research

Building energy performance characterisation based on dynamic analysis and co-heating test

Abstract

A demonstration zero-carbon neighborhood is being raised in the city of Kortrijk, Belgium in the framework of the ECO-Life project within the CONCERTO initiative. A holistic approach is applied to achieve the zero-carbon targets, considering all aspects that are relevant for energy supply. Accordingly, alongside the integration of renewable energy sources in the community, a low-temperature district heating system is being implemented to cover the heat demand. In this context, full scale testing of building thermal performances, by use of a co-heating test and flux measurements, can be useful to analyze the thermal performance of the building envelope in situ. For that reason, as part of a more general study regarding low-energy building, co-heating test, blower-door test and flux measurements in several apartments were executed. Therefore, the paper focuses on characterization of the thermal dynamic behavior of an apartment, as a first approximation of data analysis of a monitoring system involving whole buildings. In addition, in the present study, the capability of linear regression techniques to characterize the thermal behavior of a newly built low-energy apartment in Belgium is investigated. The strengths and weaknesses of different models are identified. The limitation and possibilities of regression models are evaluated in the face of their applicability as a simplified building equation model. The identified model structure is going to be used within a complex simulation model of an entire district heating system with around 200 dwelling. Finally, the potential of this kind of regression models to be used as part of the operational control scheme of a district heating system is presented

    Similar works