1,070 research outputs found

    Managing Price Uncertainty in Prosumer-Centric Energy Trading: A Prospect-Theoretic Stackelberg Game Approach

    Full text link
    In this paper, the problem of energy trading between smart grid prosumers, who can simultaneously consume and produce energy, and a grid power company is studied. The problem is formulated as a single-leader, multiple-follower Stackelberg game between the power company and multiple prosumers. In this game, the power company acts as a leader who determines the pricing strategy that maximizes its profits, while the prosumers act as followers who react by choosing the amount of energy to buy or sell so as to optimize their current and future profits. The proposed game accounts for each prosumer's subjective decision when faced with the uncertainty of profits, induced by the random future price. In particular, the framing effect, from the framework of prospect theory (PT), is used to account for each prosumer's valuation of its gains and losses with respect to an individual utility reference point. The reference point changes between prosumers and stems from their past experience and future aspirations of profits. The followers' noncooperative game is shown to admit a unique pure-strategy Nash equilibrium (NE) under classical game theory (CGT) which is obtained using a fully distributed algorithm. The results are extended to account for the case of PT using algorithmic solutions that can achieve an NE under certain conditions. Simulation results show that the total grid load varies significantly with the prosumers' reference point and their loss-aversion level. In addition, it is shown that the power company's profits considerably decrease when it fails to account for the prosumers' subjective perceptions under PT

    When Mobile Blockchain Meets Edge Computing

    Full text link
    Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications, e.g., finance, healthcare, and logistics, its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data, i.e., a block, to the blockchain. Solving the proof-of-work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then, we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin

    Traffic Optimization For a Mixture of Self-interested and Compliant Agents

    Full text link
    This paper focuses on two commonly used path assignment policies for agents traversing a congested network: self-interested routing, and system-optimum routing. In the self-interested routing policy each agent selects a path that optimizes its own utility, while the system-optimum routing agents are assigned paths with the goal of maximizing system performance. This paper considers a scenario where a centralized network manager wishes to optimize utilities over all agents, i.e., implement a system-optimum routing policy. In many real-life scenarios, however, the system manager is unable to influence the route assignment of all agents due to limited influence on route choice decisions. Motivated by such scenarios, a computationally tractable method is presented that computes the minimal amount of agents that the system manager needs to influence (compliant agents) in order to achieve system optimal performance. Moreover, this methodology can also determine whether a given set of compliant agents is sufficient to achieve system optimum and compute the optimal route assignment for the compliant agents to do so. Experimental results are presented showing that in several large-scale, realistic traffic networks optimal flow can be achieved with as low as 13% of the agent being compliant and up to 54%

    On the Inducibility of Stackelberg Equilibrium for Security Games

    Full text link
    Strong Stackelberg equilibrium (SSE) is the standard solution concept of Stackelberg security games. As opposed to the weak Stackelberg equilibrium (WSE), the SSE assumes that the follower breaks ties in favor of the leader and this is widely acknowledged and justified by the assertion that the defender can often induce the attacker to choose a preferred action by making an infinitesimal adjustment to her strategy. Unfortunately, in security games with resource assignment constraints, the assertion might not be valid; it is possible that the defender cannot induce the desired outcome. As a result, many results claimed in the literature may be overly optimistic. To remedy, we first formally define the utility guarantee of a defender strategy and provide examples to show that the utility of SSE can be higher than its utility guarantee. Second, inspired by the analysis of leader's payoff by Von Stengel and Zamir (2004), we provide the solution concept called the inducible Stackelberg equilibrium (ISE), which owns the highest utility guarantee and always exists. Third, we show the conditions when ISE coincides with SSE and the fact that in general case, SSE can be extremely worse with respect to utility guarantee. Moreover, introducing the ISE does not invalidate existing algorithmic results as the problem of computing an ISE polynomially reduces to that of computing an SSE. We also provide an algorithmic implementation for computing ISE, with which our experiments unveil the empirical advantage of the ISE over the SSE.Comment: The Thirty-Third AAAI Conference on Artificial Intelligenc

    Allocating Limited Resources to Protect a Massive Number of Targets using a Game Theoretic Model

    Full text link
    Resource allocation is the process of optimizing the rare resources. In the area of security, how to allocate limited resources to protect a massive number of targets is especially challenging. This paper addresses this resource allocation issue by constructing a game theoretic model. A defender and an attacker are players and the interaction is formulated as a trade-off between protecting targets and consuming resources. The action cost which is a necessary role of consuming resource, is considered in the proposed model. Additionally, a bounded rational behavior model (Quantal Response, QR), which simulates a human attacker of the adversarial nature, is introduced to improve the proposed model. To validate the proposed model, we compare the different utility functions and resource allocation strategies. The comparison results suggest that the proposed resource allocation strategy performs better than others in the perspective of utility and resource effectiveness.Comment: 14 pages, 12 figures, 41 reference

    GAME-SCORE: Game-based energy-aware cloud scheduler and simulator for computational clouds

    Get PDF
    Energy-awareness remains one of the main concerns for today's cloud computing (CC) operators. The optimisation of energy consumption in both cloud computational clusters and computing servers is usually related to scheduling problems. The definition of an optimal scheduling policy which does not negatively impact to system performance and task completion time is still challenging. In this work, we present a new simulation tool for cloud computing, GAME-SCORE, which implements a scheduling model based on the Stackelberg game. This game presents two main players: a) the scheduler and b) the energy-efficiency agent. We used the GAME-SCORE simulator to analyse the efficiency of the proposed game-based scheduling model. The obtained results show that the Stackelberg cloud scheduler performs better than static energy-optimisation strategies and can achieve a fair balance between low energy consumption and short makespan in a very short tim
    corecore