893 research outputs found

    Penta-Modal Imaging Platform with OCT- Guided Dynamic Focusing for Simultaneous Multimodal Imaging

    Get PDF
    Complex diseases, such as Alzheimer’s disease, are associated with sequences of changes in multiple disease-specific biomarkers. These biomarkers may show dynamic changes at specific stages of disease progression. Thus, testing/monitoring each biomarker may provide insight into specific disease-related processes, which can result in early diagnosis or even development of preventive measures. Obtaining a comprehensive information of biological tissues requires imaging of multiple optical contrasts, which is not typically offered by a single imaging modality. Thus, combining different contrast mechanisms to achieve simultaneous multimodal imaging is desirable. However, this process is highly challenging due to specific optical and hardware requirements for each optical imaging system. The objective of this dissertation is to develop a novel Penta-modal optical imaging system integrating photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT), OCT angiography (OCTA) and confocal fluorescence microscopy (CFM) in one platform providing comprehensive structural, functional, and molecular information of living biological tissues. The system can simultaneously image different biomarkers with a large field-of-view (FOV) and high-speed imaging. The large FOV and the high imaging speed is achieved by combining optical and mechanical scanning mechanisms. To compensate for an uneven surface of biological samples, which result in images with non-uniform resolution and low signal to noise ratio (SNR), we further develop a novel OCT-guided surface contour scanning methodology, a technique for adjusting objective lens focus to follow the contour of the sample surface, to provide a uniform spatial resolution and SNR across the region of interest (ROI). The imaging system was tested by imaging phantoms, ex vivo biological samples, and in vivo. The OCT-guided surface contour scanning methodology was utilized for imaging a leaf of purple queen plant, which resulted in a significant contrast improvement of 41% and 38% across a large imaging area for CFM and PAM, respectively. The nuclei and cells walls were also clearly observed in both images. In an in vivo imaging of the Swiss Webster mouse ear, our multimodal imaging system was able to provide images with uniform resolution in an FOV of 10 mm x 10 mm with an imaging time of around 5 minutes. In addition to measuring the blood flow in the mouse ear, the system also successfully imaged mouse ear blood vessels, sebaceous glands, as well as several tissue structures. We further conducted a comparative study of OCTA for rodent retinal imaging by evaluating the performance of three OCTA algorithms, namely the phase variance (PV), improved speckle contrast (ISC), and optical microangiography (OMAG). It was concluded that the OMAG algorithm provided statistically significant higher mean values of BVD and VPI compared to the ISC algorithm (0.27±0.07 vs. 0.24±0.05 for BVD; 0.09±0.04 and 0.08±0.04 for VPI), while no statistically significant difference was observed for VDI and VCI among the algorithms. Results showed that both the ISC and OMAG algorithms are more robust than PV, and they can reveal similar vasculature features. Lastly, we utilized the proposed imaging system to monitor, for the first time, the invasion process of malaria parasites in the mosquito midgut. The system shows a promising potential to detect parasite motion as well as structural changes inside the mosquito midgut. The multimodal imaging system outlined in this dissertation can be useful in a variety of applications thanks to the specific optical contrast offered by each employed modality, including retinal and brain imaging

    Optical MEMS

    Get PDF
    Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense

    Workshop on Smart Sensors - Instrumentation and Measurement: Program

    Get PDF
    On 18-19 February, the School of Engineering successfully ran a two-day workshop on Smart Sensors - Instrumentation and Measurement. Associate Professor Rainer Künnemeyer organised the event on behalf of the IEEE Instrumentation and Measurement Society, New Zealand Chapter. Over 60 delegates attended and appreciated the 34 presentations which covered a wide range of topics related to sensors, sensor networks and instrumentation. There was substantial interest and support from local industry and crown research institutes

    Review of photoacoustic imaging plus X

    Full text link
    Photoacoustic imaging (PAI) is a novel modality in biomedical imaging technology that combines the rich optical contrast with the deep penetration of ultrasound. To date, PAI technology has found applications in various biomedical fields. In this review, we present an overview of the emerging research frontiers on PAI plus other advanced technologies, named as PAI plus X, which includes but not limited to PAI plus treatment, PAI plus new circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus novel ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. We will discuss each technology's current state, technical advantages, and prospects for application, reported mostly in recent three years. Lastly, we discuss and summarize the challenges and potential future work in PAI plus X area

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    Prospects on Time-Domain Diffuse Optical Tomography Based on Time-Correlated Single Photon Counting for Small Animal Imaging

    Get PDF
    This paper discusses instrumentation based on multiview parallel high temporal resolution (<50 ps) time-domain (TD) measurements for diffuse optical tomography (DOT) and a prospective view on the steps to undertake as regards such instrumentation to make TD-DOT a viable technology for small animal molecular imaging. TD measurements provide information-richest data, and we briefly review the interaction of light with biological tissues to provide an understanding of this. This data richness is yet to be exploited to its full potential to increase the spatial resolution of DOT imaging and to allow probing, via the fluorescence lifetime, tissue biochemical parameters, and processes that are otherwise not accessible in fluorescence DOT. TD data acquisition time is, however, the main factor that currently compromises the viability of TD-DOT. Current high temporal resolution TD-DOT scanners simply do not integrate sufficient detection channels. Based on our past experience in developing TD-DOT instrumentation, we review and discuss promising technologies to overcome this difficulty. These are single photon avalanche diode (SPAD) detectors and fully parallel highly integrated electronics for time-correlated single photon counting (TCSPC). We present experimental results obtained with such technologies demonstrating the feasibility of next-generation multiview TD-DOT therewith

    Optical coherence microscopy and focal modulation microscopy for Real-time Deep Tissue imaging

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Computer-Aided, Multi-Modal, and Compression Diffuse Optical Studies of Breast Tissue

    Get PDF
    Diffuse Optical Tomography and Spectroscopy permit measurement of important physiological parameters non-invasively through ~10 cm of tissue. I have applied these techniques in measurements of human breast and breast cancer. My thesis integrates three loosely connected themes in this context: multi-modal breast cancer imaging, automated data analysis of breast cancer images, and microvascular hemodynamics of breast under compression. As per the first theme, I describe construction, testing, and the initial clinical usage of two generations of imaging systems for simultaneous diffuse optical and magnetic resonance imaging. The second project develops a statistical analysis of optical breast data from many spatial locations in a population of cancers to derive a novel optical signature of malignancy; I then apply this data-derived signature for localization of cancer in additional subjects. Finally, I construct and deploy diffuse optical instrumentation to measure blood content and blood flow during breast compression; besides optics, this research has implications for any method employing breast compression, e.g., mammography
    corecore