8,430 research outputs found

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Distributed and adaptive location identification system for mobile devices

    Full text link
    Indoor location identification and navigation need to be as simple, seamless, and ubiquitous as its outdoor GPS-based counterpart is. It would be of great convenience to the mobile user to be able to continue navigating seamlessly as he or she moves from a GPS-clear outdoor environment into an indoor environment or a GPS-obstructed outdoor environment such as a tunnel or forest. Existing infrastructure-based indoor localization systems lack such capability, on top of potentially facing several critical technical challenges such as increased cost of installation, centralization, lack of reliability, poor localization accuracy, poor adaptation to the dynamics of the surrounding environment, latency, system-level and computational complexities, repetitive labor-intensive parameter tuning, and user privacy. To this end, this paper presents a novel mechanism with the potential to overcome most (if not all) of the abovementioned challenges. The proposed mechanism is simple, distributed, adaptive, collaborative, and cost-effective. Based on the proposed algorithm, a mobile blind device can potentially utilize, as GPS-like reference nodes, either in-range location-aware compatible mobile devices or preinstalled low-cost infrastructure-less location-aware beacon nodes. The proposed approach is model-based and calibration-free that uses the received signal strength to periodically and collaboratively measure and update the radio frequency characteristics of the operating environment to estimate the distances to the reference nodes. Trilateration is then used by the blind device to identify its own location, similar to that used in the GPS-based system. Simulation and empirical testing ascertained that the proposed approach can potentially be the core of future indoor and GPS-obstructed environments

    2D localization with WiFi passive radar and device-based techniques: an analysis of target measurements accuracy

    Get PDF
    The aim of the work is to investigate the performance of two localization techniques based on WiFi signals: the WiFi-based passive radar and a device-based technique that exploits the measurement of angle of arrival (AoA) and time difference of arrival. This paper focuses specifically on the accuracy of the AoA measurements. As expected, the results show that for both techniques the AoA accuracy depends on the signal-to-noise ratio also in terms of the number of exploited received signal samples. For the passive radar, very accurate estimates are obtained; however, loss of detections can appear only when the rate of the Access Point packets is strongly reduced. In contrast, device-based estimates accuracy is lower, since it suffers of the limited number of emitted packets when the device is not uploading data. However, it allows localization also of stationary targets, which is impossible for the passive radar. This suggests that the two techniques are complementary and their fusion could provide a sensibly increase performance with respect to the individual techniques

    WiFi emission-based vs passive radar localization of human targets

    Get PDF
    In this paper two approaches are considered for human targets localization based on the WiFi signals: the device emission-based localization and the passive radar. Localization performance and characteristics of the two localization techniques are analyzed and compared, aiming at their joint exploitation inside sensor fusion systems. The former combines the Angle of Arrival (AoA) and the Time Difference of Arrival (TDoA) measures of the device transmissions to achieve the target position, while the latter exploits the AoA and the bistatic range measures of the target echoes. The results obtained on experimental data show that the WiFi emission-based strategy is always effective for the positioning of human targets holding a WiFi device, but it has a poor localization accuracy and the number of measured positions largely depends on the device activity. In contrast, the passive radar is only effective for moving targets and has limited spatial resolution but it provides better accuracy performance, thanks to the possibility to integrate a higher number of received signals. These results also demonstrate a significant complementarity of these techniques, through a suitable experimental test, which opens the way to the development of appropriate sensor fusion techniques

    Multi-mode Tracking of a Group of Mobile Agents

    Full text link
    We consider the problem of tracking a group of mobile nodes with limited available computational and energy resources given noisy RSSI measurements and position estimates from group members. The multilateration solutions are known for energy efficiency. However, these solutions are not directly applicable to dynamic grouping scenarios where neighbourhoods and resource availability may frequently change. Existing algorithms such as cluster-based GPS duty-cycling, individual-based tracking, and multilateration-based tracking can only partially deal with the challenges of dynamic grouping scenarios. To cope with these challenges in an effective manner, we propose a new group-based multi-mode tracking algorithm. The proposed algorithm takes the topological structure of the group as well as the availability of the resources into consideration and decides the best solution at any particular time instance. We consider a clustering approach where a cluster head coordinates the usage of resources among the cluster members. We evaluate the energy-accuracy trade-off of the proposed algorithm for various fixed sampling intervals. The evaluation is based on the 2D position tracks of 40 nodes generated using Reynolds' flocking model. For a given energy budget, the proposed algorithm reduces the mean tracking error by up to 20%20\% in comparison to the existing energy-efficient cooperative algorithms. Moreover, the proposed algorithm is as accurate as the individual-based tracking while using almost half the energy.Comment: Accepted for publication in the 20th international symposium on wireless personal multimedia communications (WPMC-2017
    • …
    corecore