8,945 research outputs found

    ActiveRemediation: The Search for Lead Pipes in Flint, Michigan

    Full text link
    We detail our ongoing work in Flint, Michigan to detect pipes made of lead and other hazardous metals. After elevated levels of lead were detected in residents' drinking water, followed by an increase in blood lead levels in area children, the state and federal governments directed over $125 million to replace water service lines, the pipes connecting each home to the water system. In the absence of accurate records, and with the high cost of determining buried pipe materials, we put forth a number of predictive and procedural tools to aid in the search and removal of lead infrastructure. Alongside these statistical and machine learning approaches, we describe our interactions with government officials in recommending homes for both inspection and replacement, with a focus on the statistical model that adapts to incoming information. Finally, in light of discussions about increased spending on infrastructure development by the federal government, we explore how our approach generalizes beyond Flint to other municipalities nationwide.Comment: 10 pages, 10 figures, To appear in KDD 2018, For associated promotional video, see https://www.youtube.com/watch?v=YbIn_axYu9

    A Multi-Tree Committee to Assist Port-of-entry Inspection Decisions

    Get PDF
    A natural way to avoid the injection of potentially dangerous or illicit products in a certain country is by means of protection, following a strict portof- entry inspection policy. A naive exhaustive manual inspection is the most secure policy. However, the number of within containers allows only to check a limited number of containers by day. As a consequence, a smart port-ofentry selection policy must trade cost of inspection with security, in order to fit into the dynamic operation of a port. We explore the design of port-of-entry container inspection policies with imperfect information (unavailable or untrusted data). Starting from an a-priori classification provided by port-of-entry customs operator, a combinatorial optimization problem is introduced. The goal is to match an a-priori container classification with a logically coherent one, subject to a given level of container inspection. Inspired in the related literature, a novel Multi-Tree committee is introduced in order to find a solution to the previous combinatorial problem. It combines the strength of binary decision trees and minimization of logical functions. The algorithm is easy-to-handle and useful for an on-line production. We highlight the effectiveness of our proposal, regarding real traces available from the port of Montevideo. The results show the capability to detect the most risky containers and its conservative nature, respecting any desired level of inspection

    System software for the finite element machine

    Get PDF
    The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Detection and localization of change-points in high-dimensional network traffic data

    Full text link
    We propose a novel and efficient method, that we shall call TopRank in the following paper, for detecting change-points in high-dimensional data. This issue is of growing concern to the network security community since network anomalies such as Denial of Service (DoS) attacks lead to changes in Internet traffic. Our method consists of a data reduction stage based on record filtering, followed by a nonparametric change-point detection test based on UU-statistics. Using this approach, we can address massive data streams and perform anomaly detection and localization on the fly. We show how it applies to some real Internet traffic provided by France-T\'el\'ecom (a French Internet service provider) in the framework of the ANR-RNRT OSCAR project. This approach is very attractive since it benefits from a low computational load and is able to detect and localize several types of network anomalies. We also assess the performance of the TopRank algorithm using synthetic data and compare it with alternative approaches based on random aggregation.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS232 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Video guidance, landing, and imaging systems

    Get PDF
    The adaptive potential of video guidance technology for earth orbital and interplanetary missions was explored. The application of video acquisition, pointing, tracking, and navigation technology was considered to three primary missions: planetary landing, earth resources satellite, and spacecraft rendezvous and docking. It was found that an imaging system can be mechanized to provide a spacecraft or satellite with a considerable amount of adaptability with respect to its environment. It also provides a level of autonomy essential to many future missions and enhances their data gathering ability. The feasibility of an autonomous video guidance system capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was successfully demonstrated in the laboratory. The techniques developed for acquisition, pointing, and tracking show promise for recognizing and tracking coastlines, rivers, and other constituents of interest. Routines were written and checked for rendezvous, docking, and station-keeping functions
    corecore