4 research outputs found

    Image Transmission: Analog or Digital?

    Get PDF
    Trátase dun resumo estendido da ponencia[Abstract] Evaluation and comparison of analog and digital wireless transmission systems.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; , ED341D R2016/012Xunta de Galicia; ED431G/01Agencia Estatal de Investigacion de España; TEC2015-69648-REDC,Agencia Estatal de Investigacion de España; TEC2016-75067-C4-1-RMinisterio de Economía y Competitividad; BES-2014-069772

    60-GHz Millimeter-Wave Propagation Inside Bus: Measurement, Modeling, Simulation, and Performance Analysis

    Get PDF
    Millimeter-wave (mmWave) transmission over the unlicensed 60-GHz spectrum is a potential solution to realize high-speed internet access, even inside mass transit vehicles. The solution involves communication between users and a mmWave-band on-board unit that aggregates/disseminates data streams from/to commuters and maintains the connection with the nearest terrestrial network infrastructure node. In this paper, we provide a measurement-based channel model for the 60-GHz mmWave propagation inside a typical inter-city bus. The model characterizes power delay profile (PDP) of the wireless intra-vehicular channel, and it is derived from about 1000 data sets measured within the bus. The proposed analytical model is further translated into a simple simulation algorithm that generates in-vehicle channel PDPs. Different goodness-of-fit tests confirm that the simulated PDPs are in good agreement with the measured data. Finally, a tapped-delay-line (TDL) channel model is formulated from the proposed PDP model, and the TDL model is used to study the bit error rate (BER) performance of the mmWave link inside bus under varying data rates and link lengths

    Experimental Characterization of LTE Wireless Links in High-Speed Trains

    No full text
    Multimedia and data-based services experienced a nonstopping growth over the last few years. People are continuously on the move using devices to access multimedia contents or other data-based services. Due to this, railway companies are showing a great interest in deploying broadband mobile wireless networks in high-speed-trains with the aim of supporting both passenger services provisioning as well as automatic train control and signaling. Nowadays, the most widely used technology for communications between trains and the railway infrastructure is GSM for Railways (GSM-R); however, it has limited capabilities to support such advanced services. Due to its success in the mass market, Long Term Evolution (LTE) seems to be the best candidate to substitute GSM-R. In this paper, we experimentally characterize the downlink between an LTE Evolved NodeB (eNodeB) and a high-speed train in a commercial high-speed line. We consider two links: the one between the eNodeB and the antennas placed outdoors on the train roof, and the direct link between the eNodeB and a receiver inside the train. Such a characterization consists in assessing the path loss, the Signal to Noise Ratio, the K-Factor, the Power Delay Profile, the delay spread, and the Doppler Power Spectral Density
    corecore