9,356 research outputs found

    Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving

    Get PDF
    Stratum ventilation can energy efficiently provide good inhaled indoor air quality with a proper operation (e.g., fresh outdoor air ratio). However, the non-uniform CO2 distribution in a stratum-ventilated room challenges the provision of targeted indoor air quality. This study proposes an optimization on the fresh outdoor air ratio of stratum ventilation for both the targeted indoor air quality and maximal energy saving. A model of CO2 concentration in the breathing zone is developed by coupling CO2 removal efficiency in the breathing zone and mass conservation laws. With the developed model, the ventilation parameters corresponding to different fresh outdoor air ratios are quantified to achieve the targeted indoor air quality (i.e., targeted CO2 concentration in the breathing zone). Using the fresh outdoor air ratios and corresponding ventilation parameters as inputs, energy performance evaluations of the air conditioning system are conducted by building energy simulations. The fresh outdoor air ratio with the minimal energy consumption is determined as the optimal one. Experiments show that the mean absolute error of the developed model of CO2 concentration in the breathing zone is 1.9%. The effectiveness of the proposed optimization is demonstrated using TRNSYS that the energy consumption of the air conditioning system with stratum ventilation is reduced by 6.4% while achieving the targeted indoor air quality. The proposed optimization is also promising for other ventilation modes for targeted indoor air quality and improved energy efficiency

    Building energy performance characterisation based on dynamic analysis and co-heating test

    Get PDF
    A demonstration zero-carbon neighborhood is being raised in the city of Kortrijk, Belgium in the framework of the ECO-Life project within the CONCERTO initiative. A holistic approach is applied to achieve the zero-carbon targets, considering all aspects that are relevant for energy supply. Accordingly, alongside the integration of renewable energy sources in the community, a low-temperature district heating system is being implemented to cover the heat demand. In this context, full scale testing of building thermal performances, by use of a co-heating test and flux measurements, can be useful to analyze the thermal performance of the building envelope in situ. For that reason, as part of a more general study regarding low-energy building, co-heating test, blower-door test and flux measurements in several apartments were executed. Therefore, the paper focuses on characterization of the thermal dynamic behavior of an apartment, as a first approximation of data analysis of a monitoring system involving whole buildings. In addition, in the present study, the capability of linear regression techniques to characterize the thermal behavior of a newly built low-energy apartment in Belgium is investigated. The strengths and weaknesses of different models are identified. The limitation and possibilities of regression models are evaluated in the face of their applicability as a simplified building equation model. The identified model structure is going to be used within a complex simulation model of an entire district heating system with around 200 dwelling. Finally, the potential of this kind of regression models to be used as part of the operational control scheme of a district heating system is presented
    • …
    corecore