controller architectures, such as microcontrollers. Experimental measurements are provided to show the performances of the proposed control algorithm

    Nonlinear Discrete Observer for Flexibility Compensation of Industrial Robots

    Get PDF
    This paper demonstrates the solutions of digital observer implementation for industrial applications. A nonlinear high-gain discrete observer is proposed to compensate the tracking error due to the flexibility of robot manipulators. The proposed discrete observer is obtained by using Euler approximate discretization of the continuous observer. A series of experimental validations have been carried out on a 6 DOF industrial manipulator during a Friction Stir Welding process. The results showed good performance of discrete observer and the observer based compensation has succeed to correct the positioning error in real-time implementation.ANR COROUSS

    Identification of the Servomechanism used for micro-displacement

    Get PDF
    Friction causes important errors in the control of small servomechanism and should be determined with precision in order to increase the system performance. This paper describes the method to identify the model parameters of a small linear drive with ball-screw. Two kinds of friction models will be applied for the servomechanism looking to rise its micropositioning abilities. The first one includes the static, viscous and Stribeck friction with hysteresis, and the second one uses the Lugre model. The results will be compared taking into account the criterion error, the accuracy and the normalized mean-square-error of the identified mechanical parameters. The coefficients of the models are identified by a recursive identification method using data acquisition and special filtering technics. The least square identification method is used in this paper in order to establish the motor parameters used as initial condition of the recursive estimation method. Computer simulations and experimental results demonstrate the efficiency of the proposed model

    Motion stabilization in the presence of friction and backlash: a hybrid system approach

    Get PDF
    In this paper a hybrid system approach is considered to deal with backlash and friction induced nonlinearities in mechanical control systems. To describe the low velocity frictional behaviour a linearized friction model is proposed. The novelty of this study is that based on the introduced friction model, the stability theorems developed for hybrid systems can directly be applied for controller design of mechanical systems in the presence of Stribeck friction and backlash. During the controller design it is assumed that the size of the backlash gap is unknown and the load side position and velocity cannot be measured. For motion control an LQ controller is applied. A condition is formulated for the control law parameters to guarantee the asymptotic stability of the control system. Simulation measurements were performed to confirm the theoretical results

    Control of limit cycling in frictional mechanical systems

    Get PDF
    +116hlm.;24c

    Discrete sliding mode control of piezo actuator in nano-scale range

    Get PDF
    In this paper Discrete Sliding Mode Control (SMC) of Piezo actuator is demonstrated in order to achieve a very high accuracy in Nano-scale with the desired dynamics. In spite of the fast dynamics of the Piezo actuator the problem of chattering is eliminated with the SMC control structure. The Piezo actuator suffers from hysteresis loop which is the inherent property and it gives rise to the dominant non-linearity in the system. The proposed SMC control structure has been proved to deliver chattering free motion along with the compensation of the non linearity present due to hysteresis in the system. To further enhance the accuracy of the closed loop system and to be invariant to changes in the plant parameters a robust disturbance observer is designed on SMC framework by taking into consideration the lumped nominal plant parameters. Experimental results for closed loop position are presented in order to verify the Nano-scale accuracy
    corecore