121,110 research outputs found

    Stronger Nanoscale EM and BEM Solutions by CICT Phased Generators

    Get PDF
    open1noThe addiction to IC (Infinitesimal Calculus), in the mathematical treatment of EM (electromagnetic) and BEM (bioelectromagnetic) modeling problems, is such that, since the digital computer requires an algebraic formulation of physical laws, it is preferred to discretize the differential equations, rather than considering other more convenient tools for problem mathematical description like, for instance, FDC (Finite Differences Calculus) or more sophisticated algebraic methods. Unfortunately, even traditional FDC, FDTD, etc., approaches are unable to conserve overall system information description. As a matter of fact, current Number Theory and modern Numeric Analysis still use mono-directional interpretation for numeric group generator and relations, so information entropy generation cannot be avoided in current computational algorithm and application. Furthermore, traditional digital computational resources are unable to capture and to manage not only the full information content of a single Real Number R, but even Rational Number Q is managed by information dissipation (e.g. finite precision machine, truncating, rounding, etc.). CICT PG approach can offer an effective and convenient "Science 2.0" universal framework, by considering information not only on the statistical manifold of model states but also on the combinatorial manifold of low-level discrete, phased generators and empirical measures of noise sources, related to experimental high-level overall perturbation. We present an effective example; how to unfold the full information content hardwired into Rational OpeRational (OR) representation (nano-microscale discrete representation) and to relate it to acontinuum framework (meso-macroscale) with no information dissipation. This paper is a relevant contribute towards arbitrary multi-scale computer science and systems biology modeling, to show how CICT PG approach can offer a powerful, effective and convenient "Science 2.0" universal framework to develop innovative, antifragile application and beyond.Fiorini, RodolfoFiorini, Rodolf

    Elaboration of the New Paradigm of Interdisciplinary Investigations

    Get PDF
    In the article, the problem of construction a meta-theory for approaching the complex phenomena of Reality is discussed. The integrated information system is formulated. Such postulate is a suggested basis for creation of a unified methodology of cognition (investigation) which makes it possible to elaborate a new paradigm of interdisciplinary investigations as a separate scientific discipline which has its own methods and special objects. The article will be of interest to philosophers and methodologists of scienc

    Physical properties of voltage gated pores

    Get PDF
    Experiments on single ionic channels have contributed to a large extent to our current view on the function of cell membrane. In these experiments the main observables are the physical quantities: ionic concentration, membrane electrostatic potential and ionic fluxes, all of them presenting large fluctuations. The classical theory of Goldman–Hodking–Katz assumes that an open channel can be well described by a physical pore where ions follow statistical physics. Nevertheless real molecular channels are active pores with open and close dynamical states. By skipping the molecular complexity of real channels, here we present the internal structure and calibration of two active pore models. These models present a minimum set of degrees of freedom, specifically ion positions and gate states, which follow Langevin equations constructed from a unique potential energy functional and by using standard rules of statistical physics. Numerical simulations of both models are implemented and the results show that they have dynamical properties very close to those observed in experiments of Na and K molecular channels. In particular a significant effect of the external ion concentration on gating dynamics is predicted, which is consistent with previous experimental observations. This approach can be extended to other channel types with more specific phenomenology.Peer ReviewedPostprint (published version

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda

    Complex Systems: A Survey

    Full text link
    A complex system is a system composed of many interacting parts, often called agents, which displays collective behavior that does not follow trivially from the behaviors of the individual parts. Examples include condensed matter systems, ecosystems, stock markets and economies, biological evolution, and indeed the whole of human society. Substantial progress has been made in the quantitative understanding of complex systems, particularly since the 1980s, using a combination of basic theory, much of it derived from physics, and computer simulation. The subject is a broad one, drawing on techniques and ideas from a wide range of areas. Here I give a survey of the main themes and methods of complex systems science and an annotated bibliography of resources, ranging from classic papers to recent books and reviews.Comment: 10 page
    • 

    corecore