12,830 research outputs found

    Empirical Potential Function for Simplified Protein Models: Combining Contact and Local Sequence-Structure Descriptors

    Full text link
    An effective potential function is critical for protein structure prediction and folding simulation. Simplified protein models such as those requiring only CαC_\alpha or backbone atoms are attractive because they enable efficient search of the conformational space. We show residue specific reduced discrete state models can represent the backbone conformations of proteins with small RMSD values. However, no potential functions exist that are designed for such simplified protein models. In this study, we develop optimal potential functions by combining contact interaction descriptors and local sequence-structure descriptors. The form of the potential function is a weighted linear sum of all descriptors, and the optimal weight coefficients are obtained through optimization using both native and decoy structures. The performance of the potential function in test of discriminating native protein structures from decoys is evaluated using several benchmark decoy sets. Our potential function requiring only backbone atoms or CαC_\alpha atoms have comparable or better performance than several residue-based potential functions that require additional coordinates of side chain centers or coordinates of all side chain atoms. By reducing the residue alphabets down to size 5 for local structure-sequence relationship, the performance of the potential function can be further improved. Our results also suggest that local sequence-structure correlation may play important role in reducing the entropic cost of protein folding.Comment: 20 pages, 5 figures, 4 tables. In press, Protein

    Gene length as a regulator for ribosome recruitment and protein synthesis : theoretical insights

    Get PDF
    The authors would like to acknowledge the funding provided by the European Union Seventh Framework Programme [FP7/2007–2013] (NICHE; grant agreement 289384) (LDF). LDF also acknowledges the funding provided by the São Paulo Research Foundation (FAPESP - grant #2015/26989-4). AM was partially funded by the UK Biotechnology and Biological Research Council (BBSRC), through grant BB/N015711/1. LC would like to acknowledge Maria Carmen Romano, Jean Hausser, Marco Cosentino Lagomarsino, Jean-Charles Walter and Norbert Kern for early discussions on this work, and the CNRS for having granted him a “demi-délégation” (2017–18). We would like to dedicate this work in memory of Maxime Clusel and Vladimir Lorman.Peer reviewedPublisher PDFPublisher PD

    Knowledge-based energy functions for computational studies of proteins

    Full text link
    This chapter discusses theoretical framework and methods for developing knowledge-based potential functions essential for protein structure prediction, protein-protein interaction, and protein sequence design. We discuss in some details about the Miyazawa-Jernigan contact statistical potential, distance-dependent statistical potentials, as well as geometric statistical potentials. We also describe a geometric model for developing both linear and non-linear potential functions by optimization. Applications of knowledge-based potential functions in protein-decoy discrimination, in protein-protein interactions, and in protein design are then described. Several issues of knowledge-based potential functions are finally discussed.Comment: 57 pages, 6 figures. To be published in a book by Springe

    Protein folding using contact maps

    Full text link
    We present the development of the idea to use dynamics in the space of contact maps as a computational approach to the protein folding problem. We first introduce two important technical ingredients, the reconstruction of a three dimensional conformation from a contact map and the Monte Carlo dynamics in contact map space. We then discuss two approximations to the free energy of the contact maps and a method to derive energy parameters based on perceptron learning. Finally we present results, first for predictions based on threading and then for energy minimization of crambin and of a set of 6 immunoglobulins. The main result is that we proved that the two simple approximations we studied for the free energy are not suitable for protein folding. Perspectives are discussed in the last section.Comment: 29 pages, 10 figure

    Single chain properties of polyelectrolytes in poor solvent

    Full text link
    Using molecular dynamics simulations we study the behavior of a dilute solution of strongly charged polyelectrolytes in poor solvents, where we take counterions explicitly into account. We focus on the chain conformational properties under conditions where chain-chain interactions can be neglected, but the counterion concentration remains finite. We investigate the conformations with regard to the parameters chain length, Coulomb interaction strength, and solvent quality, and explore in which regime the competition between short range hydrophobic interactions and long range Coulomb interactions leads to pearl-necklace like structures. We observe that large number and size fluctuations in the pearls and strings lead to only small direct signatures in experimental observables like the single chain form factor. Furthermore we do not observe the predicted first order collapse of the necklace into a globular structure when counterion condensation sets in. We will also show that the pearl-necklace regime is rather small for strongly charged polyelectrolytes at finite densities. Even small changes in the charge fraction of the chain can have a large impact on the conformation due to the delicate interplay between counterion distribution and chain conformation.Comment: 20 pages, 27 figures, needs jpc.sty (included), to appear in Jour. Phys. Chem
    corecore