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Abstract 

 
A Small Animal Optical Tomographic Imaging System with Omni-Directional, 

Non-Contact, Angular-Resolved Fluorescence Measurement Capabilities 
 

Jong Hwan Lee 

 

The overall goal of this thesis is to develop a new non-contact, whole-body, fluorescence 

molecular tomography system for small animal imaging. Over the past decade, small animal in 

vivo imaging has led to a better understanding of many human diseases and improved our ability 

to develop and test new drugs and medical compounds. Among various imaging modalities, 

optical imaging techniques have emerged as important tools. In particular, fluorescence and 

bioluminescence imaging systems have opened new ways for visualizing many molecular 

pathways inside living animals including gene expression and protein functions. While 

substantial progress has been made in available prototype and commercial optical imaging 

systems, there still exist areas for further improvement in the outcome of existing 

instrumentations. Currently, most small animal optical imaging systems rely on 2D planar 

imaging that provides limited ability to accurately locate lesions deep inside an animal. 

Furthermore, most existing tomographic imaging systems use a diffusion model of light 

propagation, which is of limited accuracy. While more accurate models using the equation of 

radiative transfer have become available, they have not been widely applied to small animal 

imaging yet.  

To overcome the limitations of existing optical small animal imaging systems, a novel 

imaging system that makes use of the latest hardware and software advances in the field was 



developed. At the heart of the system is a new double-conical-mirror-based imaging head that 

enables a single fixed position camera to capture multi-directional views simultaneously. 

Therefore, the imaging head provides 360-degree measurement data from an entire animal 

surface in one step. Another benefit provided by this design is the substantial reduction of 

multiple back-reflections between the animal and mirror surfaces. These back reflections are 

common in existing mirror-based imaging heads and tend to degrade the quality of raw 

measurement data. Furthermore, the conical-mirror design offers the capability to measure 

angular-resolved data from the animal surface. To make full use of this capability, a novel 

equation of radiative transfer-based ray-transfer operator was introduced to map the spatial and 

angular information of emitted light on the animal surface to the captured image data. As a result, 

more data points are involved into the image reconstructions, which leads to a higher image 

resolution. The performance of the imaging system was evaluated through numerical simulations, 

experiments using a well-defined tissue phantom, and live-animal studies. Finally, the double 

reflection mirror scheme presented in this dissertation can be cost-effectively employed with all 

camera-based imaging systems. The shapes and sizes of mirrors can be varied to accommodate 

imaging of other objects such as larger animals or human body parts, such as the breast, head, or 

feet. 
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Chapter 1  

BACKGROUND AND MOTIVATION 

1.1 Overall Goals and Specific Aims 

The overall goal of this thesis is to develop a new fluorescence molecular tomography (FMT) 

imaging system that can overcome the limitations of existing small animal optical imaging 

techniques. Over the past decade, in vivo small animal imaging has improved our ability to probe 

underlying biological and morphological features of human diseases. In addition to micro-CT, 

high-field MRI, ultrasound, and PET systems, optical imaging techniques have emerged as 

important and powerful tools for in vivo studies. In particular, fluorescence and bioluminescence 

imaging systems opened new ways for visualizing many molecular pathways inside living 

animals including gene expression and protein functions. While substantial progress has been 

made in available prototype and commercial optical imaging systems, further improvement of 

existing instrumentation is highly desirable. Currently, most small animal optical imaging 

systems rely on 2D planar imaging that provides limited ability to accurately locate lesions deep 

inside an animal. Furthermore, most existing tomographic imaging systems use a diffusion 

model of light propagation, which is of limited accuracy. While more accurate models using the 

equation of radiative transfer (ERT) have become available, they have not been widely applied to 

small animal imaging yet. In addition, the full use of the angle-dependent information contained 

in the ERT models requires angular-resolved transmission and reflection measurements, which 

currently existing systems do not provide simultaneously. 

The work of this thesis aims to overcome the limitations of existing optical techniques for 

small animal imaging by designing and implementing a novel imaging system that involves the 



 

 2 

latest hardware and software advances in the field. In particular, I pursue the following initial 

exploratory study and three specific aims: 

 

A) Initial Exploratory Study: Use existing commercial system to explore strengths and 

weaknesses of commercial small animal imagers 

The Maestro2 In Vivo imaging system (CRi, Inc., Woburn, MA) was used to perform both 

bioluminescence imaging and fluorescence imaging. In particular the system was employed 

to monitor early tumor vascular response to drug therapy. This is a common area of 

preclinical imaging and a likely future application of any new small animal imaging system. 

The response of Ewing sarcoma to anti-angiogenic drug was studied and the reliability of 

extracted biomarkers was tested.  

 

B) Specific Aim I: Development of a frequency-domain, full-body, non-contact, small 

animal molecular imaging system that can acquire angular-resolved data for the ERT-

based image reconstruction. 

The experience of the exploratory study was used to design an improved small animal 

imaging system. The system employs a frequency-domain scheme to provide the separation 

of scattering from absorption and fluorescence effects. A main component of this system is a 

double conical mirror design that allows for the acquisition of data from the entire surface of 

the animal in one image. The projected entire surface image is captured with an intensified 

CCD camera that is operated in homodyne mode in conjunction with a multi-wavelength 

free-space illumination scheme. This non-contact design allows for acquiring angular-

resolved light emission data from a large number of points on the surface of the animal. 
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C) Specific Aim II: Characterization and testing of the new system in phantom 

experiments 

The system characterization studies were carried out using tissue phantoms that mimic 

optical properties of small animals. To this end, the acquired angular-resolved measurements 

were used as input to a novel ERT-based image reconstruction scheme that allows for multi-

wavelength angular-resolved data. The obtained characterization information was used for 

subsequent animal studies. 

 

D) Specific Aim III: Demonstrate the utility of the system in small animal pilot studies 

The utility of the system was tested in pilot studies involving tumor-bearing mice with Green 

Fluorescent Protein (GFP)-tagged osteosarcoma cells. After injecting the GFP-tagged tumor 

cells into different areas in the mice, subcutaneously near the kidney and near the pelvis (the 

center of the abdomen), the mice were imaged every week for three weeks to measure the 

variation of tumor size. The results were corroborated with CT imaging and the explanted 

tumor at the end of the study.  

 

The dissertation is organized as follows. The remainder of Chapter 1 reviews the 

fundamentals of diffuse optical tomography (DOT), including fluorescence molecular 

tomography (FMT) and bioluminescence molecular tomography (BLT). Chapter 2 presents the 

initial exploratory study using one of existing commercial systems. Chapter 3 introduces a basic 

concept of the conical mirror-based imaging head and goes into details of implementation of 

each system unit. In Chapter 4, the ERT-based image reconstruction algorithm and the ray 

transfer operator that involves angular-resolved measurement data into the image reconstruction 
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are described in details. Chapter 5 shows the results of phantom and animal experiments as well 

as numerical simulations to compare angular-resolved and angular-averaged data. Finally, 

Chapter 6 concludes this thesis with a summary and possible future work. 

 

1.2 Diffuse Optical Tomography 

1.2.1 Introduction 

Diffuse optical tomography (DOT) is an optical imaging method that provides three-dimensional 

spatial distribution of intrinsic optical properties in tissues. This method employs low energy 

radiation of visible or near infrared (NIR) light and a model-based image reconstruction 

algorithm to non-invasively probe deep inside biological tissue.  

In DOT imaging, external light sources illuminate points or areas on the surface of a 

target object. Then the detectors at various points on the target surface measure transmitted or 

back-reflected light intensities after they pass through the target body [1, 2]. Using measurement 

data and a model-based image reconstruction algorithm, the distribution of optical properties 

such as absorption coefficient, , (typically 0.01-2cm-1) and scattering coefficient, , 

(typically 10-200 cm-1), are reconstructed in three dimensions. The reconstructed optical 

properties are then related to physiologically or pathologically important parameters (e.g., oxy-

hemoglobin (HbO2) or deoxy-hemoglobin (Hb)) inside the target. 

While DOT is similar to X-ray computed tomography in terms of using electromagnetic 

radiation for generating imaging contrast, they are different in several aspects. First, X-ray uses 

shorter wavelengths with higher ionizing energy (~5 to 150 keV), whereas DOT uses longer 

wavelengths with lower, non-ionizing energy (approximately 1 to 2.5 eV). As a result, DOT 

aµ sµ
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imaging can be used more safely than X-ray imaging in applications and longitudinal studies. 

Secondly, while X-ray uses Beer-Lambert law and the inverse radon transform for the image 

reconstruction, direct inversion schemes cannot be used in DOT imaging. Unlike X-ray imaging 

DOT has to deal with multiple scattering events by cellular and sub-cellular tissue structures. 

Such scattering effects inside the tissue are taken into account by employing appropriate light 

propagation model [3-9]. The reconstructed images of optical properties are obtained by solving 

the associated inverse problems. 

A commonly used light propagation model is a diffusion approximation (DA) to the 

equation of radiative transfer (ERT). The DA requires that the medium under consideration is 

optically thick (meaning many scattering events occur before the light exists the tissue), that 

absorption coefficient is considerably smaller than scattering coefficient (  « ), and that no 

void-like regions with low scattering and low absorption are present. In theses cases, the DA 

model provides accurate solutions and can be solved much faster than the complex ERT. If one 

deals with strongly absorbing media (  » ) or tissues in which boundary effects dominate, 

the ERT provides a much more accurate light propagation model. Recent years have seen 

considerable efforts to develop accurate ERT-based image reconstruction algorithms for DOT 

[10-20]. 

 

1.2.2 Optical Properties as Imaging Contrast 

The absorption coefficient µa describes the probability of photon absorption in a medium. It is 

defined as the inverse of the mean photon penetration depth into a medium. Since each 

chromophore has its particular spectral absorption shape, the analysis of absorption spectrum can 

aµ sµ

aµ sµ
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provide individual concentration of the chromophores in mixed media. The primary absorbers 

inside tissues in the visible or NIR wavelength range are oxy-hemoglobin (HbO2), deoxy-

hemoglobin (Hb), water (H2O) and fat as shown in Figure 1-1. Therefore, DOT is particularly 

suited to provide information about blood and its oxygenation levels. 

 

 

Figure 1-1. Absorption spectra of main chromophores in tissue (Data taken from [21]) 

The scattering coefficient µs represents the inverse of the mean free path of a photon 

before the photon encounters a scattering process. In tissues, many organelles such as nuclei, 

mitochondria, etc. act as scattering centers and generate elastic scattering, depending on the 

wavelength, the size, and the refractive index of matter. The angle of the scattering direction is 

described by the phase function. The mean cosine of scattering directional angle, called 

anisotropy factor g, depicts the degree of angular distribution of the phase function. Therefore, 
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for isotropic scattering, g equals zero. When there is no directional change in scattering, g equals 

one. The anisotropy of biological medium is close to 0.98 [22].   

 
1.2.3 Signal Detection Techniques for Differentiating Optical Properties 

Depending on the measurable parameters, the imaging modes of DOT are divided into three 

categories: continuous wave (CW) mode (also referred to as steady state domain (SSD) mode), 

time domain (TD) mode, and frequency domain (FD) mode.  

The CW mode uses a constant intensity light as a source and solely measures the 

attenuation of light intensity passing through tissues. This attenuation is usually wavelength 

dependent. This approach allows for simple low-cost instrumentation with high signal-to-noise-

ratio (SNR) and faster data acquisition for dynamic signal detection. The disadvantage of this 

approach is its relatively low information content, which makes it difficult to differentiate 

between the absorption and the scattering effects in tissues [23]. This can be overcome by using 

a TD system.  

In TD systems, pico- or femto-second light pulses illuminate tissues and detectors record 

temporal profiles of light (Temporal Point Spread Function (TPSP)) at different photon arrival 

times [24]. This approach yields much more information and helps to differentiate absorption 

and scattering properties in tissues. As a result, the TD mode can improve spatial resolution and 

sensitivity compared with the CW imaging mode. However, due to the very short time-gated 

detection, SNR is low and long data acquisition times are required. These characteristics also 

prevent the use of TD systems for studying sub-second hemodynamic effects. In addition these 

systems are rather expensive compared to CW and FD imaging modes, because of the fast time-

gated detection technology and related pulse laser electronics that are involved.  
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Figure 1-2. Signal detection modes (input (blue) and output (red) after passing through medium) 
(a) time domain, (b) frequency domain, and (c) continuous wave mode 

FD systems constitute a compromise between CW and TD systems [25-27]. In the FD 

mode, the light source is amplitude modulated at radio frequencies in the hundreds of MHz. If 

the amplitude-modulated light is injected into biological tissues, a diffuse photon-density wave 

(PDW) is generated [28, 29]. The intensity attenuation and the phase shift of PDWs can be 

measured. FD systems are less expensive and offer higher SNR than TD system. In addition, FD 

systems can differentiate absorption and scattering more precisely and show better spatial 

resolution than the CW system. However, the FD system is somewhat more expensive and has 

lower SNR than the CW system [30]. 
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1.2.4 Applications of Diffuse Optical Tomography 

DOT has various applications due to its high sensitivity to blood-dependent parameters. Medical 

problems that involve changes in the blood-related parameters could benefit from the use of 

DOT. Especially, cancerous tumors often exhibit higher vascularity and higher blood volume 

than normal tissues; blood oxygenation levels are often used to monitor the status of tumor 

progression. Currently, DOT imaging for cancer detection has been primarily focused on breast 

imaging. DOT is a safe, noninvasive and inexpensive imaging method compared to traditional 

X-ray mammography and MRI [ 31 - 34 ]. In many research studies, high total hemoglobin 

concentrations (THb) and oxygen saturation level have been used for diagnosis and monitoring 

the efficacy of cancer treatments [35, 36].  

Functional brain imaging for monitoring cerebral hemodynamics is another interesting 

application of DOT. Activation flow coupling (AFC) is the regional changes in cerebral blood 

flow by the functional stimulation. Since AFC is a key indicator of neuronal activity, DOT has 

been shown to monitor these AFC responses non-invasively in the brain [37, 38]. In addition, 

DOT has been applied to differentiate ischemic strokes and hemorrhage strokes, which have 

different mechanisms in the outbreak of diseases [39, 40]. Another application is joint disease 

monitoring. Scattering coefficient changes are observed in the synovial fluid of joints affected by 

arthritis and inside the bones of patients with osteoarthritis. Hence several groups have focused 

their efforts on developing DOT systems for joint and bone imaging [41, 42].  

The biggest impact has arguably been in small animal imaging. DOT has been used to 

image small animal models of human diseases, particularly in the fields of oncology and 

neurology. Recent advances in transgenic manipulation of small animals have led to many 

human disease models and has opened a whole new field of investigating human diseases on a 
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molecular level [43-46]. Especially, the variants of DOT (fluorescence molecular tomography 

(FMT) and bioluminescence molecular tomography (BLT)) allow one to image whole processes 

of a disease including progression, remission, and treatment at molecular levels [47, 48]. In 

addition, DOT is increasingly used to test treatment efficacies and molecular imaging for drug 

developments [49, 50]. Novel fluorescence and bioluminescence biochemical markers that can 

be used in these studies are constantly being developed in many laboratories and companies 

around the world [51-53]. 

 

1.3 Fluorescence and Bioluminescence Molecular Tomography 

While FMT and BLT are similar techniques to DOT in terms of three-dimensional reconstruction 

of optical properties inside a target body, they are different in terms of contrast mechanism. FMT 

utilizes appropriate wavelength lights to excite exogenous fluorescent reporters tagged on 

specific cells or molecules inside the target body [51-53]. Then the emitted light from the 

fluorescent reporters is collected at a shifted wavelength from the excitation wavelength. 

Measured signals at the target surface are used to reconstruct absolute concentration and position 

of fluorescent reporters, namely specific cells or molecules. Therefore, unlike DOT, FMT 

requires the solution of an inverse source problem. In the case of BLT, chemical reactions within 

a target body replace the role of the external excitation light of FMT [54-56].  

  

1.3.1 Mechanism of Fluorescence Generation 

Fluorescence, one of photoluminescence phenomena, can be described by using Jablonski energy 

diagram in Figure 1-3. This diagram illustrates that when molecules called fluorophores absorb 

photons at a particular wavelength, electrons of fluorophores transition from a ground state to 
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excited electronic states. The excited electrons lose most of their energy through non-radiative 

processes such as vibrational relaxation (within the same energy band) or internal conversion 

(between the bands, for example, from S2 to S1 in Figure 1-3) and return to the first excited state. 

The average time the electrons spend in the excited states is referred to the fluorescence lifetime 

and can provide information about the microenvironment of flurophore tagged molecules. The 

excited electrons in the first state (S1) lose the rest energy by radiative process of emitting 

photons, called fluorescence and return to the ground state (S0).  

 

 

Figure 1-3. Jablonski energy diagram: Blue, red, and green arrows represent radiative transitions 
(absorption, fluorescence and phosphorescence) and gray and dashed arrows represent non-
radiative transitions (vibrational relaxation, internal conversion, and intersystem crossing). 

Another path for energy dissipation is intersystem crossing from S1 to T1 in Figure 1-3. 

This occurs when the electrons change their spin multiplicity from a singlet state to a triplet state 
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and leads to phosphorescence, which is slower than fluorescence. Finally, the energy difference 

between the photon absorption and the emission causes the difference in the between the maxima 

of excitation spectra versus the emission spectra, otherwise known as the Stokes shift. This 

critical property is the basic principle of fluorescence imaging that one can see only the 

fluorescent object by blocking the excitation light. A large Stokes shift is better in order to filter 

out the excitation from the emission under experimental conditions. The excitation and emission 

spectra of green fluorescent protein (GFP), for example, is shown in Figure 1-4. 

 

 

Figure 1-4. Excitation and emission spectra of green fluorescent protein (GFP) (reproduced from 
http://www.lifetechnologies.com) 

Fluorophores can be divided into three categories: Organic dyes, biological fluorophores, 

and fluorescent nanoparticles. The most popular organic fluorophores are cyanine dyes and green 

fluorescent protein (GFP) derivatives are well known biological fluorophores. These 

fluorophores have been widely used in various biological applications since 1990s. In addition, 

fluorescent nanoparticles, quantum dots (QDs) and semiconductor nano-crystal materials have 

been employed in small animal imaging under consideration of toxicity [57]. 
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1.3.2 Modeling of Fluorescence Phenomenon 

The fluorescence generation process can be briefly modeled by using a simple two energy level 

system [58, 59]. Assuming that there are only one ground and one excitation states, the rate 

equation for excited fluorophores can be described as: 

  

  (1.1) 

 

where  is the number density of the excited fluorophores in the units of fluorophores cm-3, 

 represents the lifetime of fluorophores;  denotes the absorption coefficient of the 

fluorophores; and  is the local fluence in units of Watts cm-2. The fluorescence source term 

, which represents the density of all emitted photons during , can be obtained from the 

rate equation (1.1) as: 

 

  (1.2) 

 

 If the excitation light source is the intensity modulated light at frequency ,  is 

reformulated with a Fourier transform of equation (1.2) as: 

 

  (1.3) 

 

  
d
dt

N t( ) = − 1
τ

N t( ) + µa
x→mφ x t( )

 N t( )

τ  µa
x→m

 φ
x t( )

  Q r ,t( ) τ

  
Q r,t( ) = ητ N r,t( ) = ηµa

x→m r( )
τ

φ x r, ′t( )exp ′t − t
τ







d ′t
′t =0

′t =t

∫ .

ϖ   Q r,t( )

   
Q r,ϖ( ) = ηµa

x→mφ x (r,ϖ )
(1−ϖτ (r))

.
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Therefore the frequency-domain ERT for the generation and propagation of fluorescent light is 

given as: 

 

 
 

(1.4) 

 

  (1.5) 

 

where  and  are the absorption and scattering coefficients. The superscript and  

represent excitation and emission.  and  are the angular direction and the speed of light 

inside the tissues. , , and  denotes light radiance, quantum efficiency, and 

a phase function respectively. More discussions on the above fluorescence system are provided 

in Chapter 4. 

 

1.3.3 Mechanism of Bioluminescence Generation 

In bioluminescence, the light emission process is a result of a chemical reaction within living 

organisms. The binding of a specific substrate and an enzyme in organisms catalyzes an 

oxidation-reduction reaction of small molecules and relaxes an electronically excited 

intermediate, which emits light. This light generation process in biological tissues can be 

accurately modeled by the ERT as [60-62]: 

 

4

( ) ( , , ) ( , ) ( , , )x x x m x xa s a
i p d
c π

ϖµ µ µ ψ ϖ ψ ϖ→  ′ ′ ′∇⋅Ω + + + + Ω = Ω Ω Ω Ω   ∫r r

   

(∇⋅Ω)+ µa
m + µs

m +
iϖ
c









ψ m(r,Ω,ϖ )

= p( ′Ω ,Ω)ψ m(r, ′Ω ,ϖ )d ′Ω
4π
∫ +

1
4π

ηµa
x→mφ x (r,ϖ )

(1−ϖτ (r))
.

aµ sµ  x  m

Ω  c

( , , )ψ ϖΩr η ( , )p ′Ω Ω
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  (1.6) 

 

Where   µt r( ) = µa r( ) + µs r( )  is the attenuation coefficient. 

Although various bioluminescent systems have been identified in nature, the most widely 

used bioluminescent reporter in preclinical imaging has been luciferase from the North America 

firefly (Photinus pyralis; FLuc). Other luciferases have come from jellyfish (Aequorea), and the 

sea pansy (Renialla; RLuc), which have also been cloned for molecular imaging [63]. 

 

1.3.4 Comparison between FMT and BLT 

Though FMT and BLT both employ exogenous optical reporters to investigate cellular or sub-

cellular biological events, they are different in several aspects [ 64 ]. First, signals from 

fluorophores are generally much stronger than those from bioluminescent probes. This typically 

leads to much shorter data acquisition times in FMT. While fluorescence signals can be acquired 

in a few milliseconds, bioluminescence signals typically require several minutes of integration 

time. As a result, BLT is limited to the CW domain imaging mode, whereas fluorescence 

measurements can be conducted in all three imaging modes, CW, FD and TD. If the FD or TD 

imaging mode is applied to FMT, fluorophore lifetime measurement can be obtained. The 

lifetime measurement provides more robust raw data than fluorescent intensity measurement 

because it is independent from the intensity of excitation light and the fluorophore concentration. 

Moreover, it can be also used for filtering out the autofluorescence in tissues [65-68]. Table 1-1 

summarizes the features of each imaging mode (CW, FD, and TD) of FMT and BLT. 

   
Ω⋅∇ + µt r( ) ψ (r,Ω) = µs r( ) p(Ω⋅ ′Ω )ψ (r, ′Ω )d ′Ω

4π
∫ +

Q r( )
4π
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Another advantage of FMT is that there are far more fluorescent probes than 

bioluminescent probes with emission wavelengths in the NIR range. The NIR fluorescent probes 

provide longer penetration depth in tissues than the visible wavelength ranges of 

bioluminescence probes. On the other hand, autofluorescence of tissues in the visible wavelength 

range is much stronger than autobioluminescence. Hence bioluminescence signals have much 

higher signal-to-noise ratios (SNRs) in the visible range spectrum than fluorescence signals. 

Accordingly, fluorescence imaging has higher sensitivity in the far-red and NIR range and 

bioluminescence imaging has higher sensitivity in the visible range due to the wavelength 

dependence of absorption, autofluorescence and autobioluminescence of tissues.   

Lastly, the reconstruction algorithms for FMT use two coupled equations for excitation 

and emission light, while those of BLT employ an equation only for emission light. 

Consequently, the image reconstruction problems of BLT without an excitation part, are much 

more ill-posed than those of FMT [69-71].  
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1.4 Review of Existing Small Animal Imaging Systems 

1.4.1 Introduction 

In vivo small animal imaging has emerged as a critical tool in preclinical and translational 

research to understand biological foundation and morphological features of human diseases.  In 

contrast to traditional in vitro or ex vivo analysis of tissue samples, in vivo small animal imaging 

allows for non-invasive longitudinal assays of complex physiological and pathological 

phenomena. Therefore, in vivo studies facilitate the systemic investigation of many diseases and 

fill the gap between the results from in vitro (or ex vivo) studies and clinical findings. As animal 

models have become more accurate in mimicking human diseases, the entire history of human 

diseases from inception to its final stage can be traced. In addition, non-invasive imaging 

methods provide the benefit of more data from significantly reduced animal numbers. 

In general, non-invasive imaging modalities for small animals have evolved from the 

imaging modalities employed in human clinical imaging. For example, information about soft 

tissue structures can be obtained using magnetic resonance imaging (MRI). Computed 

tomography (CT) and ultrasound (US) provide anatomical imaging with high spatial resolution. 

Positron emission tomography (PET) and single photon emission computed tomography 

(SPECT) can detect specific molecular or cellular targets by using radiotracers. Table 1-2 

summarizes the features of the above� imaging modalities for small animals and compares their 

capabilities and performances.  

However, since the dimensions of small animals and their organs are substantially 

different from humans, these clinical imaging devices cannot be used directly and need to be 

modified for the purpose of small animal imaging. For example, by using higher field-strength 

magnets between 4.7 and 21 Tesla [73], the spatial resolution of MRI in small animals has been 
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improved up to ≤100 µm. Small animal imaging with US employs higher frequencies than 

human US, typically in the range from 15 to 50 MHz. Furthermore micro-bubbles have recently 

been introduced as a contrast agent to enhance the performance of small animal imaging.  

 

1.4.2 Small Animal Optical Imaging Systems 

Over the last decade, the use of small animal optical imaging has increased rapidly with the 

advancement of optical markers such as bioluminescent and fluorescent probes. High sensitivity 

and high throughput can be obtained at a lower cost compared with other imaging modalities for 

small animals. A recent survey also found that optical imaging was the single most used imaging 

modality in preclinical applications [74]. The main drawback is the shallow penetration depth by 

strong absorption and scattering in tissues. As a result, one cannot obtain any reliable 

quantification of target molecules with 2-dimensional (2D) planar imaging of diffuse light 

distribution on the animal surface. These limitations can be overcome by using tomographic 

imaging techniques that allow for a three dimensional distribution of targeted molecules in the 

animal. While considerable progress has been made in small animal optical tomographic imaging 

(OTI), there is still room for improvement. This thesis has been motivated by such unmet need.��
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Currently available DOT and FMT tomographic small imaging system can be classified 

according to their methods for light delivery to the animal and light collection from the animal. 

The traditional optical tomographic imaging systems have been fiber-based systems (Figure 1-

5a). These systems employ light-guiding optical fibers to deliver light from sources to the animal 

and to collect light from the animal to bring it to the detection components. These detection 

components are typically PIN diodes, avalanche photo diodes (APDs), or photomultiplier tubes 

(PMTs). The fibers are in physical contact with the object either directly or indirectly through the 

wall of an imaging container. While some imaging systems employed direct contact methods in 

previous clinical applications [78, 79], many systems rely on using imaging containers with 

simple shapes such as cylindrical or rectangular boundaries. In these cases, the geometrical 

positions of optical fibers for sources and detectors are fixed on the container wall without 

considering the irregularity of boundary shapes or the surface area of the object under 

investigation. The empty space between the animal surface and the container is usually filled 

with a matching fluid that has tissue-like optical properties. Consequently, the fixed-position 

fiber setups and the use of matching liquids provide simplified boundary conditions for the 

image reconstructions process. 

However, the fiber-based contact systems exhibit several limitations. A fixed-position 

geometry of fibers has a limited number of source-detection pairs. Consequently, the amount of 

available measurement data is limited. Furthermore, the matching fluid that fills the empty space 

between the object and the container boundary causes signal loss, and light tunneling through the 

container wall plays a role in additional undesirable signal loss. This results in the degradation of 

the SNR of the measurement data. Furthermore, since the image reconstruction process involves 

the surface boundary of the imaging container instead of the object, it is difficult to estimate 



!
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precise positions of biomarkers in the object body from the reconstruction results having the 

container boundary. In addition, these setups can make the imaging procedures and experimental 

conditions more cumbersome depending on the object being imaged. Particularly, in small 

animal in vivo imaging, an animal has to be submerged in a matching fluid of an imaging 

container. Handling the anesthetized animal in the matching fluid and maintaining all vital body 

functions including stable breathing are challenging and can introduce artifacts. 

 

 

Figure!1+5.!Different!Generations!of!FMT!systems!for!small!animals!(a)!a!first+generation!system,!
employing! a! fixed!pattern!of! light+guiding! fibers! for! detection! and! excitation! from!360°! of! view!
around!a!cylindrical!geometry.!(b)!a!second+generation!system!with!planar!geometry,!using!a!CCD!
camera! for! detection.! (c)! a! third+generation! systems! yielding! high! image! performance! with! a!
surface!rendering!of!a!subject.!!
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The second generation of tomographic imaging system emerged with the advancement of 

the CCD cameras (Figure 1-5b). Optical fibers fixed on an imaging container are still used for 

light source delivery. However, a large number of pixels on the CCD camera replace the 

detection components such as the APD or PMT used in the first generation systems. Typically, 

an optical fiber bundle for light source delivery is fixed on the one side of a parallel slab 

geometry. The CCD camera is positioned at the other side to measure transmitted signals. Pixels 

on the image sensor serve as detectors allowing for a much higher spatial sampling than the first 

generation systems. The increased measurement data sets in turn improve the image 

reconstruction results. The systems employing this setup were implemented for preclinical and 

clinical applications [80, 81]. Nevertheless, the detection using the CCD camera cannot provide 

full angular coverage of measurement projection, which the fiber-based systems have. The one 

directional viewing angle of a CCD camera restricts the imaging to transmission (or reflectance) 

only measurements. However, a recent study demonstrated that both transmittance and 

reflectance measurements around 60 degrees away from the source are needed to improve the 

reconstruction results of mouse sized objects [82]. In addition, the animal being imaged still 

needs to be submerged in a matching liquid. Thus, the issues related with using an imaging 

container and a matching liquid in the first generation systems still exist.  

To circumvent the above difficulties of the first and second-generation systems, non-

contact camera-based imaging systems (Figure 1-5c) have recently been developed by some 

groups [83-87]. Full non-contact imaging systems employ free space source illuminations and 

CCD-camera-based detections. A collimated light source illuminates an animal directly without 

optical fibers. The CCD camera directly collects the signals from the animal without a matching 

liquid and an imaging container. The implementation of this setup has been reported in both 
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preclinical and clinical applications [ 88 - 91 ]. As the availability of both reflectance and 

transmittance measurement data in the image reconstruction process lead to more accurate results, 

non-contact imaging systems have been developed to allow for a full 360° detection [92, 93]. To 

achieve these multi-directional projection data in small animal imaging, researchers have 

designed different types of devices that use multiple cameras [92], or rotate the animal in front of 

a camera [83], or rotate a camera around the animal [93]. A conical shape mirror was also 

proposed to detect an entire surface of the animal in one acquisition step [94]. However, since 

the mirror-based schemes place mirrors right next to the animal to include different directional 

views in the camera's field of view, the schemes are prone to generate multiple reflections of 

photons between the animal surface and highly reflective mirror surfaces. Consequently, the 

paths of the detected light become ambiguous and the accuracy of raw measurement data 

decreases.  

In addition, the direct collection of signals from the animal surface requires the 

information of the boundary to involve the collected data into image reconstruction processes. 

The surface geometry extraction is one of the major difficulties in full noncontact imaging 

system implementations, together with co-registration of geometrical information of illumination 

and detection points on the animal surface.  

In reconstruction algorithm development, researchers have begun to use the equation of 

radiative transfer (ERT) as a light propagation model. Though diffusion approximation to the 

ERT is a good approximation in many cases, ignoring angular dependence of emitted signals can 

lead to inaccurate results in media that are optically thin and dominated by boundary effects, e.g., 

small animals. Kienle et al also showed that scattering by aligned cylindrical microstructures like 

myofibrils, axons, or collagen fibers results in anisotropic light propagation in tissues [95]. Thus, 
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the use of isotropic models for determining optical properties in anisotropic tissues can generate 

inaccurate reconstruction results.  

Furthermore, Gao and Zhao demonstrated that using the ERT and angular-resolved 

measurement data; image reconstruction results can be substantially improved [96]. However, all 

current measurement systems use integrated signals over all angles within a detector’s numerical 

aperture and do not consider angular-dependent exit of light from tissues. 

 

1.4.3 Commercially Available Small Animal Optical Imaging Systems 

Though the systems for tomographic imaging have advanced as described in Section 1.4.2, the 

majority of tomographic imaging systems have been prototypes developed in laboratories. All 

available commercial small animal imagers are still limited to camera based 2D planar imaging.  

As shown in Table 1-3, commercial small animal imagers mostly employ CCD cameras 

as detectors and an epi-broad beam illumination scheme to measure emitted signals. This scheme 

only allows for images of emitted light intensities on the tissue surface but no information about 

the volumetric distribution (i.e., depth and strength) of fluorescent probes inside tissues. This 

results in highly surface weighted images and leads to inaccurate measurement of deeply seated 

fluorescent probes. On the other hand, high sensitivity, high throughput up to 5 mice with one 

single acquisition and easy operation setups are attractive to many biomedical researchers. 

Recently, a few commercial imaging systems began to provide tomographic reconstructions 

using similar imaging schemes.  

To achieve multi-directional projection data for tomographic reconstructions, commercial 

systems utilized multiple detectors or mirrors. The most recently developed commercial imaging 

system, BioFLECT (TriFoil Imaging, CA) in Table 1-3 achieves a 360° multi-directional view 
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using 48 photodiode detectors on a rotational gantry instead of using cameras as detectors. The 

Maestro 2 In vivo imaging system (two side mirrors, PerkinElmer Inc.) and the 

PhotonIMAGERTM (two mirrors, Biospace Lab, France)) simply employ multiple flat mirrors to 

include side views of the animal in a single image. 
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Chapter 2 

IMAGING OF ANTI-ANGIOGENIC DRUG EFFECTS 

2.1 Anti-angiogenic Cancer Therapy  

To explore the potential and limitations of currently commercially available optical small animal 

imaging systems, I used the Maestro2 In Vivo imaging system (CRi, Inc., Woburn, MA) to 

perform both bioluminescence and fluorescence imaging studies. In particular this system was 

employed to monitor early tumor vascular response to a drug therapy. This is a common area of 

preclinical imaging and a likely future application of any new small animal imaging system.   

Angiogenesis, the growth of new blood vessels, is an important process for the 

proliferation and metastasis of tumor cells. Blood vessels surrounding the tumor cells provide 

pathways for supplying oxygen, nutrients, and immune cells, and for removing waste matter 

from the tumor. In addition, tumor cells can penetrate through blood or lymphatic vessels and 

can spread to distant organs through the intravascular network. Judah Folkman was the first to 

hypothesize that inhibition of tumor angiogenesis can be a therapeutic method for cancer 

treatments [97]. Since then numerous studies have addressed the effects of angiogenesis in tumor 

progression [98, 99], considerable efforts have been devoted to developing anti-angiogenic drugs 

[100-103]. Several potential anti-angiogenic drugs, which attack the vascular endothelial growth 

factor (VEGF), have been tested since the late 1990s. The first anti-angiogenic drug, 

bevacizumab (Avastin®) was approved by the Food and Drug Administration (FDA) in 2004 for 

cancer treatments [104, 105].  

 Bevacizumab-based treatments have shown a diverse array of responses including 

recurrence of angiogenesis via another signaling pathways over time [106]. In order to obtain a 
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robust quantification of the angiogenic or anti-angiogenic responses, reliable monitoring 

methods have been demanded [107]. Additionally, due to the expensive cost of the therapy, non-

invasive imaging methods for investigating the early responses of treatments could be very 

useful for deciding the optimal therapeutic regimen for patients [108]. While many different 

methods have been tested, using a cost-effective optical imaging method for this application is 

still challenging [109, 110].  

For this exploratory study, I hypothesized that the responses of anti-angiogenic treatment 

are related to the simultaneous changes of vascular density, perfusion and permeability [111]. 

Furthermore I expect that dynamic fluorescence imaging of the circulation of a fluorescent probe 

may extract more information compared with static fluorescence imaging. However, since 

dynamic fluorescence imaging using a non-targeted fluorophore cannot differentiate tumor areas 

from other benign tissues, bioluminescence imaging provides tumor boundaries for the dynamic 

signal analysis [112, 113]. 

 

2.2 Dynamic Fluorescence Imaging for Vascularization Monitoring 

Both dynamic fluorescence and bioluminescence imaging methods require an intravenous (IV) 

or intraperitoneal (IP) injection of chemical compounds before imaging. However, excessive 

injection of these chemical compounds at a time can be burden to the functions of kidneys, lungs 

and other organs and can cause death of the recipient animals. The sensitivity and parameter 

setup of the imaging system are also important in determining the injection volume of chemical 

compounds. Thus, the imaging protocol and the injection volumes for each imaging method were 

carefully designed and determined based on other published dynamic imaging researches and 

preliminary tests with the imaging system [114].  
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2.2.1 Tumor Model 

A Human Ewing sarcoma (SK-NEP1) cell line, which has already shown nearly complete 

inhibition of tumor growth under anti-angiogenic treatment [115], was engineered to express 

bioluminescence. After anesthetizing a mouse with IP injection of a mixture of Ketamine (50 

mg/kg) and Xylazine (5 mg/kg), the left flank of the mouse was sterilely prepared and incised to 

expose the left kidney. About 106 tumor cells (SK-NEP1-luc) in 0.1 ml of Phosphate-buffered 

saline (PBS) were injected with a 25-gauge needle into the kidney. Then the flank muscles and 

the skin were closed with a suture and staples respectively. In total, 9 NCR nude mice bearing 

Ewing sarcoma cells were prepared 3-4 weeks prior to the experiments. Subsequent tumor 

growth was monitored bi-weekly by bioluminescence imaging with the Xenogen IVIS imaging 

system (Caliper Life Sciences, MA). The animals were treated with 20 mg/kg bevacizumab (IV 

injection) every three-day after the tumor weight reached approximately 1g.  

 

2.2.2 Contrast Agent and Imaging System 

Indocyanine Green (ICG) is a water-soluble and non-toxic tricarbocyanine dye approved by FDA 

for human use. Also, ICG has been widely used as an optical contrast agent in the near infrared 

wavelength range. The fluorescent properties of ICG, such as excitation and emission spectrum 

shown in Figure 2-1 have been well characterized in many preclinical and clinical applications. 

One of the well-known features of ICG is that it binds to albumin almost completely in plasma. 

Consequently, the effective molecular weight of ICG-albumin binding reaches 67 kDa so that 

ICG behaves like a macromolecular contrast agent in plasma. In studies of the dynamics of ICG, 

it was shown that the uptake slope and the peak value of the ICG time-series traces are correlated 

with the permeability of the vasculature. In other words, ICG dynamics showed higher vascular 
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permeability in leaky tumor vasculature than in normal vasculature. Using optical spectroscopy 

and magnetic resonance imaging demonstrated that a necrotic tumor shows lower peak 

concentration and lower permeability of ICG.  

 

 

Figure 2-1. Normalized fluorescence spectrum of indocyanine green (ICG) [ 116 ]. The 
absorption of ICG depends on its concentration and solute. The spectrum was taken under the 
conditions: (1) 1-µM concentration of ICG was dissolved in deionized ultra-filtered water; (2) 
the excitation spectrum was taken with the emission monochromator at 830 nm; (3) the 
emission spectrum was taken with the excitation monochromator at 785 nm.  

I conducted both bioluminescence and dynamic fluorescence measurements with a 

commercial imaging system, Maestro 2 In Vivo Imaging system (CRi, Inc., Woburn, MA).  This 

system can cover any fluorescent wavelengths between 500 – 950 nm by using a tunable filter set 

and a Sony ICX285 camera. The maximum frame rate of this imaging system is 10 frames/sec. A 

maximum of three mice can fit into the camera’s field of view. Using Maestro’s C3 mirror 

accessory, three sides of an animal can be captured simultaneously. In addition, the time-based 

Dynamic Contrast Enhanced (DyCE) technique is embedded in the software package of this 

system. This software can provide an anatomical organ map by using time series data and 

different interaction aspects between contrast agents and tissues [117]. 
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Figure 2-2. Photograph of Maestro 2 In Vivo Imaging system  

2.3 Data Acquisition 

2.3.1 Imaging Protocol 

The imaging procedure followed the timetable shown in Figure 2-3. At first, the mouse was 

anesthetized and the tail vein was catheterized with a customized catheter (a 50 cm long PE10 

tubing with a 30-gauge needle at one end). To obtain a time-series data from the chemical 

injection, the imaging began at the same time as the injection of chemical compounds. Therefore, 

ICG was delivered from the outside of the imaging system to the mouse inside the imaging 

chamber by using the catheter through a small hole on the side of the imaging system. While 

under the anesthetization of a gas mixture of 1.5% isoflurane and oxygen, the catheterized mouse 

was placed between two 45-degree angled mirrors on the imaging stage to get three different 

directional views. The breathing rate of the mouse was maintained around 60 breaths/minute.  

Bioluminescence imaging began two minutes after the IV injection of 70µL luciferin. IV 

injection of luciferin was used because the commonly used IP injection of luciferin did not 

provide enough signals in preliminary tests with the Maestro2 imaging setups. To remove 
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residual bioluminescence signals from a mouse before the dynamic fluorescence imaging, the 

mouse was kept in place without changing its position and posture for 25 minutes. The 

autofluorescence of the mouse body and the residual of bioluminescence signal were measured 5 

minutes before the fluorescence imaging using the same setup for the dynamic fluorescence 

imaging. 35 minutes after the luciferin injection, 200 µM, 60 µL ICG was injected through the 

catheter. The dynamic fluorescence imaging began at the same time point of the ICG injection. 

This procedure was repeated at four different time points. After the baseline measurement, 

0.2 mL bevacizumab was administered through the catheter. Then, the imaging experiments 

were repeated at 1, 24 and 72 hours after this initial treatment. For the same mouse, the same 

batch of ICG was used and the signal intensity of pure ICG was also measured before each 

experiment to calibrate the intensity degradation. 

 

 

Figure 2-3. Timetable for the imaging procedure 
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2.3.2 System Setup 

For the bioluminescence imaging to define the tumor area in the mouse body (Figure 2-4), I 

employed a 560 nm (±10 nm) emission filter and the low-light-mode setup of the imaging 

system. A 3-minute exposure time was chosen based on the examination of bioluminescence 

signal levels depending on the exposure time. The dynamic fluorescence images in Figure 2-5 

were obtained with 704 nm (± 20 nm) excitation and 820 nm (±10 nm) emission filter sets and 

65 msec exposure time. 4×4 binning was used for the full 3.3"×4.4" field of view. By imaging at 

a frame rate of 5 frame/sec, a total of 900 frames of time series data were acquired for 3 minutes.  

 

 

Figure 2-4. Bioluminescence signals on a mouse surface 
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2.4 Data Analysis 

2.4.1 Tumor Boundary 

The obtained tumor boundary is shown in Figure 2-4. I compared Figure 2-4 to the color-coded 

organ and tumor map in Figure 2-6a. Figure 2-6a was generated by the DyCE technique of the 

imaging system, to double-check the tumor area on the mouse surface.  

 

 

Figure 2-6. Color-coded organ map using the DyCE technique (a) generated color-coded organ 
and tumor map based on ICG time trace similarity and (b) ICG time traces of each organ (blue-
tumor, red-liver, yellow-lungs, green-kidney, and pink-brain) 

Although the boundary of tumor area and the organ map were not exactly the same, the 

tumor area defined by bioluminescence measurements was interpolated onto the color-coded 

organ map. The mismatch of the boundaries comes from the characteristics of the DyCE 

technique. The color-coded organ map is generated mathematically based on the Principle 

Component Analysis (PCA) and non-negative least square fitting of the uptake and clearance 

similarity of a fluorophore. Thus, depending on the choice of a reference pixel(s) in the estimated 

organ areas, the organ boundary in the color-coded map can slightly change due to this nature of 
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the DyCE technique. In the dynamic fluorescence signal analysis, the tumor areas defined by 

bioluminescence imaging were used, which provided more precise tumor boundaries. 

 

2.4.2 Dynamic Signal Analysis 

The signal intensities of pixels in each image were normalized by the average signal level of all 

pixels in each frame. Figure 2-7 depicts ICG time trace changes in the tumor area at different 

time points. After the initial bevacizumab treatment, the time traces (red-1 hr., blue-24 hr., green-

72 hr.) showed slower uptake and lower peak signal intensity of ICG in comparison to the 

baseline (black).  

 
Figure 2-7. ICG time trace changes in tumor area 

However the experimental conditions such as the hemodynamic status of the mice and 

injection timing cannot be exactly the same at every measurement in the longitudinal study. 

Therefore, ICG time trace changes in the brain area defined by the color-coded organ map were 

also extracted and compared to those in the tumor area to check the influence of experimental 

conditions depending on measurement time points. In contrast with the tumor, the ICG time 
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traces in brain area (Figure 2-8) typically showed similar signal traces for measurements 

performed at different time points. 

 

Figure 2-8. ICG time trace changes in brain area 

Next, by fitting these normalized time traces to equation 2.1 and 2.2, the slope of uptake 

(b), and the clearance time constant (t1), and the peak intensity (P), of the ICG kinetics in tumor 

and brain areas were extracted.  

 

  y = a + b× X  (2.1) 
 

 
  
y = A× exp −

X
t1






+ y0  (2.2) 

 

To eliminate the influence of the experimental conditions at different time points, the ICG time 

trace parameters of the brain were used as references to calculate the ratio of extracted 

parameters of the tumor. 
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Figure 2-9. Extracted parameter ratio changes  

As shown in Figure 2-9, 24 and 72 hours after the anti-angiogenic treatment, the uptake slope 

and peak intensity decreased and the clearance time constant increased over three days as 

compared with those at the1 hour time point. 

In addition to the ICG kinetic parameter comparison, I also extracted the integrated signal 

levels in different organs such as tumor, lung, and brain. Organ areas were defined by the DyCE 

technique except for tumor area, which was defined by bioluminescence measurement. All 

normalized signal intensities in each organ area of the entire 900 image frames were summated 

and the average intensity per each pixel in the organ areas was calculated. Since this integrated 

signal intensity is proportional to the vascular density in an organ area, Figure 2-10 describes that 

the tumor area showed the decrease of vasculature over three days. This is a different trend 

compared with the lung and brain areas.  
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Figure 2-10. Integrated signal level changes in the different areas (blue-Lung, red-brain, and 

black-tumor) 

The lectin perfusion studies in the histological analysis showed a similar decrease of vasculature 

in tumor area like Figure 2-11. This result also corresponds with the changes measured by DOT 

and MRI T2 relaxometry [118]. 

All observations are related to the alleged vascular normalization, which can be explained 

by decrease in the permeability of tumor vasculature. These results are in agreement with the 

studies of Cuccia et al [112] and Tong et al [113]. 

 

 

Figure 2-11. Lectin perfusion images of tumor area in (a) day 0 and (b) day 3 after the treatment 
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2.5 Conclusion 

This preliminary study explored the potential of dynamic fluorescence imaging for monitoring 

tumor vascular responses during anti-angiogenic drug therapy in preclinical studies. 

Bioluminescence imaging provided well-defined tumor areas for the fluorescence data analysis. 

The chemical kinetics of a non-targeted fluorophore, ICG, facilitated to extract the information 

of vascular permeability in the tumor area. Both imaging methods are well known and 

commonly used in biomedical research. Due to the simplicity and low cost, this combined 

method can be easily and cost-effectively applied for obtaining vasculature information of 

tumors.  

While this study showed that some information about the hemodynamics and vascular 

structure changes could be obtained, limitations of 2D planar imaging were also obvious. Since 

the Ewing sarcoma grew so rapidly in the imaging time period (72 hrs.), tumor sizes at baseline 

and 72hour later were largely different. Since 2D planar imaging has a limited penetration depth, 

it could not fully probe the hemodynamic changes in deeply positioned tumor areas and showed 

only the vascular changes near the detectable surface area. As a result, the reliable quantification 

of vascular responses covering the entire tumor volume could not be achieved.  
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Chapter 3  

DEVELOPMENT OF A FREEQUENCY-DOMAIN NON-CONTACT 
SMALL ANIMAL IMAGING SYSTEM 

3.1. Requirements for the New Small Animal Imaging System 

Based on the experience of the preliminary in vivo small animal study with the Maestro 2 

imaging system, the desirable characteristics of a new system were identified and listed based on 

their priorities: 

 

(1) Full projection coverage 

To acquire epi- and trans-illumination data at the same time, the system should allow 

for simultaneous acquisition of multi-directional projection data. The animal should 

be imaged in its natural posture through the imaging procedures. The CCD camera 

should be fixed at one position due to its heavy weight and complicated connections 

with other electrical components. In addition, the camera’s field of view should cover 

the entire animal size. 

 

(2) Minimization of measurement error 

Using optical components to achieve the first design goal may cause errors in the 

accurate signal measurements. For example, unwanted optical paths and multiple 

reflections between mirrors and the animal surface can degrade the accuracy of the 

measurements. Thus these factors should be considered and eliminated (or minimized) 

in the system design.  
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(3) Free space source illumination  

The imaging setup should allow for free space source illumination at any point on the 

animal’s surface. In addition, the source illumination components and their 

movements should not obstruct the data acquisition by the CCD camera.  

 

(4) Surface boundary extraction  

The surface scanner should extract the animal’s surface geometry without changing 

the position and posture of the animal during the imaging process. It should also be 

integrated into the imaging system for easy operation. 

 

(5) Other minor considerations 

Convenient access and anesthetization of the animal through the imaging process are 

considered together with fewer moving components in the imaging system. The 

feasibility of combining the system with other gantry-based imaging modalities such 

as MRI, CT, PET, and SPECT is also taken into account.  

 

The new small animal imaging system was developed based on the above requirements. It 

consists of four main parts: (1) A light input unit for generating and positioning an intensity 

modulated laser beam, (2) an imaging head for projecting omni-directional views of the animal 

surface onto a CCD camera, (3) a detection unit for measuring amplitude modulation and phase 

shift of the collected light, and (4) a surface scanner for extracting a surface geometry of the 

animal being imaged. The schematic overview of the system is shown in Figure 3-1. 
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3.2 Light Input Unit 

The role of the light input unit is to deliver intensity modulated light sources to the target animal 

to measure the intensity modulation and phase shift of light that passes through the animal body 

for frequency domain data acquisition.  

 

3.2.1 Light Source 

The light sources of the input unit are compact semiconductor laser diodes (LDH-M-C Series, 

PicoQuant GmbH, Germany). The unit has five different wavelength laser diodes of visible and 

near-infrared light at λ1 = 475 nm, λ2 = 661 nm, λ3 = 757 nm, λ4 = 828 nm, and λ5 = 926 nm. 

Electrical current initiates the laser emission at a unique wavelength. Since the wavelength of the 

laser and the stability of output power depend on the diode temperature, each laser head is 

equipped with a thermoelectric cooler for control of the operation temperature. 

 The laser driver (MDL 300, PicoQuant GmbH, Germany) provides the intensity 

modulation for the laser with internal or external modulation frequencies that range from 100 

kHz up to 2 GHz. The output power is regulated by a control loop that compares the laser power 

setting and the monitor diode current. The modulation depth of the laser output can be adjusted 

by the voltage of the external modulation signal and the modulation depth control on the front 

panel of the driver. The external source of modulation frequencies is the signal generator 

(2023A, Aeroflex Inc., NY) covering the frequency ranges from 9 kHz to 1.2 GHz.  
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Table 3-1. Specification of Laser diodes 

 Laser 1 Laser 2 Laser 3 Laser 4 Laser 5 

Model No. LDH-M-C-470 LDH-M-C-650B LDH-M-C-760 LDH-M-C-830 LDH-M-C-930 

Average Power 8 mW 22.8 mW 8 mW 15.3 mW 33.3 mW 

Average 
wavelength 474.6 nm 661 nm 757.3 nm 828 nm 926 nm 

Spectral width 0.54 nm  0.85 nm   

 

For the flexibility of the laser illumination, all laser heads are coupled with optical fibers. 

A fiber coupler is directly mounted to the laser head and a 2 m long fiber optic patch cable is 

connected to the coupler. To optimize the coupling efficiency for the output power, multimode 

fibers were chosen (>80% coupling efficiency compared with >40% of single mode), an 8° 

angled output Ferrule Connector (FC/APC) was used to avoid back-reflections of laser emission 

into the fiber, which could influence the stability of the output. After passing through the optical 

fiber, the collimated laser beam at the laser head diverges. Therefore, a collimator (60fc-4, 

Schäfter + Kirchhoff GmbH, Germany) was attached to the end of the patch cable to converge 

the laser beam to have a 1~2 mm diameter. Then the collimator was clamped to the mounted 

turning mirror (CM1-P01, Thorlabs, Inc. NJ) on the rotational gantry in the next light source-

positioning unit.  

 

3.2.2 Light Source Positioning Unit 

The laser should be able to precisely illuminate any spot on the animal surface. Additionally, 

since the CCD camera detects the entire surface of the small animal simultaneously, the 

components for the source positioning and their movements should not obstruct data acquisition 
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by the CCD camera. Considering the specification of the imaging head for the small animal and 

the constraints for the source-positioning unit, a rotation gantry combined with a linear 

translation stage was applied to the positioning unit design (Figure 3-2). 

 

Figure 3-2. Light illumination using the source-positioning unit 

The rotational gantry provides 360° angular freedom for the laser illumination around the 

animal. The size of the gantry was chosen so that it would be large enough to be out of field of 

view of the camera (gray areas in Figure 3-5). Three different size gears, a turntable ring, a 

brushless DC motor, and a motor controller were employed to implement the rotation of the 

gantry. As shown in Figure 3-2, the collimator of an optical patch cable from a laser head was 

clamped to the turning adaptor with a protected silver coated mirror (CM1-P01, Thorlabs, Inc., 

NJ). The adaptor was mounted on the large ring gear (inside bore ∅ 296 mm, 120 teeth), which 

was attached on a turntable ring. The turntable ring and a planetary gear are affixed to the mount 

and the mount supports the weight and rotation of the components. To rotate the large ring gear, 

a brushless DC motor (40 Watt, EC16, Maxon Precision motors Inc., USA) is used. The torque 



 

 50

of the motor is delivered to the large ring gear via a planetary gear head (84:1, GP16, Maxon 

Precision Inc., USA) and a spur gear (16 teeth, 54 mm outside ∅, Quality Transmission 

Component, NY). The gear ratio between the motor and the large ring gear is 630:1. A motion 

controller (EPOS2 24/5, Maxon precision motors Inc., USA) operates the rotational movements 

with 0.25° resolution.  

All components of the rotational gantry were mounted on a motorized linear translation 

stage (Pro115-05MM-200-TTM, Aerotech Inc., USA). A motion controller (Soloist CL, 

Aerotech Inc., USA) operates all linear displacements of the stage. A 200 mm travel range with 

0.5µm resolution of the stage provides a full coverage of a whole mouse body and fine 

positioning of a laser beam in the longitudinal direction of the target animal. A LabVIEW 

graphical user interface on the host computer was developed to facilitate the control of all 

source-positioning components (Figure 3-4). 

 
Figure 3-3. Disassembled components of the source-positioning unit 
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Figure 3-4. Screen shots of the user interface for the source-positioning unit 

3.3 Imaging Head 

3.3.1 Basic Concept of the Imaging Head 

The main limitation of current non-contact imaging systems using a single camera is the limited 

projection angle of the measurement. To overcome this limitation and to achieve the listed 

design goals, I implemented a consecutive double reflection scheme using mirror components 

(from here imaging head) to obtain different viewing angles of the object being imaged. The 

basic configuration of the consecutive double reflection scheme uses two mirrors between the 

object and the detection camera for the half angle of the camera’s view (Figure 3-5). 
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Figure 3-5. Double reflection mirror scheme (Cross-sectional View) 

In this design, two mirrors are facing the object to be imaged and the detection camera 

respectively. Mirror 1, which faces the object, captures and reflects the optical signals emanating 

from the object to Mirror 2. Then Mirror 2, which faces the camera, projects reflected signals 

onto the detection camera. Accordingly, the upper half view of the camera has the viewing 

direction A, and the lower half view of the camera follows the same principle.  
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3.3.2 Specification of the Imaging Head for Small Animals 

I extended the 2D cross sectional double-reflection mirror scheme for the imaging head in Figure 

3-5 to three dimensions for small animals. To maximize the detection area of the animal surface, 

conical shape mirrors were chosen. This provides a full coverage of the entire surface of the 

animal.  

I began the extraction of the mirror specifications and positions with measuring the 

viewing angle of the imaging system. The camera system, unlike ordinary cameras, has an 

intensifier between the camera lens (AF Nikkor 50 mm f/1.8D, Nikon, Japan) and the CCD 

camera to amplify weak light signals. For that reason, the real viewing angle of the CCD camera 

is influenced by the mismatch between viewing angle coverage of the lens and the photocathode 

screen size. I measured the camera’s viewing angle (11.58°) using a grid paper and the thin lens 

equation. Furthermore, the dimensions of the cylinder that mimics an animal are given by a 40-

mm diameter and 80-mm length. In addition, the bias angle of the mirror facing the CCD camera 

is predefined as 45°. Under the given conditions and assumptions, 7 parameters 

()*+,--------, *+----, ,.----, /1, /2, 1, 23 defined in Figure 3-6 were calculated. 

 

 

Figure 3-6. Parameters for the conical mirror design. The animal shape was assumed to be a 
cylinder. 
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The departure angle δ at the optical center A is 5.79° from the measured viewing angle. 

The distance from the optical center to the object, )*+,--------, and the bias angle, 2, were set as 

independent variables in the ranges between 500 mm and 1400 mm and between 30° and 60° 

respectively. *+----, ,.----, /1, /2, 1 were calculated based on the variation of )*+,-------- and 2. Each 

variable can be calculated from: 

 
  
AB =

M 2
2

1
tan δ( ) −1









  (3.1) 

 

 
  
BC =

M 2
2

tan γ( ) +1( )  (3.2) 

 

 
  
CD =

M 2
2

tan γ( ) +1( )
sin γ( )  (3.3) 

  

  ABCD = AB+ BC +CD  (3.4) 

 

 
  
DE =

M 2
2 tan γ( )

 (3.5) 

  

 

  

M 2 = ABCD × 2

1
tan δ( ) + tan γ( ) + tan γ( ) +1( )

sin γ( )












 
(3.6) 
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M1= M 2

2 cos γ( )
sin 90° +δ −γ( )
sin 90° −α −δ( )  (3.7) 

 

 
 
α = 45° − γ

2
 (3.8) 

 

Since various combinations of these parameter values can be chosen, we considered four 

main aspects: (1) Focusing of the CCD camera, (2) efficient pixel usage without leaving too 

many pixels for the background, (3) machinability of mirror shapes and sizes, (4) available space 

for the system. With these in mind, the final parameter values for the imaging head were 

determined. A summary of all final values is given in Table 3-2.  

Table 3-2. Specification Summary of conical mirrors 

Parameter )*+,-------- *+---- ,.---- /1 /2 1 4 2 

Value 800 mm 136 mm 39 mm 70 mm 80 mm 17.5° 45° 55° 

 

3.3.3 Simplified Mock-Up Test 

Before fabricating the conical mirrors, the calculated parameters were confirmed with a 

simplified mock-up test. A cross sectional model using flat mirrors was made and the field of 

view of the CCD camera was tested. As shown in the Figure 3-7a, 4-cm-wide flat mirrors are 

positioned in accordance with the extracted specification. A transparent acrylic stage (2 mm 

thickness, 4 cm width) was placed 3 mm below the central axis of the mirror considering the 
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animal height. A test image using a toy mouse (Figure 3-7b) was taken. The result showed that 

the calculated specifications lead to full coverage of the entire animal, as expected. 

 

 

Figure 3-7. Preliminary tests of the mirror design (a) Mockup tests using flat mirrors and 
calculated mirror specifications and (b) an imaging coverage test with a mouse size toy 

3.3.4 Simulation of Back Reflections in the Imaging Head  

The second design requirement in Chapter 3 was to eliminate (or minimize) error factors, which 

influence the accuracy of the measurement data. Placing mirror components close to the animal 

to be imaged tends to create multiple reflections between the animal and mirrors. This can 

degrade the accuracy of the measurement raw data.  

I performed Monte Carlo ray tracing simulations to quantify the effects of back 

reflections between the animal and highly reflective mirror surfaces in the conical mirror 

imaging. For this study a commercial software package LightTools (Synopsys Inc., USA) was 

used. The simulation conditions were: (1) A 4-cm-diameter 8-cm-long digital cylinder similar to 

a mouse size is placed inside the imaging head for the camera’s field of view, (2) a point source 

that mimics light emission on the object surface moves along the object surface, (3) the surface 
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of the digital cylinder is a perfect absorber for detecting returned photons. By assuming the 

cylinder surface to be a perfect absorber, the simulations traced the emitted photons from the 

cylinder surface and back only in the first reflections off the mirror surfaces. Therefore, multiple 

reflections are not considered here. In addition to the double-conical-mirror system, I also 

performed simulations with a single-conical-mirror imaging head. Both types of imaging heads 

have the capability to gather data from 360° projections. The mirror specifications proposed by 

Li et al [119] were employed in the simulations, and the results for both types of imaging heads 

were compared. 

 

Figure 3-8. Simulation setups (a) Back reflection simulation setup, (a) a cylindrical phantom and 
displacement of a point source on the surface, (b) single conical mirror scheme, (c) double conical 
mirror scheme and (d) density distribution of returned photons on the phantom surface. 

!
Figure 3-8 illustrates the setup for the simulations. A one watt point source positioned on 

the cylinder surface moves in 10 mm steps along the y-axis on the cylinder’s surface from y = 10 

mm to y = 70 mm (Figure 3-8a). At each step the point source emits isotropically 50,000,000 

photons into the upper hemisphere. The placement of the cylinder phantom inside each imaging 
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head and the traces of photons are depicted in Figure 3-8b and c. The resulting density 

distributions of returned photons on the cylinder surfaces were calculated and displayed in 

Figure 3-8d.   

The simulation results for each imaging head are plotted in Figure 3-9. Shown here are 

the fraction of photons (in % of all photons emitted from the point source) that are back reflected 

from the mirror surfaces of the imaging heads to the surface of the cylinder. The results show 

that for the single conical mirror scheme (dash line), 8.3 % to 11.7 % of emitted photons return 

back to the cylinder surface depending on the source position. On the other hand, for the double 

conical mirror scheme (solid line), back reflections are below 2% for all source positions. Even 

at the source position of 10 mm from the edge only 1.6% backreflections were observed. Beyond 

source position of 40 mm, the backreflections diminishes to zero. 

 

 

Figure 3-9. Comparison of back reflection levels as a function of the location of a point source on 
the cylinder surface (see Figure 3-8) 

 In Figure 3-10 and 3-11, the density distributions of returned photons for the single and 

double conical mirror schemes are shown in two dimensions by unfolding the surface layer in 

Figure 3-8d.   
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The simulation results showed that in the single conical mirror scheme (Figure 3-10), the 

affected area and the amount of back reflections are considerably larger than in the double 

conical mirror scheme (Figure 3-11). A closer inspection of Figure 3-10  reveals that as a point 

source (shown as a black dot) moves inside the single conical mirror (from 10 mm to 70 mm), 

the affected area on the cylinder surface becomes smaller. However, from Figure 3-9, the total 

percentage of returned photons slightly increases and peaks at 60 mm. Therefore, depending on 

the placement of the animal and the light sources inside the single conical mirror, the distribution 

and total number of back-reflected photons varies and can be converged in small surface areas. 

In turn this will negatively affect the accuracy of the measurement raw data. 

On the other hand, Figure 3-11 shows that for the double conical mirror scheme, the 

affected areas on the cylinder surface disappear for the source positions beyond 40 mm. 

Therefore, by placing the animal more than 40 mm away from the double conical mirrors, back 

reflection effects can be completely avoided. 

 

3.3.5 Fabrication and Assembly of Conical Mirrors 

After the performance of the new imaging head design was confirmed, the mirrors were 

fabricated. Aluminum was chosen as a substrate for the mirrors because of its relatively low cost, 

mechanical stability, and ease of machining. Though glass materials (Pyrex, fused silica, and 

plate glass) and metallic materials (beryllium and invar alloys) are also known as common 

substrates for highly reflective mirrors, these materials are difficult to machine into the complex 

shapes as required here. In addition, their mechanical properties lack the stability for relatively 

large sized structures.  
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Figure 3-10. Simulation results of the single conical mirror scheme depending on a point source 
positions (black dot). For clear visualization, each result at different source positions is auto scaled 
based on the individual total returned photon results in Figure 3-9. 

 

Figure 3-11. Simulation results of the double conical mirror scheme depending on a point source 
positions (black dot). For clear visualization, each result at different source positions is auto scaled 
based on the individual total returned photon results in Figure 3-9. 
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The aluminum mirror substrate was machined using a computer numerical control (CNC) 

lathe to hold tight tolerance (<±5µm) (ZeroHour Parts, MI). To achieve a higher surface 

reflectivity (>95%) over the visible and near-infrared wavelength range, the surfaces were 

polished using a diamond turning finish (70 Å rms surface roughness) and coated with protective 

silver that has a higher reflectivity than gold or aluminum (Rocky Mountain Instrument Co., CO 

and Nu-TEK Precision Optical Co., MD). This polishing method provides 80~85% reflectivity in 

the visible wavelength range without any additional metal coatings. The protective silver coating 

increases the reflectivity more than 10%. Additionally, higher damage thresholds by the coating 

layer make the mirror surfaces more robust and less susceptible to scratches and other damages. 

The fabricated conical mirrors were assembled concentrically by using a customized 

aluminum mirror holder (Proto Labs, Inc., MN). The horizontal placement of an animal stage in 

the center of the single conical mirror head, results in shadows that appear in the images captured 

by the ICCD camera. These shadows are generated by both edges of the animal stage (Figure 3-

12a) [119]. Since the placement of the animal stage in the double conical mirror imaging head 

was the same as the single conical mirror head, these shadow areas were used for the design of 

the mirror holder to minimize the obstructed area. Though the position and area of the shadow 

can vary depending on the position of light sources, the specification of a holder was decided 

with the assumption that a light source is positioned at the center of concentric circles. 
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Figure 3-12. Mirror holder design: (a) Shadow areas by the edges of an animal stage in the single 
conical mirror scheme (red circles) [87], (b) developed mirror holder, and (c) the images of back 
and front sides of assembled mirrors 

 
The outer surfaces of the conical mirrors and their holder, which do not contribute to the 

image formation, were painted with a highly absorptive suede coating paint (Nextel Suede-

Coating 3101, Mankiewicz Gebr. & Co., Germany). This eliminates undesirable reflections by 

the component surfaces. Figure 3-13 shows a test image, which demonstrates that all sides of a 

soda can can be imaged at the same time and displayed in one image. 

 

Figure 3-13. Test imaging using the developed imaging head with a soda can 
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3.4 Detection Unit 

The detection unit consists of a filter wheel (AB302-T, Spectral Products, NM), optical filter sets, 

an optical lens (AF Nikkor 50 mm f/1.8D, Nikon, Japan), and an intensified CCD (ICCD) 

camera system. Each of these components is described in more detail in the following sub-

chapters 

 

3.4.1 Optical filter 

The emission filter is used to filter out the excitation light leakage coming into the lens aperture 

of the CCD camera. First, a thin film interference bandpass filter was employed depending on 

the emission wavelengths. Interference filters are composed of multiple dielectric thin layers on 

transparent substrates. They provide maximized wavelength selectivity and transmission using 

sharp cut-ons and cut-offs. However, since the transmission of interference filters depends on the 

angle of light incidence (AOI) on the filters, the interference filter by itself could not block the 

excitation light perfectly in the system using the double conical mirror head. For that reason, an 

absorptive longpass filter is additionally used in front of the interference filter. Absorptive 

longpass filters are inexpensive colored glass filters and insensitive to the AOI. In the 

experiments, the combinations of one absorptive longpass filter and one interference filter 

(Chroma Technology Corp., USA) were used depending on the excitation and emission spectra 

of the applications. 
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3.4.2 Intensified CCD (ICCD) Camera System 

The main component of the detection unit is the intensified CCD (ICCD) camera system 

(PicoStar HR 12, LaVision GmbH, Germany). It consists of a lens, an image intensifier (HRI, 

Kentech Instruments Ltd., England) for amplifying low intensity light, and a Charge Coupled 

Device (CCD) camera.   

The image intensifier is comprised of a photocathode, a Micro Channel Plate (MCP), and 

a phosphor screen (Figure 3-14). The photocathode is coated on the inner surface of the 

intensifier input window. When a photon hits the photocathode, the photoelectric effect generates 

the emission of electrons. The spectral response and sensitivity (or Quantum Efficiency) of the 

camera system depends on the photocathode material. In the intensifier, a multi-alkali-

antimonide S25 photocathode is used that has better wavelength properties in the visible and near 

infrared ranges than the S20 or the S20G. The high voltage gating pulses applied to the 

photocathode controls the gate width of the camera system from 300 ps to 1 ms and this gate 

control was used for the frequency domain measurement later. The emitted photoelectrons from 

the photocathode are drawn towards the MCP by a strong electric field. 

The MCP is an electron multiplier using a bundle of tiny glass channels to generate 

secondary electrons. The inside of glass channels was coated with a resistive material. Electrons 

entering the glass channels collides with the inside walls and secondary electrons are released 

from the walls. An applied high potential gradient across the MCP determines the gain of 

amplification. The two dimensional electron output from the MCP is re-converted to photons by 

the luminescent phosphor (P43, 1% decay time: 3ms) on the output window. The generated 

image by reconverted photons reaches the CCD camera through the lens coupling. The 

specifications of the camera system are summarized in Table 3-3.  
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Table 3-3. Specifications of the intensified CCD camera system 

Parameter Value 

Active Pixel Array 
1370 (H) × 1040 (V) 

 (Progressive Scan Sensor) 

Pixel size 
CCD: 6.5 µm × 6.5 µm 

Intensifier + CCD: 14.11 µm × 14.11 µm 

Spatial Resolution > 15 lp/mm 

Spectral Range 350 – 900 nm 

Sensitivity > 200 counts/photoelectron at max. gain 

Quantum Efficiency 65% at 550 nm 

Full Well Capacity 18,000 

Read Out Noise 
< 5 e- (high gain) 

< 6 e- (low gain) 

Average dark current < 0.1 e-/pixel.sec 

System Dynamic 3600:1 (71.1 dB) 

CCD A/D Converter 12 bit at 16 MHz 

Binning H (1-8), V (1-32) 

Exposure Time Min. 20 ms 

Frame rate 
10 frames/s (full frame) 

20 frames/s (2 × 2 binning) 

Intensifier Type Gen. II single stage MCP  

MCP diameter  18 mm 

Lens connector Nikon-F (optional C-mount) 

Cooling 2-Stage Peltier with forced air cooling 

Communication RS 232, USB, TTL-I/O 
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3.4.3 Frequency Domain Measurement 

I designed the system to operate in so-called homodyne mode to collect frequency domain data 

within the range of 100 to 800 MHz [120-122]. In general, the homodyne mode technique uses a 

local RF oscillator to modulate a light source and to provide a demodulation reference signal to 

an in-phase and quadrature (I&Q) demodulator coupled with a detector. Typically, 

photomultiplier tubes (PMT) or avalanche photodiodes (APD) are used as detectors. After 

detecting the attenuated RF modulated signal, the I&Q demodulator including a phase shifter 

computes the amplitude attenuation and phase shift of the detected signal with respect to the 

given reference signal.  

In the ICCD camera system, the gain-modulated image intensifier replaces the role of 

I&Q demodulator and acts as a multichannel RF mixer across the camera’s field of view. Two 

synchronized signal generators of the light input unit provide a RF reference signal to the 

photocathode of the image intensifier. The frequency of the provided reference signal is the same 

or a harmonic frequency of the laser-diode modulation. Since the gating of the image intensifier 

is synchronized with the applied RF reference signal, only the pixel signals that are in phase with 

the photocathode modulation are amplified. In addition, since the decay time of the phosphor 

screen and the exposure time of the CCD camera are much longer than the modulation period, 

the incident light on the CCD camera is virtually constant over time at any given phase. By 

shifting the phase of the intensifier sequentially over 2π, one cycle of oscillation of every pixel 

can be acquired.  

This information is saved as images at each phase shift step (Figure 3-15). Then, using a 

complex Fast Fourier transform of every pixel on the acquired images over one cycle, the 

average intensity, the amplitude and the phase information of the AC signal are calculated in the 
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range from -π to π. All of the detection process related to the camera system is controlled by the 

custom imaging software (DaVis by LaVision, Germany).  

 

90 

Figure 3-15. The stack of images over one cycle of oscillation: The profile of each pixel is 
extracted to calculate intensity, amplitude, and phase information. 

3.5 Surface Scanner 

In the imaging system, emitted light from the surface of the animal is directly imaged onto a 

CCD camera. To use this data in a suitable image reconstruction code that provides cross-

sections through the animal, the animal’s surface geometry needs to be extracted. To obtain this 

information, the surface scanner is developed and incorporated into the imaging system.  

I considered various constraints and features for the scanner design: (1) First, the scanner 

should not obstruct the data acquisition using the developed imaging head; (2) second, the 

scanner should not disturb the motion of the light input unit; and (3) third, the animal to be 

imaged should be in its natural posture and at a fixed position through the entire imaging process. 

Since these constraints provide very limited space for the scanner and do not allow moving or 

rotating a small animal for a scan, a movable platform was incorporated in the scanner design.  
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The surface scanner consists of a focusable line laser, mirror backgrounds and two 

webcams. A green laser (LC532-5-3F, 532 nm, < 5 mW, Apinex.com Inc., Canada), which is 

less diffusive in tissues than a red laser, was chosen to enable the scanner software to extract 

boundary lines more precisely from the scan data. This line laser is attached on the linear 

translation stage of the light input unit. The moving laser plane intersects the animal and the 

background surfaces at the same time. These intersections are captured by two fixed position 

webcams (960×780, 15fps, Quickcam Pro 9000, Logitech, CA) and are used to triangulate three-

dimensional coordinates of point clouds with known background geometries. Two 105° angled 

flat surfaces, which have mirror surfaces in part, are used as a background. This mirror-surfaced 

background reflects two opposite side views of the animal into each webcam so that total of six 

directional scans of a whole animal body are obtained. A scan of a whole mouse body takes 

about 7~10 seconds.  

All components except for the line laser are fixed on the movable platform. In the scan 

mode, the scanner platform is positioned under the animal stage as shown in Figure 3-17d. After 

the scan of the animal surface is completed, the scanner can be removed from the FOV of the 

CCD camera (Figure 3-17c). The David Laser scanner software (DAVID Vision Systems GmbH, 

Germany) is used to determine the xyz coordinates of point clouds and to combine six partial 

surface meshes into one surface mesh. Lastly, the generation of a volume mesh and post-

processing of surface and volume meshes are performed with the ICEM CFD software package 

(ANSYS Inc., Lebanon, USA). 

In a last step, the local coordinates of the generated animal mesh are converted into the 

global coordinates of the imaging system based on a priori geometrical information of a 

reference block (35×10×15 mm). This reference block is placed on the transparent animal stage 
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so that it is scanned together with the animal in the scan process. The accuracy between the real 

(measured) object and the generated surface scan is accurate within ± 0.5 mm as shown in Figure 

3-17b. 

 

Figure 3-16 Surface boundary extraction (a) scanner components on a movable platform, (b) a line 
laser on the linear translation stage, (c) a photograph of a mouse scan, and (d) scan result from one 
webcam 

 

Figure 3-17. Generated surface meshes and operation modes of the scanner (a) a generated surface 
mesh from the scan data (see Figure 3-16d), (b) the comparison of the reference block size 
between the real (measured) and the generated by the scan, (c) imaging mode, and (d) scan mode 
of the surface scanner 
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3.6 System Configuration 

Since the system employs a non-contact imaging geometry using conically shaped mirrors and 

the free space source illumination setup, the alignment of the system components is critical to 

reduce the errors from image distortion and inaccurate coordinate information of the laser 

illumination point on the animal surface. To minimize these errors, each mechanical component 

was designed using a computer aided design (CAD) software package, Solidworks (Dassault 

Systèmes SolidWorks Corp., MA). In the CAD design, the specification figures of components 

were considered up to two decimal places for the precise component fabrication, assembly and 

configuration. 

 All components were assembled on a solid aluminum breadboard (MB60120/M, 

Thorlabs, Inc., NJ) to enable accurate positioning of each component. Following the assembly on 

the breadboard, the height of the CCD camera, the transparent small animal stage, the surface 

scanner, and other related subunits were finely tuned using a labjack (M-EL120), a rod platform 

(M-300-P), and the fine positioner (M-32A, Newport Co., CA) of a rod platform to align with the 

fixed-height conical mirror pairs. 

The pan and tilt of the camera was calibrated using a predefined grid pattern (5 mm, 15° 

interval) on a white derlin cylindrical bar (Figure 3-19a). This calibration enables accurate 

modeling of a three-dimensional object on two-dimensional images. The process of the 

calibration involves making no variation of azimuth angles and symmetrical distribution of radial 

lines on the cylindrical bar in the captured image (Figure 3-19b).  This results in the concentric 

alignment of the camera, the conical mirrors, and the cylindrical object bar. The captured image 

of the calibration bar provides optical geometry information of the imaging setups. 
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Figure 3-18. Photos of the completed FMT small animal imaging system (a) the overall 
appearance of the system, and (b) the inside view of the imaging chamber in (a). 
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Finally, the location of a source illumination spot was finely tuned based on the same 

cylindrical bar grid used in the camera calibration, as shown in Figure 3-19c. 

 

 

Figure 3-19. Alignment of system components (a) the calibration bar, (b) an image of the 
calibration bar obtained with the developed imaging head and the ICCD camera system, and (c) 
laser spot alignment with a calibration bar. 
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Chapter 4    

IMAGE RECONSTRUCTION SCHEME FOR NON-CONTACT OPTICAL 

TOMOGRAPHY 

4.1 Ray Transfer Operator 

4.1.1 Angular-Resolved Data and Angular-Averaged Data 

When light exits the tissue surface, the light intensity typically varies as a function of exit angle 

due to the microstructures in the tissues [123-127]. However, current tomographic imaging 

systems do not include the angular dependence of the intensity in tomographic image 

reconstructions.  

As shown in Figure 4-1, fiber-based imaging systems integrate the light over all the 

angles within a fiber’s numerical aperture and hence measure the angular-averaged data. 

Similarly, current camera based systems also cannot obtain the angular-resolved boundary data, 

due to a limited viewing angle of the camera. The angular-averaged data is typically input to a 

diffusion model-based reconstruction code, which does not consider the angle-dependent  

information in the image reconstructions. Indeed, unlike the ERT, the diffusion equation does not 

even contain an angular-dependent parameter. ERT-based reconstruction codes could use 

angular-dependent data, but because experimental data is currently unavailable potentially 

valuable information is lost.  In a theoretical study, Gao et al recently demonstrated that using 

angular-resolved boundary data with the ERT based reconstruction algorithm substantially 

improves both the localization and the quantification of reconstruction results (Figure 4-2) [128].  
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Figure 4-1. Angular dependence of emitted light from the tissues (left) and the collection of 
emitted by using an optical fiber (right). 

 

 
Figure 4-2. Numerical simulation results using different data type (a) true source positions, 
reconstruction result using (b) angular-resolved data, and (c) angular-averaged data (from the 
reference [128]). 
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Acquiring angular-resolved data is a challenging issue in experiments as well as in 

imaging system development. The proposed conical-mirror scheme as described in Chapter 4 

provides the capability to obtain measurements of angular-resolved-data. A conceptual 

illustration of this idea is given in Figure 4-3. Consider, for example, a single point positioned at 

the concentric axis of two conical mirrors inside the camera’s field of view. The conical mirrors 

distribute the viewing angle of the camera to the entire 360º around a single point. As a result, 

the captured image in the image plane is not a point, but a ring. Therefore, within the angular 

coverage of the conical mirror pairs, the exit angle as well as the intensity of photons, so called 

angular-resolved data can be obtained. Consequently, the measurement using the conical mirror 

imaging head can lead to substantial improvement of the image reconstruction results.  

 

 

Figure 4-3. Angular-resolved measurements using the conical mirror pair. The captured image of a 
single point in the conical mirror pair scheme is a ring. 
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4.1.2 Development of Ray Transfer Operator  

An ERT-based free space ray transfer operator was developed to make use of angular-resolved 

data in the image reconstruction. The new ray transfer operator provides a mapping of the spatial 

and angular distribution of the light radiance observed on the tissue surface onto pixels 

of the ICCD camera and goes beyond the existing operators for diffuse light or angular-averaged 

measurement data. The ray transfer operator was constructed by using the surface radiation 

theory [129]. This allows for exact treatment of light propagation in free space through the 

conical mirror imaging head.  

Assuming an angular-dependent emitting surface as shown in Figure 4-4, the radiation 

power, , emitted from the differential area,  at , in the direction of  toward the lens, is 

given by: 

 

  (4.1) 

 

where  is the unit normal vector to the surface and  is the differential solid angle in the 

direction of . The total radiation power  that is emitted from  and captured by the lens 

aperture is described as: 

 

  (4.2) 

 

where  is the solid angle subtended by the projected area of  on the lens aperture.  
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Figure 4-4. Light propagation from an object’s surface to the aperture of the camera through 
optical components 

Assuming that all the photons within  passing through the lens aperture are 

deposited on the image plane of a camera without any loss, the total radiant power  passing 

through the lens aperture is equivalent to the total radiant flux  on the differential area 

in the image plane, given by: 

 

  (4.3) 

 

 is the measurable quantity being compared to the prediction during the reconstruction 

process. Finally,  can be expressed as a function of angular-dependent radiance : 
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The ray transfer operator  is constructed by using a ray tracing method like 

Monte Carlo method and depends on the direction , the position , the solid angle , and 

the area ratio . Therefore,  provides the data with angular-dependent information.  

 

4.2 ERT-based Image Reconstruction Algorithm 

A three-dimensional distribution of fluorescent sources in tissue is achieved by using a partial 

differential equation (PDE)-constrained optimization method that is based on the frequency 

domain equation of radiative transfer. 

 

4.2.1 Forward Model for Light Propagation 

The generation and propagation of fluorescent light in biological tissue can be accurately 

modeled by two coupled frequency-dependent equations of radiative transfer [130, 131], given 

by  
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Equations (4.5) and (4.6) represent the propagation of excitation light from the external light 

source and the emission light propagation from the fluorescent source inside the tissues, 

respectively. The superscripts x and m in equations denote the excitation and emission 

respectively. The parameters  and  are the absorption and scattering coefficients in units of 

cm-1 respectively. The absorption coefficient of the fluorescent source is denoted by . The 

source modulation frequency is  and c is the speed of light inside the tissue. The light 

radiance  is represented in units of W·cm-2·sr-1;  denotes the quantum yield of the 

fluorescent source;  is the excitation fluence in units of W·cm-2 defined by

;  is the local lifetime of the fluorescent source;  is the 

commonly used Henyey-Greenstein phase function given by 

 

  (4.7) 

  

The boundary conditions for the two coupled equations are given by (4.8) and (4.9): 
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being proportional to the local fluorophore absorption, the lifetime of the fluorescent source, and 

the quantum yield. 

For discretization of the light propagation model, an unstructured node-centered finite-

volume discrete-ordinates method is employed to make use of the beneficial properties of finite-

element and finite-volume methods such as the conservation properties of the finite volume 

formulation and the geometric flexibility of the finite-element approach [129, 132 ].  The 

discretized forms of the two ERTs (4.10 and 4.11) are obtained as 

 

  (4.10) 

 

  (4.11) 

 

where is the number of surfaces surrounding the node  and  is the discrete 
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defined on th surface in the direction . These surface intensities are related to the nodal 

intensities  by the second-order spatial differencing scheme [129]. Each ERT involving  

(nodes) coupled into (directions) leads to the total unknowns. A matrix-based 

iterative linear solver is employed here, which enables updating all the radiation intensities 

simultaneously, thus leading to fast convergence compared with source iteration-based 

techniques. 
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Two linear systems of algebraic equations are finally obtained as 

 

  (4.12a) 

 

  (4.12b) 

 

Each line denoted by of the matrix A contains the coefficients of the discretized 

forms (4-10) and (4-11), established at the node number and the direction . The excitation 

light source and the fluorescent source term come into the term and  respectively after the 

discretization on the boundary node and the internal node . 
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constraints within the PDE-constrained optimization method that solves for the spatial 

distribution of the fluorescent sources inside the tissue. 

 

4.2.2 Inverse Problem 

4.2.2.1 PDE-constrained Optimization 

The optical tomographic problem can be formulated in more general terms as 

 

 
 

(4.14) 

 

where and  are the vectors of the inverse and forward variables respectively. The 

function  is the objective function that quantifies the difference between measured and 

predicted light intensities on the medium surface and  is a discretized version of 

coupled excitation and emission equations. Traditional methods for solving (4.14) is to treat the 

forward variable  as a dependent variable of the inverse variable , i.e., , which 

reformulates the original problem (4.14) into the following:  

 

  (4.15) 

 

which is referred to as ‘unconstrained’ since the equality constraint,  is eliminated in 

(4.15). Thus, the complete solution of forward model,  should be obtained at each 

optimization iteration for the evaluation of , which leads to a computationally very 
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demanding process in the associated optimization procedure. Nevertheless, this approach has 

been widely used due to easiness of implementation, which includes existing codes such as the 

conjugate gradient (CG) approach [135], the quasi-Newton (QN) approach [136-138], and the 

Jacobian approach [139-145]. 

 On the other hand, the “PDE-constrained” optimization approach treats  and 

independently, which solves for the variables  and  simultaneously at once. Typically, an 

extended objective function called "Lagrangian" is introduced as follows: 

 

  (4.16) 

 

where  is the vector of Lagrange multipliers. The solutions of both forward and inverse 

problems can be simultaneously obtained at points satisfying the first-order Karush-Khun-Tucker 

(KKT) conditions [ 146 - 148 ] where the gradient  vanishes with respect to , and  

respectively. This type of PDE-constrained approach allows for using the inexact solution of the 

forward problem to solve for the inverse problem solution, which leads to a significant time 

saving in the total image reconstruction time. 

   

4.2.2.2 Inverse Problem of the Fluorescence Molecular Tomography 

The fluorescence tomographic problem is to find a vector of unknown sources  

inside the medium, assuming that all other intrinsic optical properties inside medium such as the 
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(4.17) 

 

where  is the objective function that quantifies the difference between measurements and 

predictions of emitted light from the tissue surface.  and are the discretized radiative 

transfer equations for the excitation and emission equations. By assuming homogeneous and 

inside the medium, this work focuses on reconstructing the spatial distribution of the 

fluorophores absorption  (hereafter denoted as ) is to be reconstructed. The above 

inverse problem (4.17) can be restated using a Lagrangian function as 
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points where the following first derivatives of the Lagrangian function (4.18) with respect to 
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(4.19b) 

 

 
 

(4.19c) 
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(4.19e) 

 

where the first equation  is the sensitivity equation with respect to the inverse variable , and 

the second and third equation can be viewed as the adjoint equations for  and . The last 

two equations are the two forward equations. Then the KKT system given by (4.19) is solved by 

using Newton’s method as 
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4.2.2.3 Reduced Hessian Sequential Quadratic Programming 

The reduced Hessian SQP method is a method that enables solving nonlinear constrained 

optimization problems with relatively low cost and fast convergence [149]. The rSQP method 

solves the KKT system (4.20) through finding the minimum of a quadratic approximation of the 

Lagrangian function subject to the linearized constraints and . Thus, the KKT system 

(4.20) is equivalent to the following quadratic programming problem. 

 

  (4.21) 

 

where represents the gradients of the objective function with respect to 

each of unknowns  and  is the full Hessian (or approximations) of the Lagrangian 

function. The linearized constraints in (4.21) correspond to the last block of the KKT system 

(4.20) as: 
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  (4.23a) 

 

  (4.23b) 

 

The linearized constraints in (4.22) can be rewritten as  

 

  (4.24a) 

 

  (4.24b) 

 

However, the full Hessian of the Lagrangian function is often difficult to obtain and its 

approximation by the updating scheme tends to create large dense matrix . 

These difficulties are overcome by dropping certain non-critical second-order terms of the full 

Hessian matrix. Here the standard reduced Hessian SQP method based on the separation of 

variable is employed and described as follows. 

Because and are invertible, the vector  can be decomposed into two parts as: 
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  (4.26) 

 

and 

 

  (4.27) 

 

Since the choice of and is a challenging problem in practical implementation of the reduced 

SQP, the popular choice for and by many authors is used in this study [150-153]. 

By substituting (4.25) into (4.21) and differentiating the resulting expression with respect 

to , and using the identity , the reduced Hessian is given by 
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  (4.29) 

 

  (4.30) 

 

At the new iterate, the Largrangian multiplier vectors are updated from 

 

  (4.31) 

 

  (4.32) 

 

Then the updated Largrangian multiplier vectors are applied to the reduced gradient rewritten as: 
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The direct computation of the reduced Hessian and its matrix inversion are avoided 

here by using a direct approximation to the matrix-vector product of  through the 

limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) updating algorithm [146, 148]. 

This approach enables the proposed rSQP scheme to be applied to large-scale optimization 

problems. It should also be noted that the cross-term vector  is ignored as in other 

works [149-152]. 
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The global convergence of the rSQP scheme is ensured by line search on the real-valued 

merit function (4.34), which is chosen due to its simplicity and low computational cost.   

 

  (4.34) 

 

The directional derivative of   Dϕn µ,ψ x ,ψ m( ) along the descent direction of  is presented as 

 

  (4.35) 

 

Thus, the decent property  can be maintained by choosing [154] 

 

  (4.36) 

 

At each iteration given by , the merit function (4.34) is successively monitored 

to ensure the global convergence while line search provides a step length for the sufficient 

decrease in the merit function as [153]. 

 

  (4.37) 
 

 

4.2.3 Computational Implementation of the rSQP Scheme  

The reduced Hessian SQP algorithm can be summarized into the following structure. 
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Algorithm  

Reduced Hessian Sequential Quadratic Programming (rSQP) scheme  

for reconstructing the spatial distribution of the absorption coefficient of the fluorescent source 

1:  Set  and initialize  and  

2:  Solve  for , and  solve  for  

3:  Compute   

4:  Check the stopping criteria: if satisfied, stop 

5:  Solve  for  via a limited-memory BFGS updating formula. 

6:  Solve the two QP problems for  and  

                 

7:  Set  and check if it ensures the sufficient decrease in the merit function 
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 ; otherwise, 

  

9:  Evaluate  and , and compute  and . 

10:  Solve for  and  with a GMRES solver 

                                 

and update the merit function parameter  by  

                   

11:  Evaluate  

12:  Get  and . 

13:  Set  and return to Step 4 to check the convergence. 

 

As mentioned earlier, the rSQP algorithm makes use of the incomplete solutions of the 

two forward equations during the reconstruction process. Thus the GMRES iteration for the 

linearized forward solution of the rSQP scheme is stopped with the loose tolerance in the range

, whereas for the forward solution of the unconstrained lm-BFGS method, the 

tolerance of is used [132, 148].  
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Chapter 5  

SIMULATIONS AND EXPERIMENTAL RESULTS 

5.1 Numerical Simulations  

Numerical studies involving a digital mouse phantom were conducted to demonstrate the 

advantages of the angular-resolved measurement in the reconstruction processes.  

A 3D volume mesh of the numerical mouse phantom was generated based on the surface 

geometry of a live mouse that was extracted using the developed surface scanner. The optical 

properties of the background medium inside the numerical mouse phantom were set to µa = 0.4 

cm-1 and µs
’ = 15 cm-1 at both 475 nm excitation and 515 nm emission wavelengths. Two  sphere 

(Ø 5 mm) fluorescent sources were placed 1 cm apart at the depth of ~8 mm below the surface as 

shown in Figure 5-1. The optical properties of fluorescent sources were assumed to be µa =1 cm-

1, a quantum yield of η = 0.9, and a fluorescence lifetime of τ = 4 ns.  

The numerical phantom was illuminated at a single point around the middle of the top 

surface directly above the two fluorescent sources inside the medium. The synthetic excitation 

and emission radiances on the mouse phantom surface were generated by solving the frequency 

domain ERT-based forward problem with the given distribution set of optical properties and 

fluorescent sources (Figure 5-2). 

 A mesh of 43,290 tetrahedron elements was used in the image reconstructions, for both 

angular-resolved and angular-averaged data sets. Each mesh node employed 80 discrete 

ordinates for the image reconstruction using angular-resolved data. 
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Figure 5-1. True source positions of two virtual fluorescent sources inside a digital mouse 
phantom (in clockwise direction, direction, perspective, top, side, and front views) 

 

Figure 5-2. The synthetic radiance on the surface of the mouse phantom (a) excitation (left: 
amplitude, right: phase) and (b) emission (left: amplitude, right: phase) 
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Figure 5-3. Reconstruction results using the angular-resolved data (in clockwise direction, 
perspective, top, side, and front views) 

 

Figure 5-4. Reconstruction results using the angular-averaged data (in clockwise direction, 
perspective, top, side, and front views) 
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Figures 5-3 and 5-4 show the reconstruction results using angular-resolved data and 

angular-averaged data, respectively. As can be seen, the angular-resolved data leads to clear 

separation of the two fluorescent sources and more reliable quantification in the reconstruction 

result. However, when the angular-averaged data is used, the two sources cannot be separated. 

 

5.2 Phantom Experiments 

5.2.1 Optical Phantoms 

For the characterization of the system’s performance I employed a commercial optical phantom 

from BiomimicTM from INO (Québec, Canada). This solid polyurethane phantom has a 

cylindrical shape and size (Ø 3.5 cm, 4.5 cm length) with a volume similar to that of an ordinary 

mouse. Black carbon was used as an absorber in the fabrication and provides a mostly flat 

absorption level over the visible and near infrared spectral range. The optical properties of 

phantoms were measured at 6 different wavelengths by using time-correlated single-photon 

counting (TCSPC) method. Table 5-1 summarizes the measured values of the optical properties 

at different wavelengths. 

Table 5-1. Optical properties of the BiomimicTM phantom at different wavelengths 

Wavelength (nm) 475 515 575 661 757 828 
µa  (cm-1) 0.0768 0.0642 0.0693 0.0606 0.0512 0.0446 
µ's (cm-1) 9.67 9.19 9.32 9.21 8.78 8.45 
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5.2.2 Single Fluorophore Experiment 

A single hole was drilled into the cylindrical phantom (Ø 1.5 mm, 25 mm depth, and 5 mm away 

from the center of the phantom). This hole was filled with fluorescent solutions consisting of 

fluorescein (F2456-100G, Sigma-Aldrich Co.) diluted with distilled water to achieve by weight.  

For the imaging processes, 475 nm excitation light illuminated three different points on 

the surface of the phantom and emission data was acquired using a combined filter set (515 nm 

long pass filter and 515/30 band pass filter). The optical properties at the excitation wavelength 

are µa = 0.0768 cm-1 and µ´s = 9.67 cm-1 and those at the 515 nm emission wavelength are µa = 

0.00642 cm-1 and µ´s = 9.19 cm-1.   

The reconstruction was performed on the spatial and angular mesh of approximately 

60,000 tetrahedron elements and 80 discrete ordinates. Figure 5-5 shows that the reconstructed 

position of the fluorescein-filled hole is well matched with the actual position in the optical 

phantom.   

 

 

Figure 5-5. Phantom experiment (a) photograph of the phantom (red circle: insertion hole position) 
(b) image reconstruction results 
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5.3 Small Animal Imaging Studies 

5.3.1 Case 1: Tumor Cells Positioned Subcutaneously 

An initial animal experiment with a tumor-bearing mouse was conducted with the developed 

imaging system. Osteosarcoma cells (143B) transfected with GFP (pEGF-C1) were sorted 

multiple times by using flow cytometry to present 80~90% GFP positive expression. 

Considering the weak signals of GFP in the first attempt, the tumor cells (1×106 cells/ml in 100 

µL PBS) were injected subcutaneously near the left kidney of a mouse. One week after the cell 

injection, the mouse was imaged to measure the tumor growth. For the FMT imaging, a 475 nm 

excitation wavelength was employed and the emission signals passing through a combined filter 

set (515 nm long pass filter and 515/30 band pass filter) were measured. 

 

 

Figure 5-6. Reconstruction results of the tumor growth: one week after the subcutaneous tumor 
injection (in clockwise direction, perspective, top, side, and front views) 
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 With one single illumination on the tumor area, total 37558 data points were obtained and 

used in the reconstruction. Figure 5-6 shows the reconstructed tumor location, which was 

confirmed by the planar imaging result using the Kodak In-Vivo Multispectral Imaging System 

FX (Carestream Health, Inc.).  

 

5.3.2 Case 2: Tumor Cells Positioned near the Center of Abdomen 

The GFP (pEGF-C1) tagged osteosarcoma cells (143B) of the previous animal 

experiment were used again in a longitudinal study of monitoring tumor growth. For this study, 

1×107 cells/ml in 100 µL PBS were injected into the right iliac crest of a male athymic nude 

mouse with an X ray-guided intrapelvic injection as shown in Figure 5-7. Therefore the injection 

area of the tumor cells was near the center of the mouse abdomen. A week after the cell 

injection, the mouse was imaged with the new small animal imaging system once a week for 

three weeks. The same system setup employed for Case 1 was also used for the FMT imaging for 

this case. For the reconstruction a total of 20,334 data points from five illumination points were 

used together with a volume mesh having 125,000 tetrahedron elements.  

 

Figure 5-7. X-ray guided intrapelvic tumor cell injection 
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The reconstruction results in Figure 5-8, 5-9, and 5-10 clearly show the tumor growth 

over time from the first week to the third week. We present here a 3D volume contour of 

reconstructed GFP concentrations above the given threshold, which can provide a better way of 

possible quantitative assessment of the tumor growth over time. The calculated tumor volume 

increased up to about 7.43 times at the second week and 13.02 times at the third week in 

comparison with the first week.  

At the third week imaging time point, the mouse was also imaged with the 

NanoSPECT/CTTM imager of Bioscan Inc., USA. The CT results confirmed that the tumor area 

in the FMT reconstruction result corresponds well with the tumor boundaries obtained from the 

CT images (Figure 5-11) and with the shape of the explanted tumor (Figure 5-12b). 

 

 

Figure 5-8. Reconstruction results of the tumor growth: the first week after the tumor injection (in 
clockwise direction, perspective, top, side, and front views) 
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Figure 5-9. Reconstruction results of the tumor growth: the second week after the tumor injection 
(in clockwise direction, perspective, top, side, and front views) 

 

Figure 5-10. Reconstruction results of the tumor growth: the last third week after the tumor 
injection (in clockwise direction, perspective, top, side, and front views) 
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Figure 5-11. Results of CT imaging (axial, coronal and sagittal views in clockwise direction); In 
CT images, the areas enclosed by a green line and a yellow line present a soft tissue part and a 
bony part of the tumor respectively. 

 

Figure 5-12. Photographs of (a) the mouse and (b) the explanted tumor at three weeks after the 
tumor cell injection 1 
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Chapter 6  

SUMMARY AND FUTURE WORK 

6.1 Summary 

In vivo preclinical research has emerged as important tools for probing the nature of disease 

mechanisms and for bridging the gap between the traditional in vitro (or ex-vivo) studies and 

clinical findings. Optical imaging has become one of the most widely used standalone imaging 

modalities for preclinical small animal studies and is still growing in use. However, the inherent 

shallow penetration depth of optical imaging limits the precise localization and quantification of 

optical reporters. This unmet need can be addressed with the advancement of tomography 

techniques. This thesis focused on the improvement of existing optical tomography techniques 

by developing a new tomographic imaging system.  

 The newly developed imaging system allows for full non-contact whole-body small 

animal FMT imaging. To develop this system, an existing commercial imaging system, i.e., the 

Maestro 2 in vivo imaging system was analyzed through an initial exploratory study. Many 

prototype systems and most recently developed commercial systems were also reviewed. As a 

result, the double reflection mirror scheme was proposed to obtain multi-directional 

measurement with a single fixed position camera. Subsequently a frequency-domain small 

animal imaging system that makes use of the conical mirror imaging head was designed and 

implemented. 

The frequency domain homodyne technique is utilized to separate the absorption and the 

scattering properties in tissues. For measuring the amplitude modulation and the phase shift, an 

intensity modulated laser beam (Ø 1-2 mm) is generated by using laser diodes, laser drivers, and 
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external signal generators. The generated laser beam is guided to the rotational gantry of the 

source illumination unit and is delivered to any surface area of the animal without obstructing the 

camera’s FOV. The emitted light from the animal’s body is consecutively reflected by the 

conical mirror imaging head and is projected onto an ICCD camera. Since the imaging head is 

positioned away from the animal, the unwanted back-reflections of light between the animal 

surface and the mirror surface is substantially reduced. Furthermore, the conical mirror shape of 

the imaging head provides the capability of angular-resolved data measurements.  

To take full advantage of the obtained angular-resolved data in the image reconstruction, 

a novel ERT-based ray transfer operator and an ERT-based image reconstruction algorithm were 

developed. Using the surface geometry generated by the integrated surface scanner, the ERT-

based ray transfer operator maps the spatial and angular distribution of emitted light on the 

animal’s surface onto the pixels of the ICCD camera. With this angular-resolved data used as 

input, the ERT-based inverse algorithm reconstructs the position and concentration of fluorescent 

sources by using the PDE-constrained rSQP approach. It was shown that the use of angular-

resolved data indeed leads to more accurate image reconstruction results. The reconstruction 

results of both phantom and animal experiments were well matched with the given information 

and the output of a CT imaging system. In addition, all results including numerical simulations 

were very promising as they were obtained with a fewer number of source illumination points (1-

5 source points). 

 In conclusion, the developed small animal imaging system can perform non-contact 

whole body FMT imaging. Its strong advantages such as omni-directional and angular-resolved 

measurements remarkably improve the tomographic reconstruction results. 
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6.2 Future Work 

Future work that is based on this completed thesis should focus on improving the efficiency of 

the system operation and extending the use of the FMT imaging system into the areas of BLT 

and DOT. In addition, the double-conical mirror scheme can be extended to various clinical 

applications such as non-contact breast cancer imaging or non-contact foot imaging for patients 

with peripheral artery disease. In both cases, a non-contact imaging modality would greatly 

enhance patient comfort. I will discuss these points in more detail in the following sections. 

 

6.2.1 Small Animal Imaging System 

Though the functions for the non-contact whole-body small animal FMT imaging have been 

completely implemented in this thesis, there is still room for potential improvements.  

 First, using the existing ICCD detection camera for the surface scanning, rather than 

additional webcams, would further simplify the imaging system. The surface scanner of the 

developed system uses two independent webcams on the movable platform. A commercial 

software is used for the mesh generation. Therefore the surface extraction requires moving the 

position of the scanner in accordance with the imaging process. Furthermore, cumbersome 

manual processes are needed to transform the domestic coordinates of the surface meshes into 

the global coordinate system of the imaging system. If the ICCD camera can be used to extract 

the surface mesh and its global coordinates directly, the components for the surface scanner will 

not be needed any more. This will reduce the costs and make the operation of the system more 

convenient and efficient.  

Next, while the system was developed for small animal FMT imaging, it can be also 

utilized for small animal DOT and BLT imaging without modifications. Each technique will 
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provide different physiological or pathological information about the target animal. For example, 

DOT provides information about the blood oxygen saturation, BLT informs about the cell 

proliferation, and FMT provides information about the marker of a specific molecular 

mechanism. By integrating all these optical imaging modalities and results, one will be able to 

greatly extend information content in small animal studies. 

Finally, a multimodality imaging system can be implemented. One of the strong 

advantages of the developed system is the unobstructed space around a target animal. This space 

can be used for combining the system with other gantry based imaging systems such as a micro-

MRI and a micro-CT. A priori information from the anatomical imaging system can be used to 

improve optical tomographic reconstruction results and to provide better visualization of imaging 

results to the end users. 

 

6.2.2 System Development for the Clinical Applications 

To achieve simultaneous multi-directional detection with a single camera, I developed the double 

reflection mirror scheme in this thesis. Though the scheme was implemented here with conically 

shaped mirrors for imaging small animals, there is no particular limitation concerning the object 

shape or imaging applications.  

Several clinical applications will be able to greatly benefit from this design as well. 

Figure 6-1 shows two examples, optical tomographic imaging of feet of diabetic patients with 

peripheral artery disease; and breast cancer imaging. Both applications of DOT are currently 

considered by several groups who rely on contact-based optical-fiber imaging heads [155-161]. 

As described in Chapter 3, the 2D cross sectional design for the mirror based imaging head can 

be extended to any shapes in three dimensions to maximize the detection area on the object body. 
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Since an outer boundary shape of the target object can vary from that of small animals to parts of 

the human body, the design flexibility is an important advantage for the system development. 

The maximized detection area and the multi-directional projection data will, in general, lead to 

improve image reconstruction results. In addition, if a curved shape mirror is employed, the 

angular-resolved data can be obtained to substantially increase the number of measurement data, 

which leads to improve reconstruction results. Furthermore, when the high prices of scientific 

cameras, the cost for developing mechanical components, and the throughput of the imaging 

process are considered, the mirror based imaging head can be a simple and cost effective solution 

for tomographic imaging instrumentations.  

 

 

Figure 6-1 Application examples of the imaging head (a) foot imaging and (b) breast imaging 
(reproduced from the reference [157])  
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